The Cryptic Plastid of Euglena longa Defines a New Type of Nonphotosynthetic Plastid Organelle
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33087518
PubMed Central
PMC7580956
DOI
10.1128/msphere.00675-20
PII: 5/5/e00675-20
Knihovny.cz E-zdroje
- Klíčová slova
- Calvin-Benson cycle, Euglena longa, Euglenophyceae, evolution, nonphotosynthetic plastids, phylloquinone, redox balance, sulfoquinovosyldiacylglycerol, tocopherol,
- MeSH
- Euglena longa cytologie genetika fyziologie MeSH
- fotosyntéza MeSH
- fylogeneze MeSH
- molekulární evoluce MeSH
- plastidy klasifikace genetika MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Most secondary nonphotosynthetic eukaryotes have retained residual plastids whose physiological role is often still unknown. One such example is Euglena longa, a close nonphotosynthetic relative of Euglena gracilis harboring a plastid organelle of enigmatic function. By mining transcriptome data from E. longa, we finally provide an overview of metabolic processes localized to its elusive plastid. The organelle plays no role in the biosynthesis of isoprenoid precursors and fatty acids and has a very limited repertoire of pathways concerning nitrogen-containing metabolites. In contrast, the synthesis of phospholipids and glycolipids has been preserved, curiously with the last step of sulfoquinovosyldiacylglycerol synthesis being catalyzed by the SqdX form of an enzyme so far known only from bacteria. Notably, we show that the E. longa plastid synthesizes tocopherols and a phylloquinone derivative, the first such report for nonphotosynthetic plastids studied so far. The most striking attribute of the organelle could be the presence of a linearized Calvin-Benson (CB) pathway, including RuBisCO yet lacking the gluconeogenetic part of the standard cycle, together with ferredoxin-NADP+ reductase (FNR) and the ferredoxin/thioredoxin system. We hypothesize that the ferredoxin/thioredoxin system activates the linear CB pathway in response to the redox status of the E. longa cell and speculate on the role of the pathway in keeping the redox balance of the cell. Altogether, the E. longa plastid defines a new class of relic plastids that is drastically different from the best-studied organelle of this category, the apicoplast.IMPORTANCE Colorless plastids incapable of photosynthesis evolved in many plant and algal groups, but what functions they perform is still unknown in many cases. Here, we study the elusive plastid of Euglena longa, a nonphotosynthetic cousin of the familiar green flagellate Euglena gracilis We document an unprecedented combination of metabolic functions that the E. longa plastid exhibits in comparison with previously characterized nonphotosynthetic plastids. For example, and truly surprisingly, it has retained the synthesis of tocopherols (vitamin E) and a phylloquinone (vitamin K) derivative. In addition, we offer a possible solution of the long-standing conundrum of the presence of the CO2-fixing enzyme RuBisCO in E. longa Our work provides a detailed account on a unique variant of relic plastids, the first among nonphotosynthetic plastids that evolved by secondary endosymbiosis from a green algal ancestor, and suggests that it has persisted for reasons not previously considered in relation to nonphotosynthetic plastids.
Faculty of Science Charles University BIOCEV Vestec Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre ASCR České Budějovice Czech Republic
Zobrazit více v PubMed
Keeling PJ. 2013. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607. doi:10.1146/annurev-arplant-050312-120144. PubMed DOI
McFadden GI. 2014. Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harb Perspect Biol 6:a016105. doi:10.1101/cshperspect.a016105. PubMed DOI PMC
Ponce-Toledo RI, Deschamps P, Lopez-Garcia P, Zivanovic Y, Benzerara K, Moreira D. 2017. An early-branching freshwater cyanobacterium at the origin of plastids. Curr Biol 27:386–391. doi:10.1016/j.cub.2016.11.056. PubMed DOI PMC
Neuhaus HE, Emes MJ. 2000. Nonphotosynthetic metabolism in plastids. Annu Rev Plant Physiol Plant Mol Biol 51:111–140. doi:10.1146/annurev.arplant.51.1.111. PubMed DOI
Oborník M, Green BR. 2005. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol Biol Evol 22:2343–2353. doi:10.1093/molbev/msi230. PubMed DOI
Van Dingenen J, Blomme J, Gonzalez N, Inzé D. 2016. Plants grow with a little help from their organelle friends. J Exp Bot 67:6267–6281. doi:10.1093/jxb/erw399. PubMed DOI
Hadariová L, Vesteg M, Hampl V, Krajčovič J. 2018. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet 64:365–387. doi:10.1007/s00294-017-0761-0. PubMed DOI
Janouškovec J, Tikhonenkov DV, Burki F, Howe AT, Kolísko M, Mylnikov AP, Keeling PJ. 2015. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci U S A 112:10200–10207. doi:10.1073/pnas.1423790112. PubMed DOI PMC
Kamikawa R, Moog D, Zauner S, Tanifuji G, Ishida KI, Miyashita H, Mayama S, Hashimoto T, Maier UG, Archibald JM, Inagaki Y. 2017. A non-photosynthetic diatom reveals early steps of reductive evolution in plastids. Mol Biol Evol 34:2355–2366. doi:10.1093/molbev/msx172. PubMed DOI
Slamovits CH, Keeling PJ. 2008. Plastid-derived genes in the nonphotosynthetic alveolate Oxyrrhis marina. Mol Biol Evol 25:1297–1306. doi:10.1093/molbev/msn075. PubMed DOI
McFadden GI, Yeh E. 2017. The apicoplast: now you see it, now you don’t. Int J Parasitol 47:137–144. doi:10.1016/j.ijpara.2016.08.005. PubMed DOI PMC
Miller LH, Ackerman HC, Su XZ, Wellems TE. 2013. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 19:156–167. doi:10.1038/nm.3073. PubMed DOI PMC
Lim L, McFadden GI. 2010. The evolution, metabolism and functions of the apicoplast. Philos Trans R Soc Lond B Biol Sci 365:749–763. doi:10.1098/rstb.2009.0273. PubMed DOI PMC
Fernández Robledo JA, Caler E, Matsuzaki M, Keeling PJ, Shanmugam D, Roos DS, Vasta GR. 2011. The search for the missing link: a relic plastid in Perkinsus? Int J Parasitol 41:1217–1229. doi:10.1016/j.ijpara.2011.07.008. PubMed DOI PMC
Sanchez-Puerta MV, Lippmeier JC, Apt KE, Delwiche CF. 2007. Plastid genes in a non-photosynthetic dinoflagellate. Protist 158:105–117. doi:10.1016/j.protis.2006.09.004. PubMed DOI
Borza T, Popescu CE, Lee RW. 2005. Multiple metabolic roles for the nonphotosynthetic plastid of the green alga Prototheca wickerhamii. Eukaryot Cell 4:253–261. doi:10.1128/EC.4.2.253-261.2005. PubMed DOI PMC
Pombert JF, Blouin NA, Lane C, Boucias D, Keeling PJ. 2014. A lack of parasitic reduction in the obligate parasitic green alga Helicosporidium. PLoS Genet 10:e1004355. doi:10.1371/journal.pgen.1004355. PubMed DOI PMC
Smith DR, Lee RW. 2014. A plastid without a genome: evidence from the nonphotosynthetic green algal genus Polytomella. Plant Physiol 164:1812–1819. doi:10.1104/pp.113.233718. PubMed DOI PMC
Matsuzaki M, Kuroiwa H, Kuroiwa T, Kita K, Nozaki H. 2008. A cryptic algal group unveiled: a plastid biosynthesis pathway in the oyster parasite Perkinsus marinus. Mol Biol Evol 25:1167–1179. doi:10.1093/molbev/msn064. PubMed DOI
Dorrell RG, Azuma T, Nomura M, Audren de Kerdrel G, Paoli L, Yang S, Bowler C, Ishii KI, Miyashita H, Gile GH, Kamikawa R. 2019. Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci U S A 116:6914–6923. doi:10.1073/pnas.1819976116. PubMed DOI PMC
Graupner N, Jensen M, Bock C, Marks S, Rahmann S, Beisser D, Boenigk J. 2018. Evolution of heterotrophy in chrysophytes as reflected by comparative transcriptomics. FEMS Microbiol Ecol 94:fiy039. doi:10.1093/femsec/fiy039. PubMed DOI PMC
Jackson C, Knoll AH, Chan CX, Verbruggen H. 2018. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci Rep 8:1523. doi:10.1038/s41598-017-18805-w. PubMed DOI PMC
Leander BS, Esson HJ, Breglia SA. 2007. Macroevolution of complex cytoskeletal systems in euglenids. Bioessays 29:987–1000. doi:10.1002/bies.20645. PubMed DOI
Turmel M, Gagnon MC, O’Kelly CJ, Otis C, Lemieux C. 2009. The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 26:631–648. doi:10.1093/molbev/msn285. PubMed DOI
Krajčovič J, Ebringer L, Schwartzbach SD. 2002. Reversion of endosymbiosis?, p 185–206. In Seckbach J (ed), Symbiosis: mechanisms and model systems. Springer, Dordrecht, The Netherlands. doi:10.1007/0-306-48173-1_11. DOI
Marin B, Palm A, Klingberg M, Melkonian M. 2003. Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist 154:99–145. doi:10.1078/143446103764928521. PubMed DOI
Nudelman MA, Rossi MS, Conforti V, Triemer RE. 2003. Phylogeny of Euglenophyceae based on small subunit rDNA sequences: taxonomic implications. J Phycol 39:226–235. doi:10.1046/j.1529-8817.2003.02075.x. DOI
Hachtel W. 1996. DNA and gene expression in nonphotosynthetic plastids, p 349–355. In Pessarakli M (ed), Handbook of photosynthesis. Marcel Dekker, New York, NY.
Kivic PA, Vesk M. 1974. An electron microscope search for plastids in bleached Euglena gracilis and in Astasia longa. Can J Bot 52:695–699. doi:10.1139/b74-089. DOI
Webster DA, Hackett DP, Park RB. 1967. The respiratory chain of colorless algae: III. Electron microscopy. J Ultrastruct Res 21:514–523. doi:10.1016/S0022-5320(67)80154-0. PubMed DOI
Gockel G, Hachtel W. 2000. Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist 151:347–351. doi:10.1078/S1434-4610(04)70033-4. PubMed DOI
Záhonová K, Füssy Z, Oborník M, Eliáš M, Yurchenko V. 2016. RuBisCO in non-photosynthetic alga Euglena longa: divergent features, transcriptomic analysis and regulation of complex formation. PLoS One 11:e0158790. doi:10.1371/journal.pone.0158790. PubMed DOI PMC
Gockel G, Hachtel W, Baier S, Fliss C, Henke M. 1994. Genes for components of the chloroplast translational apparatus are conserved in the reduced 73-kb plastid DNA of the nonphotosynthetic euglenoid flagellate Astasia longa. Curr Genet 26:256–262. doi:10.1007/BF00309557. PubMed DOI
Hadariová L, Vesteg M, Birčák E, Schwartzbach SD, Krajčovič J. 2017. An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis. Curr Genet 63:331–341. doi:10.1007/s00294-016-0641-z. PubMed DOI
Siemeister G, Buchholz C, Hachtel W. 1990. Genes for ribosomal proteins are retained on the 73 kb DNA from Astasia longa that resembles Euglena chloroplast DNA. Curr Genet 18:457–464. doi:10.1007/BF00309917. PubMed DOI
Siemeister G, Buchholz C, Hachtel W. 1990. Genes for the plastid elongation factor Tu and ribosomal protein S7 and six tRNA genes on the 73 kb DNA from Astasia longa that resembles the chloroplast DNA of Euglena. Mol Gen Genet 220:425–432. doi:10.1007/BF00391749. PubMed DOI
Záhonová K, Füssy Z, Birčák E, Novák Vanclová AMG, Klimeš V, Vesteg M, Krajčovič J, Oborník M, Eliáš M. 2018. Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Sci Rep 8:17012. doi:10.1038/s41598-018-35389-1. PubMed DOI PMC
Novák Vanclová AMG, Zoltner M, Kelly S, Soukal P, Záhonová K, Füssy Z, Ebenezer TE, Lacová Dobáková E, Eliáš M, Lukeš J, Field M, Hampl V. 2020. Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytol 225:1578–1592. doi:10.1111/nph.16237. PubMed DOI
Kim D, Filtz MR, Proteau PJ. 2004. The methylerythritol phosphate pathway contributes to carotenoid but not phytol biosynthesis in Euglena gracilis. J Nat Prod 67:1067–1069. doi:10.1021/np049892x. PubMed DOI
Gutbrod K, Romer J, Dormann P. 2019. Phytol metabolism in plants. Prog Lipid Res 74:1–17. doi:10.1016/j.plipres.2019.01.002. PubMed DOI
Disch A, Schwender J, Muller C, Lichtenthaler HK, Rohmer M. 1998. Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem J 333:381–388. doi:10.1042/bj3330381. PubMed DOI PMC
Watanabe F, Yoshimura K, Shigeoka S. 2017. Biochemistry and physiology of vitamins in Euglena. Adv Exp Med Biol 979:65–90. doi:10.1007/978-3-319-54910-1_5. PubMed DOI
Ziegler K, Maldener I, Lockau W. 1989. 5'-Monohydroxyphylloquinone as a component of photosystem I. Z Naturforsch C 44:468–472. doi:10.1515/znc-1989-5-621. DOI
Giordano M, Raven JA. 2014. Nitrogen and sulfur assimilation in plants and algae. Aquat Bot 118:45–61. doi:10.1016/j.aquabot.2014.06.012. DOI
Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. 2015. Understanding nitrate assimilation and its regulation in microalgae. Front Plant Sci 6:899. doi:10.3389/fpls.2015.00899. PubMed DOI PMC
Kitaoka S, Nakano Y, Miyatake K, Yokota A. 1989. Enzymes and their functional location, p 1–135. In Buetow DE (ed), Subcellular biochemistry and molecular biology. Academic Press, New York, NY. doi:10.1016/B978-0-12-139904-7.50007-5. DOI
Oda Y, Miyatake K, Kitaoka S. 1979. Inability of Euglena gracilis Z to utilize nitrate, nitrite and urea as the nitrogen sources. Bull Univ Osaka Prefecture Series B Agric Biol 31:43–48.
Dagenais-Bellefeuille S, Morse D. 2013. Putting the N in dinoflagellates. Front Microbiol 4:369. doi:10.3389/fmicb.2013.00369. PubMed DOI PMC
Fernandez E, Galvan A. 2008. Nitrate assimilation in Chlamydomonas. Eukaryot Cell 7:555–559. doi:10.1128/EC.00431-07. PubMed DOI PMC
Füssy Z, Faitová T, Oborník M. 2019. Subcellular compartments interplay for carbon and nitrogen allocation in Chromera velia and Vitrella brassicaformis. Genome Biol Evol 11:1765–1779. doi:10.1093/gbe/evz123. PubMed DOI PMC
Gerdes S, Lerma-Ortiz C, Frelin O, Seaver SM, Henry CS, de Crecy-Lagard V, Hanson AD. 2012. Plant B vitamin pathways and their compartmentation: a guide for the perplexed. J Exp Bot 63:5379–5395. doi:10.1093/jxb/ers208. PubMed DOI
Moffatt BA, Ashihara H. 2002. Purine and pyrimidine nucleotide synthesis and metabolism. Arabidopsis Book 1:e0018. doi:10.1199/tab.0018. PubMed DOI PMC
Kořený L, Oborník M. 2011. Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis. Genome Biol Evol 3:359–364. doi:10.1093/gbe/evr029. PubMed DOI PMC
Zimorski V, Rauch C, van Hellemond JJ, Tielens AGM, Martin WF. 2017. The mitochondrion of Euglena gracilis. Adv Exp Med Biol 979:19–37. doi:10.1007/978-3-319-54910-1_2. PubMed DOI
Lambalot RH, Walsh CT. 1995. Cloning, overproduction, and characterization of the Escherichia coli holo-acyl carrier protein synthase. J Biol Chem 270:24658–24661. doi:10.1074/jbc.270.42.24658. PubMed DOI
Yuzawa Y, Nishihara H, Haraguchi T, Masuda S, Shimojima M, Shimoyama A, Yuasa H, Okada N, Ohta H. 2012. Phylogeny of galactolipid synthase homologs together with their enzymatic analyses revealed a possible origin and divergence time for photosynthetic membrane biogenesis. DNA Res 19:91–102. doi:10.1093/dnares/dsr044. PubMed DOI PMC
Hori K, Nobusawa T, Watanabe T, Madoka Y, Suzuki H, Shibata D, Shimojima M, Ohta H. 2016. Tangled evolutionary processes with commonality and diversity in plastidial glycolipid synthesis in photosynthetic organisms. Biochim Biophys Acta 1861:1294–1308. doi:10.1016/j.bbalip.2016.04.015. PubMed DOI
Li C, Wang Y, Liu L, Hu Y, Zhang F, Mergen S, Wang G, Schlappi MR, Chu C. 2011. A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency. PLoS Genet 7:e1002196. doi:10.1371/journal.pgen.1002196. PubMed DOI PMC
Sun GL, Shen W, Wen JF. 2008. Triosephosphate isomerase genes in two trophic modes of euglenoids (euglenophyceae) and their phylogenetic analysis. J Eukaryot Microbiol 55:170–177. doi:10.1111/j.1550-7408.2008.00324.x. PubMed DOI
Markunas CM, Triemer RE. 2016. Evolutionary history of the enzymes involved in the Calvin-Benson cycle in euglenids. J Eukaryot Microbiol 63:326–339. doi:10.1111/jeu.12282. PubMed DOI
Raines CA, Lloyd JC. 19 April 2001. C3 carbon reduction cycle. In eLS. John Wiley & Sons, Ltd, Chichester, UK. doi:10.1038/npg.els.0001314. DOI
Kiss JZ, Vasconcelos AC, Triemer RE. 1987. Structure of the euglenoid storage carbohydrate, paramylon. Am J Bot 74:877–882. doi:10.1002/j.1537-2197.1987.tb08691.x. DOI
Facchinelli F, Weber AP. 2011. The metabolite transporters of the plastid envelope: an update. Front Plant Sci 2:50. doi:10.3389/fpls.2011.00050. PubMed DOI PMC
Haferkamp I, Deschamps P, Ast M, Jeblick W, Maier U, Ball S, Neuhaus HE. 2006. Molecular and biochemical analysis of periplastidial starch metabolism in the cryptophyte Guillardia theta. Eukaryot Cell 5:964–971. doi:10.1128/EC.00381-05. PubMed DOI PMC
Tabita FR, Hanson TE, Li H, Satagopan S, Singh J, Chan S. 2007. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol Mol Biol Rev 71:576–599. doi:10.1128/MMBR.00015-07. PubMed DOI PMC
Pick TR, Brautigam A, Schulz MA, Obata T, Fernie AR, Weber AP. 2013. PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters. Proc Natl Acad Sci U S A 110:3185–3190. doi:10.1073/pnas.1215142110. PubMed DOI PMC
Walker BJ, South PF, Ort DR. 2016. Physiological evidence for plasticity in glycolate/glycerate transport during photorespiration. Photosynth Res 129:93–103. doi:10.1007/s11120-016-0277-3. PubMed DOI PMC
Vogel A, Schwacke R, Denton AK, Usadel B, Hollmann J, Fischer K, Bolger A, Schmidt MH, Bolger ME, Gundlach H, Mayer KFX, Weiss-Schneeweiss H, Temsch EM, Krause K. 2018. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat Commun 9:2515. doi:10.1038/s41467-018-04344-z. PubMed DOI PMC
Vollmer M, Thomsen N, Wiek S, Seeber F. 2001. Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin. J Biol Chem 276:5483–5490. doi:10.1074/jbc.M009452200. PubMed DOI
Pérez-Pérez ME, Mauriès A, Maes A, Tourasse NJ, Hamon M, Lemaire SD, Marchand CH. 2017. The deep thioredoxome in Chlamydomonas reinhardtii: new insights into redox regulation. Mol Plant 10:1107–1125. doi:10.1016/j.molp.2017.07.009. PubMed DOI
Schürmann P, Buchanan BB. 2008. The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid Redox Signal 10:1235–1274. doi:10.1089/ars.2007.1931. PubMed DOI
Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A. 2015. When the lights go out: the evolutionary fate of free-living colorless green algae. New Phytol 206:972–982. doi:10.1111/nph.13279. PubMed DOI PMC
Lohr M, Schwender J, Polle JE. 2012. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185-186:9–22. doi:10.1016/j.plantsci.2011.07.018. PubMed DOI
Waller RF, Gornik SG, Koreny L, Pain A. 2016. Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid. Commun Integr Biol 9:e1116653. doi:10.1080/19420889.2015.1116653. PubMed DOI PMC
Cenci U, Qiu H, Pillonel T, Cardol P, Remacle C, Colleoni C, Kadouche D, Chabi M, Greub G, Bhattacharya D, Ball SG. 2018. Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida. Sci Rep 8:15243. doi:10.1038/s41598-018-33663-w. PubMed DOI PMC
Seeger JW, Bentley R. 1991. Phylloquinone (vitamin K1) biosynthesis in Euglena gracilis strain Z. Phytochemistry 30:3585–3589. doi:10.1016/0031-9422(91)80070-H. DOI
Fatihi A, Latimer S, Schmollinger S, Block A, Dussault PH, Vermaas WF, Merchant SS, Basset GJ. 2015. A dedicated type II NADPH dehydrogenase performs the penultimate step in the biosynthesis of vitamin K1 in Synechocystis and Arabidopsis. Plant Cell 27:1730–1741. doi:10.1105/tpc.15.00103. PubMed DOI PMC
Maeda H, DellaPenna D. 2007. Tocopherol functions in photosynthetic organisms. Curr Opin Plant Biol 10:260–265. doi:10.1016/j.pbi.2007.04.006. PubMed DOI
Brettel K. 1997. Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta 1318:322–373. doi:10.1016/S0005-2728(96)00112-0. DOI
Furt F, Oostende C, Widhalm JR, Dale MA, Wertz J, Basset GJC. 2010. A bimodular oxidoreductase mediates the specific reduction of phylloquinone (vitamin K1) in chloroplasts. Plant J 64:38–46. doi:10.1111/j.1365-313X.2010.04305.x. PubMed DOI
Karamoko M, Cline S, Redding K, Ruiz N, Hamel PP. 2011. Lumen thiol oxidoreductase1, a disulfide bond-forming catalyst, is required for the assembly of photosystem II in Arabidopsis. Plant Cell 23:4462–4475. doi:10.1105/tpc.111.089680. PubMed DOI PMC
Gu X, Harding S, Nyamdari B, Aulakh K, Clermont K, Westwood J, Tsai C-J. 2018. A role for phylloquinone biosynthesis in the plasma membrane as revealed in a non-photosynthetic parasitic plant. bioRxiv doi:10.1101/257519. DOI
Lochner K, Doring O, Bottger M. 2003. Phylloquinone, what can we learn from plants? Biofactors 18:73–78. doi:10.1002/biof.5520180209. PubMed DOI
Schopfer P, Heyno E, Drepper F, Krieger-Liszkay A. 2008. Naphthoquinone-dependent generation of superoxide radicals by quinone reductase isolated from the plasma membrane of soybean. Plant Physiol 147:864–878. doi:10.1104/pp.108.118745. PubMed DOI PMC
Goddard-Borger ED, Williams SJ. 2017. Sulfoquinovose in the biosphere: occurrence, metabolism and functions. Biochem J 474:827–849. doi:10.1042/BCJ20160508. PubMed DOI
Yoon EY, Yang AR, Park J, Moon SJ, Jeong EJ, Rho JR. 2017. Characterization of a new trioxilin and a sulfoquinovosyl diacylglycerol with anti-inflammatory properties from the dinoflagellate Oxyrrhis marina. Mar Drugs 15:57. doi:10.3390/md15030057. PubMed DOI PMC
Botté C, Saidani N, Mondragon R, Mondragon M, Isaac G, Mui E, McLeod R, Dubremetz JF, Vial H, Welti R, Cesbron-Delauw MF, Mercier C, Maréchal E. 2008. Subcellular localization and dynamics of a digalactolipid-like epitope in Toxoplasma gondii. J Lipid Res 49:746–762. doi:10.1194/jlr.M700476-JLR200. PubMed DOI
Botté CY, Yamaryo-Botté Y, Rupasinghe TW, Mullin KA, MacRae JI, Spurck TP, Kalanon M, Shears MJ, Coppel RL, Crellin PK, Maréchal E, McConville MJ, McFadden GI. 2013. Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites. Proc Natl Acad Sci U S A 110:7506–7511. doi:10.1073/pnas.1301251110. PubMed DOI PMC
Donaher N, Tanifuji G, Onodera NT, Malfatti SA, Chain PS, Hara Y, Archibald JM. 2009. The complete plastid genome sequence of the secondarily nonphotosynthetic alga Cryptomonas paramecium: reduction, compaction, and accelerated evolutionary rate. Genome Biol Evol 1:439–448. doi:10.1093/gbe/evp047. PubMed DOI PMC
Sekiguchi H, Moriya M, Nakayama T, Inouye I. 2002. Vestigial chloroplasts in heterotrophic stramenopiles Pteridomonas danica and Ciliophrys infusionum (Dictyochophyceae). Protist 153:157–167. doi:10.1078/1434-4610-00094. PubMed DOI
Wicke S, Müller KF, de Pamphilis CW, Quandt D, Wickett NJ, Zhang Y, Renner SS, Schneeweiss GM. 2013. Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. Plant Cell 25:3711–3725. doi:10.1105/tpc.113.113373. PubMed DOI PMC
Kim GH, Jeong HJ, Yoo YD, Kim S, Han JH, Han JW, Zuccarello GC. 2013. Still acting green: continued expression of photosynthetic genes in the heterotrophic dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata). PLoS One 8:e68232. doi:10.1371/journal.pone.0068232. PubMed DOI PMC
Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y. 2004. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782. doi:10.1038/nature03145. PubMed DOI
Iddar A, Valverde F, Serrano A, Soukri A. 2003. Purification of recombinant non-phosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Streptococcus pyogenes expressed in E. coli. Mol Cell Biochem 247:195–203. doi:10.1023/A:1024112027440. PubMed DOI
Rius SP, Casati P, Iglesias AA, Gomez-Casati DF. 2006. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Plant Mol Biol 61:945–957. doi:10.1007/s11103-006-0060-5. PubMed DOI
Tucci S, Vacula R, Krajčovič J, Proksch P, Martin W. 2010. Variability of wax ester fermentation in natural and bleached Euglena gracilis strains in response to oxygen and the elongase inhibitor flufenacet. J Eukaryot Microbiol 57:63–69. doi:10.1111/j.1550-7408.2009.00452.x. PubMed DOI
Nakazawa M, Ando H, Nishimoto A, Ohta T, Sakamoto K, Ishikawa T, Ueda M, Sakamoto T, Nakano Y, Miyatake K, Inui H. 2018. Anaerobic respiration coupled with mitochondrial fatty acid synthesis in wax ester fermentation by Euglena gracilis. FEBS Lett 592:4020–4027. doi:10.1002/1873-3468.13276. PubMed DOI PMC
Yoshida Y, Tomiyama T, Maruta T, Tomita M, Ishikawa T, Arakawa K. 2016. De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. BMC Genomics 17:182. doi:10.1186/s12864-016-2540-6. PubMed DOI PMC
Roger AJ, Muñoz-Gómez SA, Kamikawa R. 2017. The origin and diversification of mitochondria. Curr Biol 27:R1177–R1192. doi:10.1016/j.cub.2017.09.015. PubMed DOI
Maciszewski K, Karnkowska A. 2019. Should I stay or should I go? Retention and loss of components in vestigial endosymbiotic organelles. Curr Opin Genet Dev 58-59:33–39. doi:10.1016/j.gde.2019.07.013. PubMed DOI
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240. doi:10.1093/bioinformatics/btu031. PubMed DOI PMC
Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. 2013. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 41:e121. doi:10.1093/nar/gkt263. PubMed DOI PMC
Ebenezer TE, Carrington M, Lebert M, Kelly S, Field MC. 2017. Euglena gracilis genome and transcriptome: organelles, nuclear genome assembly strategies and initial features. Adv Exp Med Biol 979:125–140. doi:10.1007/978-3-319-54910-1_7. PubMed DOI
Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, Beszteri B, Bidle KD, Cameron CT, Campbell L, Caron DA, Cattolico RA, Collier JL, Coyne K, Davy SK, Deschamps P, Dyhrman ST, Edvardsen B, Gates RD, Gobler CJ, Greenwood SJ, Guida SM, Jacobi JL, Jakobsen KS, James ER, Jenkins B, John U, Johnson MD, Juhl AR, Kamp A, Katz LA, Kiene R, Kudryavtsev A, Leander BS, Lin S, Lovejoy C, Lynn D, Marchetti A, McManus G, Nedelcu AM, Menden-Deuer S, Miceli C, Mock T, Montresor M, Moran MA, Murray S, et al. . 2014. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12:e1001889. doi:10.1371/journal.pbio.1001889. PubMed DOI PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010. PubMed DOI PMC
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. doi:10.1093/bioinformatics/btp348. PubMed DOI PMC
Goodstadt L, Ponting CP. 2001. CHROMA: consensus-based colouring of multiple alignments for publication. Bioinformatics 17:845–846. doi:10.1093/bioinformatics/17.9.845. PubMed DOI
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. doi:10.1093/molbev/msu300. PubMed DOI PMC
Cramer M, Myers J. 1952. Growth and photosynthetic characteristics of Euglena gracilis. Archiv Mikrobiol 17:384–402. doi:10.1007/BF00410835. DOI
Sonneborn TM. 1950. Methods in the general biology and genetics of Paramecium aurelia. J Exp Zool 113:87–147. doi:10.1002/jez.1401130106. DOI
Tomčala A, Kyselová V, Schneedorferová I, Opekarová I, Moos M, Urajová P, Kručinská J, Oborník M. 2017. Separation and identification of lipids in the photosynthetic cousins of Apicomplexa Chromera velia and Vitrella brassicaformis. J Sep Sci 40:3402–3413. doi:10.1002/jssc.201700171. PubMed DOI
Folch J, Lees M, Sloane Stanley GH. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509. PubMed
Botté CY, Yamaryo-Botté Y, Janouškovec J, Rupasinghe T, Keeling PJ, Crellin P, Coppel RL, Maréchal E, McConville MJ, McFadden GI. 2011. Identification of plant-like galactolipids in Chromera velia, a photosynthetic relative of malaria parasites. J Biol Chem 286:29893–29903. doi:10.1074/jbc.M111.254979. PubMed DOI PMC
Moog D, Rensing SA, Archibald JM, Maier UG, Ullrich KK. 2015. Localization and evolution of putative triose phosphate translocators in the diatom Phaeodactylum tricornutum. Genome Biol Evol 7:2955–2969. doi:10.1093/gbe/evv190. PubMed DOI PMC
Brooks CF, Johnsen H, van Dooren GG, Muthalagi M, Lin SS, Bohne W, Fischer K, Striepen B. 2010. The toxoplasma apicoplast phosphate translocator links cytosolic and apicoplast metabolism and is essential for parasite survival. Cell Host Microbe 7:62–73. doi:10.1016/j.chom.2009.12.002. PubMed DOI PMC
Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events
Organellar Evolution: A Path from Benefit to Dependence
Editorial: Mixotrophic, Secondary Heterotrophic, and Parasitic Algae
Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum