The Cryptic Plastid of Euglena longa Defines a New Type of Nonphotosynthetic Plastid Organelle

. 2020 Oct 21 ; 5 (5) : . [epub] 20201021

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33087518

Most secondary nonphotosynthetic eukaryotes have retained residual plastids whose physiological role is often still unknown. One such example is Euglena longa, a close nonphotosynthetic relative of Euglena gracilis harboring a plastid organelle of enigmatic function. By mining transcriptome data from E. longa, we finally provide an overview of metabolic processes localized to its elusive plastid. The organelle plays no role in the biosynthesis of isoprenoid precursors and fatty acids and has a very limited repertoire of pathways concerning nitrogen-containing metabolites. In contrast, the synthesis of phospholipids and glycolipids has been preserved, curiously with the last step of sulfoquinovosyldiacylglycerol synthesis being catalyzed by the SqdX form of an enzyme so far known only from bacteria. Notably, we show that the E. longa plastid synthesizes tocopherols and a phylloquinone derivative, the first such report for nonphotosynthetic plastids studied so far. The most striking attribute of the organelle could be the presence of a linearized Calvin-Benson (CB) pathway, including RuBisCO yet lacking the gluconeogenetic part of the standard cycle, together with ferredoxin-NADP+ reductase (FNR) and the ferredoxin/thioredoxin system. We hypothesize that the ferredoxin/thioredoxin system activates the linear CB pathway in response to the redox status of the E. longa cell and speculate on the role of the pathway in keeping the redox balance of the cell. Altogether, the E. longa plastid defines a new class of relic plastids that is drastically different from the best-studied organelle of this category, the apicoplast.IMPORTANCE Colorless plastids incapable of photosynthesis evolved in many plant and algal groups, but what functions they perform is still unknown in many cases. Here, we study the elusive plastid of Euglena longa, a nonphotosynthetic cousin of the familiar green flagellate Euglena gracilis We document an unprecedented combination of metabolic functions that the E. longa plastid exhibits in comparison with previously characterized nonphotosynthetic plastids. For example, and truly surprisingly, it has retained the synthesis of tocopherols (vitamin E) and a phylloquinone (vitamin K) derivative. In addition, we offer a possible solution of the long-standing conundrum of the presence of the CO2-fixing enzyme RuBisCO in E. longa Our work provides a detailed account on a unique variant of relic plastids, the first among nonphotosynthetic plastids that evolved by secondary endosymbiosis from a green algal ancestor, and suggests that it has persisted for reasons not previously considered in relation to nonphotosynthetic plastids.

Zobrazit více v PubMed

Keeling PJ. 2013. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607. doi:10.1146/annurev-arplant-050312-120144. PubMed DOI

McFadden GI. 2014. Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harb Perspect Biol 6:a016105. doi:10.1101/cshperspect.a016105. PubMed DOI PMC

Ponce-Toledo RI, Deschamps P, Lopez-Garcia P, Zivanovic Y, Benzerara K, Moreira D. 2017. An early-branching freshwater cyanobacterium at the origin of plastids. Curr Biol 27:386–391. doi:10.1016/j.cub.2016.11.056. PubMed DOI PMC

Neuhaus HE, Emes MJ. 2000. Nonphotosynthetic metabolism in plastids. Annu Rev Plant Physiol Plant Mol Biol 51:111–140. doi:10.1146/annurev.arplant.51.1.111. PubMed DOI

Oborník M, Green BR. 2005. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol Biol Evol 22:2343–2353. doi:10.1093/molbev/msi230. PubMed DOI

Van Dingenen J, Blomme J, Gonzalez N, Inzé D. 2016. Plants grow with a little help from their organelle friends. J Exp Bot 67:6267–6281. doi:10.1093/jxb/erw399. PubMed DOI

Hadariová L, Vesteg M, Hampl V, Krajčovič J. 2018. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet 64:365–387. doi:10.1007/s00294-017-0761-0. PubMed DOI

Janouškovec J, Tikhonenkov DV, Burki F, Howe AT, Kolísko M, Mylnikov AP, Keeling PJ. 2015. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci U S A 112:10200–10207. doi:10.1073/pnas.1423790112. PubMed DOI PMC

Kamikawa R, Moog D, Zauner S, Tanifuji G, Ishida KI, Miyashita H, Mayama S, Hashimoto T, Maier UG, Archibald JM, Inagaki Y. 2017. A non-photosynthetic diatom reveals early steps of reductive evolution in plastids. Mol Biol Evol 34:2355–2366. doi:10.1093/molbev/msx172. PubMed DOI

Slamovits CH, Keeling PJ. 2008. Plastid-derived genes in the nonphotosynthetic alveolate Oxyrrhis marina. Mol Biol Evol 25:1297–1306. doi:10.1093/molbev/msn075. PubMed DOI

McFadden GI, Yeh E. 2017. The apicoplast: now you see it, now you don’t. Int J Parasitol 47:137–144. doi:10.1016/j.ijpara.2016.08.005. PubMed DOI PMC

Miller LH, Ackerman HC, Su XZ, Wellems TE. 2013. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 19:156–167. doi:10.1038/nm.3073. PubMed DOI PMC

Lim L, McFadden GI. 2010. The evolution, metabolism and functions of the apicoplast. Philos Trans R Soc Lond B Biol Sci 365:749–763. doi:10.1098/rstb.2009.0273. PubMed DOI PMC

Fernández Robledo JA, Caler E, Matsuzaki M, Keeling PJ, Shanmugam D, Roos DS, Vasta GR. 2011. The search for the missing link: a relic plastid in Perkinsus? Int J Parasitol 41:1217–1229. doi:10.1016/j.ijpara.2011.07.008. PubMed DOI PMC

Sanchez-Puerta MV, Lippmeier JC, Apt KE, Delwiche CF. 2007. Plastid genes in a non-photosynthetic dinoflagellate. Protist 158:105–117. doi:10.1016/j.protis.2006.09.004. PubMed DOI

Borza T, Popescu CE, Lee RW. 2005. Multiple metabolic roles for the nonphotosynthetic plastid of the green alga Prototheca wickerhamii. Eukaryot Cell 4:253–261. doi:10.1128/EC.4.2.253-261.2005. PubMed DOI PMC

Pombert JF, Blouin NA, Lane C, Boucias D, Keeling PJ. 2014. A lack of parasitic reduction in the obligate parasitic green alga Helicosporidium. PLoS Genet 10:e1004355. doi:10.1371/journal.pgen.1004355. PubMed DOI PMC

Smith DR, Lee RW. 2014. A plastid without a genome: evidence from the nonphotosynthetic green algal genus Polytomella. Plant Physiol 164:1812–1819. doi:10.1104/pp.113.233718. PubMed DOI PMC

Matsuzaki M, Kuroiwa H, Kuroiwa T, Kita K, Nozaki H. 2008. A cryptic algal group unveiled: a plastid biosynthesis pathway in the oyster parasite Perkinsus marinus. Mol Biol Evol 25:1167–1179. doi:10.1093/molbev/msn064. PubMed DOI

Dorrell RG, Azuma T, Nomura M, Audren de Kerdrel G, Paoli L, Yang S, Bowler C, Ishii KI, Miyashita H, Gile GH, Kamikawa R. 2019. Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci U S A 116:6914–6923. doi:10.1073/pnas.1819976116. PubMed DOI PMC

Graupner N, Jensen M, Bock C, Marks S, Rahmann S, Beisser D, Boenigk J. 2018. Evolution of heterotrophy in chrysophytes as reflected by comparative transcriptomics. FEMS Microbiol Ecol 94:fiy039. doi:10.1093/femsec/fiy039. PubMed DOI PMC

Jackson C, Knoll AH, Chan CX, Verbruggen H. 2018. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci Rep 8:1523. doi:10.1038/s41598-017-18805-w. PubMed DOI PMC

Leander BS, Esson HJ, Breglia SA. 2007. Macroevolution of complex cytoskeletal systems in euglenids. Bioessays 29:987–1000. doi:10.1002/bies.20645. PubMed DOI

Turmel M, Gagnon MC, O’Kelly CJ, Otis C, Lemieux C. 2009. The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 26:631–648. doi:10.1093/molbev/msn285. PubMed DOI

Krajčovič J, Ebringer L, Schwartzbach SD. 2002. Reversion of endosymbiosis?, p 185–206. In Seckbach J (ed), Symbiosis: mechanisms and model systems. Springer, Dordrecht, The Netherlands. doi:10.1007/0-306-48173-1_11. DOI

Marin B, Palm A, Klingberg M, Melkonian M. 2003. Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist 154:99–145. doi:10.1078/143446103764928521. PubMed DOI

Nudelman MA, Rossi MS, Conforti V, Triemer RE. 2003. Phylogeny of Euglenophyceae based on small subunit rDNA sequences: taxonomic implications. J Phycol 39:226–235. doi:10.1046/j.1529-8817.2003.02075.x. DOI

Hachtel W. 1996. DNA and gene expression in nonphotosynthetic plastids, p 349–355. In Pessarakli M (ed), Handbook of photosynthesis. Marcel Dekker, New York, NY.

Kivic PA, Vesk M. 1974. An electron microscope search for plastids in bleached Euglena gracilis and in Astasia longa. Can J Bot 52:695–699. doi:10.1139/b74-089. DOI

Webster DA, Hackett DP, Park RB. 1967. The respiratory chain of colorless algae: III. Electron microscopy. J Ultrastruct Res 21:514–523. doi:10.1016/S0022-5320(67)80154-0. PubMed DOI

Gockel G, Hachtel W. 2000. Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist 151:347–351. doi:10.1078/S1434-4610(04)70033-4. PubMed DOI

Záhonová K, Füssy Z, Oborník M, Eliáš M, Yurchenko V. 2016. RuBisCO in non-photosynthetic alga Euglena longa: divergent features, transcriptomic analysis and regulation of complex formation. PLoS One 11:e0158790. doi:10.1371/journal.pone.0158790. PubMed DOI PMC

Gockel G, Hachtel W, Baier S, Fliss C, Henke M. 1994. Genes for components of the chloroplast translational apparatus are conserved in the reduced 73-kb plastid DNA of the nonphotosynthetic euglenoid flagellate Astasia longa. Curr Genet 26:256–262. doi:10.1007/BF00309557. PubMed DOI

Hadariová L, Vesteg M, Birčák E, Schwartzbach SD, Krajčovič J. 2017. An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis. Curr Genet 63:331–341. doi:10.1007/s00294-016-0641-z. PubMed DOI

Siemeister G, Buchholz C, Hachtel W. 1990. Genes for ribosomal proteins are retained on the 73 kb DNA from Astasia longa that resembles Euglena chloroplast DNA. Curr Genet 18:457–464. doi:10.1007/BF00309917. PubMed DOI

Siemeister G, Buchholz C, Hachtel W. 1990. Genes for the plastid elongation factor Tu and ribosomal protein S7 and six tRNA genes on the 73 kb DNA from Astasia longa that resembles the chloroplast DNA of Euglena. Mol Gen Genet 220:425–432. doi:10.1007/BF00391749. PubMed DOI

Záhonová K, Füssy Z, Birčák E, Novák Vanclová AMG, Klimeš V, Vesteg M, Krajčovič J, Oborník M, Eliáš M. 2018. Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Sci Rep 8:17012. doi:10.1038/s41598-018-35389-1. PubMed DOI PMC

Novák Vanclová AMG, Zoltner M, Kelly S, Soukal P, Záhonová K, Füssy Z, Ebenezer TE, Lacová Dobáková E, Eliáš M, Lukeš J, Field M, Hampl V. 2020. Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytol 225:1578–1592. doi:10.1111/nph.16237. PubMed DOI

Kim D, Filtz MR, Proteau PJ. 2004. The methylerythritol phosphate pathway contributes to carotenoid but not phytol biosynthesis in Euglena gracilis. J Nat Prod 67:1067–1069. doi:10.1021/np049892x. PubMed DOI

Gutbrod K, Romer J, Dormann P. 2019. Phytol metabolism in plants. Prog Lipid Res 74:1–17. doi:10.1016/j.plipres.2019.01.002. PubMed DOI

Disch A, Schwender J, Muller C, Lichtenthaler HK, Rohmer M. 1998. Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem J 333:381–388. doi:10.1042/bj3330381. PubMed DOI PMC

Watanabe F, Yoshimura K, Shigeoka S. 2017. Biochemistry and physiology of vitamins in Euglena. Adv Exp Med Biol 979:65–90. doi:10.1007/978-3-319-54910-1_5. PubMed DOI

Ziegler K, Maldener I, Lockau W. 1989. 5'-Monohydroxyphylloquinone as a component of photosystem I. Z Naturforsch C 44:468–472. doi:10.1515/znc-1989-5-621. DOI

Giordano M, Raven JA. 2014. Nitrogen and sulfur assimilation in plants and algae. Aquat Bot 118:45–61. doi:10.1016/j.aquabot.2014.06.012. DOI

Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. 2015. Understanding nitrate assimilation and its regulation in microalgae. Front Plant Sci 6:899. doi:10.3389/fpls.2015.00899. PubMed DOI PMC

Kitaoka S, Nakano Y, Miyatake K, Yokota A. 1989. Enzymes and their functional location, p 1–135. In Buetow DE (ed), Subcellular biochemistry and molecular biology. Academic Press, New York, NY. doi:10.1016/B978-0-12-139904-7.50007-5. DOI

Oda Y, Miyatake K, Kitaoka S. 1979. Inability of Euglena gracilis Z to utilize nitrate, nitrite and urea as the nitrogen sources. Bull Univ Osaka Prefecture Series B Agric Biol 31:43–48.

Dagenais-Bellefeuille S, Morse D. 2013. Putting the N in dinoflagellates. Front Microbiol 4:369. doi:10.3389/fmicb.2013.00369. PubMed DOI PMC

Fernandez E, Galvan A. 2008. Nitrate assimilation in Chlamydomonas. Eukaryot Cell 7:555–559. doi:10.1128/EC.00431-07. PubMed DOI PMC

Füssy Z, Faitová T, Oborník M. 2019. Subcellular compartments interplay for carbon and nitrogen allocation in Chromera velia and Vitrella brassicaformis. Genome Biol Evol 11:1765–1779. doi:10.1093/gbe/evz123. PubMed DOI PMC

Gerdes S, Lerma-Ortiz C, Frelin O, Seaver SM, Henry CS, de Crecy-Lagard V, Hanson AD. 2012. Plant B vitamin pathways and their compartmentation: a guide for the perplexed. J Exp Bot 63:5379–5395. doi:10.1093/jxb/ers208. PubMed DOI

Moffatt BA, Ashihara H. 2002. Purine and pyrimidine nucleotide synthesis and metabolism. Arabidopsis Book 1:e0018. doi:10.1199/tab.0018. PubMed DOI PMC

Kořený L, Oborník M. 2011. Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis. Genome Biol Evol 3:359–364. doi:10.1093/gbe/evr029. PubMed DOI PMC

Zimorski V, Rauch C, van Hellemond JJ, Tielens AGM, Martin WF. 2017. The mitochondrion of Euglena gracilis. Adv Exp Med Biol 979:19–37. doi:10.1007/978-3-319-54910-1_2. PubMed DOI

Lambalot RH, Walsh CT. 1995. Cloning, overproduction, and characterization of the Escherichia coli holo-acyl carrier protein synthase. J Biol Chem 270:24658–24661. doi:10.1074/jbc.270.42.24658. PubMed DOI

Yuzawa Y, Nishihara H, Haraguchi T, Masuda S, Shimojima M, Shimoyama A, Yuasa H, Okada N, Ohta H. 2012. Phylogeny of galactolipid synthase homologs together with their enzymatic analyses revealed a possible origin and divergence time for photosynthetic membrane biogenesis. DNA Res 19:91–102. doi:10.1093/dnares/dsr044. PubMed DOI PMC

Hori K, Nobusawa T, Watanabe T, Madoka Y, Suzuki H, Shibata D, Shimojima M, Ohta H. 2016. Tangled evolutionary processes with commonality and diversity in plastidial glycolipid synthesis in photosynthetic organisms. Biochim Biophys Acta 1861:1294–1308. doi:10.1016/j.bbalip.2016.04.015. PubMed DOI

Li C, Wang Y, Liu L, Hu Y, Zhang F, Mergen S, Wang G, Schlappi MR, Chu C. 2011. A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency. PLoS Genet 7:e1002196. doi:10.1371/journal.pgen.1002196. PubMed DOI PMC

Sun GL, Shen W, Wen JF. 2008. Triosephosphate isomerase genes in two trophic modes of euglenoids (euglenophyceae) and their phylogenetic analysis. J Eukaryot Microbiol 55:170–177. doi:10.1111/j.1550-7408.2008.00324.x. PubMed DOI

Markunas CM, Triemer RE. 2016. Evolutionary history of the enzymes involved in the Calvin-Benson cycle in euglenids. J Eukaryot Microbiol 63:326–339. doi:10.1111/jeu.12282. PubMed DOI

Raines CA, Lloyd JC. 19 April 2001. C3 carbon reduction cycle. In eLS. John Wiley & Sons, Ltd, Chichester, UK. doi:10.1038/npg.els.0001314. DOI

Kiss JZ, Vasconcelos AC, Triemer RE. 1987. Structure of the euglenoid storage carbohydrate, paramylon. Am J Bot 74:877–882. doi:10.1002/j.1537-2197.1987.tb08691.x. DOI

Facchinelli F, Weber AP. 2011. The metabolite transporters of the plastid envelope: an update. Front Plant Sci 2:50. doi:10.3389/fpls.2011.00050. PubMed DOI PMC

Haferkamp I, Deschamps P, Ast M, Jeblick W, Maier U, Ball S, Neuhaus HE. 2006. Molecular and biochemical analysis of periplastidial starch metabolism in the cryptophyte Guillardia theta. Eukaryot Cell 5:964–971. doi:10.1128/EC.00381-05. PubMed DOI PMC

Tabita FR, Hanson TE, Li H, Satagopan S, Singh J, Chan S. 2007. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol Mol Biol Rev 71:576–599. doi:10.1128/MMBR.00015-07. PubMed DOI PMC

Pick TR, Brautigam A, Schulz MA, Obata T, Fernie AR, Weber AP. 2013. PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters. Proc Natl Acad Sci U S A 110:3185–3190. doi:10.1073/pnas.1215142110. PubMed DOI PMC

Walker BJ, South PF, Ort DR. 2016. Physiological evidence for plasticity in glycolate/glycerate transport during photorespiration. Photosynth Res 129:93–103. doi:10.1007/s11120-016-0277-3. PubMed DOI PMC

Vogel A, Schwacke R, Denton AK, Usadel B, Hollmann J, Fischer K, Bolger A, Schmidt MH, Bolger ME, Gundlach H, Mayer KFX, Weiss-Schneeweiss H, Temsch EM, Krause K. 2018. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat Commun 9:2515. doi:10.1038/s41467-018-04344-z. PubMed DOI PMC

Vollmer M, Thomsen N, Wiek S, Seeber F. 2001. Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin. J Biol Chem 276:5483–5490. doi:10.1074/jbc.M009452200. PubMed DOI

Pérez-Pérez ME, Mauriès A, Maes A, Tourasse NJ, Hamon M, Lemaire SD, Marchand CH. 2017. The deep thioredoxome in Chlamydomonas reinhardtii: new insights into redox regulation. Mol Plant 10:1107–1125. doi:10.1016/j.molp.2017.07.009. PubMed DOI

Schürmann P, Buchanan BB. 2008. The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid Redox Signal 10:1235–1274. doi:10.1089/ars.2007.1931. PubMed DOI

Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A. 2015. When the lights go out: the evolutionary fate of free-living colorless green algae. New Phytol 206:972–982. doi:10.1111/nph.13279. PubMed DOI PMC

Lohr M, Schwender J, Polle JE. 2012. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185-186:9–22. doi:10.1016/j.plantsci.2011.07.018. PubMed DOI

Waller RF, Gornik SG, Koreny L, Pain A. 2016. Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid. Commun Integr Biol 9:e1116653. doi:10.1080/19420889.2015.1116653. PubMed DOI PMC

Cenci U, Qiu H, Pillonel T, Cardol P, Remacle C, Colleoni C, Kadouche D, Chabi M, Greub G, Bhattacharya D, Ball SG. 2018. Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida. Sci Rep 8:15243. doi:10.1038/s41598-018-33663-w. PubMed DOI PMC

Seeger JW, Bentley R. 1991. Phylloquinone (vitamin K1) biosynthesis in Euglena gracilis strain Z. Phytochemistry 30:3585–3589. doi:10.1016/0031-9422(91)80070-H. DOI

Fatihi A, Latimer S, Schmollinger S, Block A, Dussault PH, Vermaas WF, Merchant SS, Basset GJ. 2015. A dedicated type II NADPH dehydrogenase performs the penultimate step in the biosynthesis of vitamin K1 in Synechocystis and Arabidopsis. Plant Cell 27:1730–1741. doi:10.1105/tpc.15.00103. PubMed DOI PMC

Maeda H, DellaPenna D. 2007. Tocopherol functions in photosynthetic organisms. Curr Opin Plant Biol 10:260–265. doi:10.1016/j.pbi.2007.04.006. PubMed DOI

Brettel K. 1997. Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta 1318:322–373. doi:10.1016/S0005-2728(96)00112-0. DOI

Furt F, Oostende C, Widhalm JR, Dale MA, Wertz J, Basset GJC. 2010. A bimodular oxidoreductase mediates the specific reduction of phylloquinone (vitamin K1) in chloroplasts. Plant J 64:38–46. doi:10.1111/j.1365-313X.2010.04305.x. PubMed DOI

Karamoko M, Cline S, Redding K, Ruiz N, Hamel PP. 2011. Lumen thiol oxidoreductase1, a disulfide bond-forming catalyst, is required for the assembly of photosystem II in Arabidopsis. Plant Cell 23:4462–4475. doi:10.1105/tpc.111.089680. PubMed DOI PMC

Gu X, Harding S, Nyamdari B, Aulakh K, Clermont K, Westwood J, Tsai C-J. 2018. A role for phylloquinone biosynthesis in the plasma membrane as revealed in a non-photosynthetic parasitic plant. bioRxiv doi:10.1101/257519. DOI

Lochner K, Doring O, Bottger M. 2003. Phylloquinone, what can we learn from plants? Biofactors 18:73–78. doi:10.1002/biof.5520180209. PubMed DOI

Schopfer P, Heyno E, Drepper F, Krieger-Liszkay A. 2008. Naphthoquinone-dependent generation of superoxide radicals by quinone reductase isolated from the plasma membrane of soybean. Plant Physiol 147:864–878. doi:10.1104/pp.108.118745. PubMed DOI PMC

Goddard-Borger ED, Williams SJ. 2017. Sulfoquinovose in the biosphere: occurrence, metabolism and functions. Biochem J 474:827–849. doi:10.1042/BCJ20160508. PubMed DOI

Yoon EY, Yang AR, Park J, Moon SJ, Jeong EJ, Rho JR. 2017. Characterization of a new trioxilin and a sulfoquinovosyl diacylglycerol with anti-inflammatory properties from the dinoflagellate Oxyrrhis marina. Mar Drugs 15:57. doi:10.3390/md15030057. PubMed DOI PMC

Botté C, Saidani N, Mondragon R, Mondragon M, Isaac G, Mui E, McLeod R, Dubremetz JF, Vial H, Welti R, Cesbron-Delauw MF, Mercier C, Maréchal E. 2008. Subcellular localization and dynamics of a digalactolipid-like epitope in Toxoplasma gondii. J Lipid Res 49:746–762. doi:10.1194/jlr.M700476-JLR200. PubMed DOI

Botté CY, Yamaryo-Botté Y, Rupasinghe TW, Mullin KA, MacRae JI, Spurck TP, Kalanon M, Shears MJ, Coppel RL, Crellin PK, Maréchal E, McConville MJ, McFadden GI. 2013. Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites. Proc Natl Acad Sci U S A 110:7506–7511. doi:10.1073/pnas.1301251110. PubMed DOI PMC

Donaher N, Tanifuji G, Onodera NT, Malfatti SA, Chain PS, Hara Y, Archibald JM. 2009. The complete plastid genome sequence of the secondarily nonphotosynthetic alga Cryptomonas paramecium: reduction, compaction, and accelerated evolutionary rate. Genome Biol Evol 1:439–448. doi:10.1093/gbe/evp047. PubMed DOI PMC

Sekiguchi H, Moriya M, Nakayama T, Inouye I. 2002. Vestigial chloroplasts in heterotrophic stramenopiles Pteridomonas danica and Ciliophrys infusionum (Dictyochophyceae). Protist 153:157–167. doi:10.1078/1434-4610-00094. PubMed DOI

Wicke S, Müller KF, de Pamphilis CW, Quandt D, Wickett NJ, Zhang Y, Renner SS, Schneeweiss GM. 2013. Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. Plant Cell 25:3711–3725. doi:10.1105/tpc.113.113373. PubMed DOI PMC

Kim GH, Jeong HJ, Yoo YD, Kim S, Han JH, Han JW, Zuccarello GC. 2013. Still acting green: continued expression of photosynthetic genes in the heterotrophic dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata). PLoS One 8:e68232. doi:10.1371/journal.pone.0068232. PubMed DOI PMC

Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y. 2004. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782. doi:10.1038/nature03145. PubMed DOI

Iddar A, Valverde F, Serrano A, Soukri A. 2003. Purification of recombinant non-phosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Streptococcus pyogenes expressed in E. coli. Mol Cell Biochem 247:195–203. doi:10.1023/A:1024112027440. PubMed DOI

Rius SP, Casati P, Iglesias AA, Gomez-Casati DF. 2006. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Plant Mol Biol 61:945–957. doi:10.1007/s11103-006-0060-5. PubMed DOI

Tucci S, Vacula R, Krajčovič J, Proksch P, Martin W. 2010. Variability of wax ester fermentation in natural and bleached Euglena gracilis strains in response to oxygen and the elongase inhibitor flufenacet. J Eukaryot Microbiol 57:63–69. doi:10.1111/j.1550-7408.2009.00452.x. PubMed DOI

Nakazawa M, Ando H, Nishimoto A, Ohta T, Sakamoto K, Ishikawa T, Ueda M, Sakamoto T, Nakano Y, Miyatake K, Inui H. 2018. Anaerobic respiration coupled with mitochondrial fatty acid synthesis in wax ester fermentation by Euglena gracilis. FEBS Lett 592:4020–4027. doi:10.1002/1873-3468.13276. PubMed DOI PMC

Yoshida Y, Tomiyama T, Maruta T, Tomita M, Ishikawa T, Arakawa K. 2016. De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. BMC Genomics 17:182. doi:10.1186/s12864-016-2540-6. PubMed DOI PMC

Roger AJ, Muñoz-Gómez SA, Kamikawa R. 2017. The origin and diversification of mitochondria. Curr Biol 27:R1177–R1192. doi:10.1016/j.cub.2017.09.015. PubMed DOI

Maciszewski K, Karnkowska A. 2019. Should I stay or should I go? Retention and loss of components in vestigial endosymbiotic organelles. Curr Opin Genet Dev 58-59:33–39. doi:10.1016/j.gde.2019.07.013. PubMed DOI

Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240. doi:10.1093/bioinformatics/btu031. PubMed DOI PMC

Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. 2013. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 41:e121. doi:10.1093/nar/gkt263. PubMed DOI PMC

Ebenezer TE, Carrington M, Lebert M, Kelly S, Field MC. 2017. Euglena gracilis genome and transcriptome: organelles, nuclear genome assembly strategies and initial features. Adv Exp Med Biol 979:125–140. doi:10.1007/978-3-319-54910-1_7. PubMed DOI

Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, Beszteri B, Bidle KD, Cameron CT, Campbell L, Caron DA, Cattolico RA, Collier JL, Coyne K, Davy SK, Deschamps P, Dyhrman ST, Edvardsen B, Gates RD, Gobler CJ, Greenwood SJ, Guida SM, Jacobi JL, Jakobsen KS, James ER, Jenkins B, John U, Johnson MD, Juhl AR, Kamp A, Katz LA, Kiene R, Kudryavtsev A, Leander BS, Lin S, Lovejoy C, Lynn D, Marchetti A, McManus G, Nedelcu AM, Menden-Deuer S, Miceli C, Mock T, Montresor M, Moran MA, Murray S, et al. . 2014. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12:e1001889. doi:10.1371/journal.pbio.1001889. PubMed DOI PMC

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010. PubMed DOI PMC

Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. doi:10.1093/bioinformatics/btp348. PubMed DOI PMC

Goodstadt L, Ponting CP. 2001. CHROMA: consensus-based colouring of multiple alignments for publication. Bioinformatics 17:845–846. doi:10.1093/bioinformatics/17.9.845. PubMed DOI

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. doi:10.1093/molbev/msu300. PubMed DOI PMC

Cramer M, Myers J. 1952. Growth and photosynthetic characteristics of Euglena gracilis. Archiv Mikrobiol 17:384–402. doi:10.1007/BF00410835. DOI

Sonneborn TM. 1950. Methods in the general biology and genetics of Paramecium aurelia. J Exp Zool 113:87–147. doi:10.1002/jez.1401130106. DOI

Tomčala A, Kyselová V, Schneedorferová I, Opekarová I, Moos M, Urajová P, Kručinská J, Oborník M. 2017. Separation and identification of lipids in the photosynthetic cousins of Apicomplexa Chromera velia and Vitrella brassicaformis. J Sep Sci 40:3402–3413. doi:10.1002/jssc.201700171. PubMed DOI

Folch J, Lees M, Sloane Stanley GH. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509. PubMed

Botté CY, Yamaryo-Botté Y, Janouškovec J, Rupasinghe T, Keeling PJ, Crellin P, Coppel RL, Maréchal E, McConville MJ, McFadden GI. 2011. Identification of plant-like galactolipids in Chromera velia, a photosynthetic relative of malaria parasites. J Biol Chem 286:29893–29903. doi:10.1074/jbc.M111.254979. PubMed DOI PMC

Moog D, Rensing SA, Archibald JM, Maier UG, Ullrich KK. 2015. Localization and evolution of putative triose phosphate translocators in the diatom Phaeodactylum tricornutum. Genome Biol Evol 7:2955–2969. doi:10.1093/gbe/evv190. PubMed DOI PMC

Brooks CF, Johnsen H, van Dooren GG, Muthalagi M, Lin SS, Bohne W, Fischer K, Striepen B. 2010. The toxoplasma apicoplast phosphate translocator links cytosolic and apicoplast metabolism and is essential for parasite survival. Cell Host Microbe 7:62–73. doi:10.1016/j.chom.2009.12.002. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A cryptic plastid and a novel mitochondrial plasmid in Leucomyxa plasmidifera gen. and sp. nov. (Ochrophyta) push the frontiers of organellar biology

. 2024 Oct ; 14 (10) : 240022. [epub] 20241030

Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events

Encyclopedia of Family A DNA Polymerases Localized in Organelles: Evolutionary Contribution of Bacteria Including the Proto-Mitochondrion

. 2024 Feb 01 ; 41 (2) : .

Organellar Evolution: A Path from Benefit to Dependence

. 2022 Jan 07 ; 10 (1) : . [epub] 20220107

Editorial: Mixotrophic, Secondary Heterotrophic, and Parasitic Algae

. 2021 ; 12 () : 798555. [epub] 20211125

Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum

. 2021 Nov 24 ; 19 (1) : 251. [epub] 20211124

Retortamonads from vertebrate hosts share features of anaerobic metabolism and pre-adaptations to parasitism with diplomonads

. 2021 Jun ; 82 () : 102308. [epub] 20210221

The Lipid Composition of Euglena gracilis Middle Plastid Membrane Resembles That of Primary Plastid Envelopes

. 2020 Dec ; 184 (4) : 2052-2063. [epub] 20201002

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace