Encyclopedia of Family A DNA Polymerases Localized in Organelles: Evolutionary Contribution of Bacteria Including the Proto-Mitochondrion
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
18KK0203
Japan Society for Promotion of Sciences projects
21-19664S
Czech Science Foundation
National Institute for Environmental Studies
Ministry of Education, Culture, Sports, Science and Technology
National Institute of Genetics
University of Tsukuba
PubMed
38271287
PubMed Central
PMC10877234
DOI
10.1093/molbev/msae014
PII: 7589574
Knihovny.cz E-zdroje
- Klíčová slova
- DNA polymerase, endosymbiosis, last eukaryotic common ancestor, lateral gene transfer, mitochondria, plastids,
- MeSH
- DNA-dependentní DNA-polymerasy genetika MeSH
- fylogeneze MeSH
- mitochondrie MeSH
- organely * genetika MeSH
- plastidy genetika MeSH
- sinice * genetika MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA-dependentní DNA-polymerasy MeSH
DNA polymerases synthesize DNA from deoxyribonucleotides in a semiconservative manner and serve as the core of DNA replication and repair machinery. In eukaryotic cells, there are 2 genome-containing organelles, mitochondria, and plastids, which were derived from an alphaproteobacterium and a cyanobacterium, respectively. Except for rare cases of genome-lacking mitochondria and plastids, both organelles must be served by nucleus-encoded DNA polymerases that localize and work in them to maintain their genomes. The evolution of organellar DNA polymerases has yet to be fully understood because of 2 unsettled issues. First, the diversity of organellar DNA polymerases has not been elucidated in the full spectrum of eukaryotes. Second, it is unclear when the DNA polymerases that were used originally in the endosymbiotic bacteria giving rise to mitochondria and plastids were discarded, as the organellar DNA polymerases known to date show no phylogenetic affinity to those of the extant alphaproteobacteria or cyanobacteria. In this study, we identified from diverse eukaryotes 134 family A DNA polymerase sequences, which were classified into 10 novel types, and explored their evolutionary origins. The subcellular localizations of selected DNA polymerases were further examined experimentally. The results presented here suggest that the diversity of organellar DNA polymerases has been shaped by multiple transfers of the PolI gene from phylogenetically broad bacteria, and their occurrence in eukaryotes was additionally impacted by secondary plastid endosymbioses. Finally, we propose that the last eukaryotic common ancestor may have possessed 2 mitochondrial DNA polymerases, POP, and a candidate of the direct descendant of the proto-mitochondrial DNA polymerase I, rdxPolA, identified in this study.
Center for Computational Sciences University of Tsukuba Tsukuba Japan
Deep Sea Biodiversity Research Group Research Institute for Global Change Yokosuka Japan
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
Division of EcoScience Ewha Womans University Seoul South Korea
Division of Invertebrate Zoology American Museum of Natural History New York NY USA
Faculty of Life and Environmental Sciences University of Tsukuba Tsukuba Japan
Graduate School of Agriculture Kyoto University Kyoto Japan
Graduate School of Life and Environmental Sciences University of Tsukuba Tsukuba Japan
Interdisciplinary Theoretical and Mathematical Sciences program RIKEN Wako Saitama Japan
Zobrazit více v PubMed
Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, et al. . Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol. 2019:66(1):4–119. 10.1111/jeu.12691. PubMed DOI PMC
Al Jewari C, Baldauf SL. Conflict over the eukaryote root resides in strong outliers, mosaics and missing data sensitivity of site-specific (CAT) mixture models. Syst Biol. 2023a:72(1):1–16. 10.1093/sysbio/syac029. PubMed DOI
Al Jewari C, Baldauf SL. An excavate root for the eukaryote tree of life. Sci Adv. 2023b:9(17):eade4973. 10.1126/sciadv.ade4973. PubMed DOI PMC
Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, Nielsen H. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2019:2(5):e201900429. 10.26508/lsa.201900429. PubMed DOI PMC
Almagro Armenteros JJ, Sønderby CK, Sønderby SK, Nielsen H, Winther O. DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics. 2017:33(21):3387–3395. 10.1093/bioinformatics/btx431. PubMed DOI
Brachmann BC, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998:14(2):115–132. 10.1002/(SICI)1097-0061(19980130)14:2. PubMed DOI
Brown MW, Heiss AA, Kamikawa R, Inagaki Y, Yabuki A, Tice AK, Shiratori T, Ishida K-I, Hashimoto T, Simpson AGB, et al. . Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol Evol. 2018:10(2):427–433. 10.1093/gbe/evy014. PubMed DOI PMC
Burger G, Saint-Louis D, Gray MW, Lang BF. Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea: cyanobacterial introns and shared ancestry of red and green algae. Plant Cell. 1999:11(9):1675–1694. 10.1105/tpc.11.9.1675. PubMed DOI PMC
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2009:10(1):421. 10.1186/1471-2105-10-421. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. Trimal: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009:25(15):1972–1973. 10.1093/bioinformatics/btp348. PubMed DOI PMC
Cerón-Romero MA, Fonseca MM, de Oliveira Martins L, Posada D, Katz LA. Phylogenomic analyses of 2,786 genes in 158 lineages support a root of the eukaryotic tree of life between opisthokonts and all other lineages. Genome Biol Evol. 2022:14(8):evac119. 10.1093/gbe/evac119. PubMed DOI PMC
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018:34(17):i884–i890. 10.1093/bioinformatics/bty560. PubMed DOI PMC
Christensen AC, Lyznik A, Mohammed S, Elowsky CG, Elo A, Yule R, Mackenzie SA. Dual-domain, dual-targeting organellar protein presequences in Arabidopsis can use non-AUG start codons. Plant Cell. 2005:17(10):2805–2816. 10.1105/tpc.105.035287. PubMed DOI PMC
Derelle R, Lang BF. Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol Biol Evol. 2012:29(4):1277–1289. 10.1093/molbev/msr295. PubMed DOI
Derelle R, Torruella G, Klimeš V, Brinkmann H, Kim E, Vlček Č, Lang BF, Eliáš M. Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci USA. 2015:112(7):E693–E699. 10.1073/pnas.1420657112. PubMed DOI PMC
Eddy SR. Accelerated profile HMM searches. PLOS Comput Biol. 2011:7(10):e1002195. 10.1371/journal.pcbi.1002195. PubMed DOI PMC
Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000:300(4):1005–1016. 10.1006/jmbi.2000.3903. PubMed DOI
Felsner G, Sommer MS, Gruenheit N, Hempel F, Moog D, Zauner S, Martin W, Maier UG. ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Genome Biol Evol. 2011:3:140–150. 10.1093/gbe/evq074. PubMed DOI PMC
Figueroa-Martinez F, Jackson C, Reyes-Prieto A. Plastid genomes from diverse glaucophyte genera reveal a largely conserved gene content and limited architectural diversity. Genome Biol Evol. 2019:11(1):174–188. 10.1093/gbe/evy268. PubMed DOI PMC
Filée J, Forterre P, Sen-Lin T, Laurent J. Evolution of DNA polymerase families: evidences for multiple gene exchange between cellular and viral proteins. J Mol Evol. 2002:54(6):763–773. 10.1007/s00239-001-0078-x. PubMed DOI
Fukasawa Y, Tsuji J, Fu S-C, Tomii K, Horton P, Imai K. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics. 2015:14(4):1113–1126. 10.1074/mcp.M114.043083. PubMed DOI PMC
Fukuda K, Cooney EC, Irwin NAT, Keeling PJ, Hirakawa Y. High-efficiency transformation of the chlorarachniophyte Amorphochlora amoebiformis by electroporation. Algal Res. 2020:48:101903. 10.1016/j.algal.2020.101903. DOI
Füssy Z, Záhonová K, Tomčala A, Krajčovič J, Yurchenko V, Oborník M, Eliáš M. The cryptic plastid of Euglena longa defines a new type of nonphotosynthetic plastid organelle. mSphere. 2020:5(5):e00675-20. 10.1128/msphere.00675-20. PubMed DOI PMC
Gawryluk RMR, Tikhonenkov DV, Hehenberger E, Husnik F, Mylnikov AP, Keeling PJ. Non-photosynthetic predators are sister to red algae. Nature. 2019:572(7768):240–243. 10.1038/s41586-019-1398-6. PubMed DOI
Gockel G, Hachtel W. Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist. 2000:151(4):347–351. 10.1078/S1434-4610(04)70033-4. PubMed DOI
Gould SB, Sommer MS, Hadfi K, Zauner S, Kroth PG, Maier U-G. Protein targeting into the complex plastid of cryptophytes. J Mol Evol. 2006:62(6):674–681. 10.1007/s00239-005-0099-y. PubMed DOI
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. . Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011:29(7):644–652. 10.1038/nbt.1883. PubMed DOI PMC
Gray MW, Burger G, Derelle R, Klimeš V, Leger MM, Sarrasin M, Vlček Č, Roger AJ, Eliáš M, Lang BF. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol. 2020:18(1):22. 10.1186/s12915-020-0741-6. PubMed DOI PMC
Graziewicz MA, Longley MJ, Copeland WC. DNA polymerase γ in mitochondrial DNA replication and repair. Chem Rev. 2006:106(2):383–405. 10.1021/cr040463d. PubMed DOI
Guilliam TA, Yeeles JTP. An updated perspective on the polymerase division of labor during eukaryotic DNA replication. Crit Rev Biochem Mol Biol. 2020:55(5):469–481. 10.1080/10409238.2020.1811630. PubMed DOI
Harada R, Hirakawa Y, Yabuki A, Kashiyama Y, Maruyama M, Onuma R, Soukal P, Miyagishima S, Hampl V, Tanifuji G, et al. . Inventory and evolution of mitochondrion-localized family A DNA polymerases in Euglenozoa. Pathogens. 2020:9(4):257. 10.3390/pathogens9040257. PubMed DOI PMC
Harada R, Inagaki Y. Phage origin of mitochondrion-localized family A DNA polymerases in kinetoplastids and diplonemids. Genome Biol Evol. 2021:13(2):evab003. 10.1093/gbe/evab003. PubMed DOI PMC
He D, Fiz-Palacios O, Fu C-J, Fehling J, Tsai C-C, Baldauf SL. An alternative root for the eukaryote tree of life. Curr Biol. 2014:24(4):465–470. 10.1016/j.cub.2014.01.036. PubMed DOI
Hirakawa Y, Nagamune K, Ishida K. Protein targeting into secondary plastids of chlorarachniophytes. Proc Natl Acad Sci USA. 2009:106(31):12820–12825. 10.1073/pnas.0902578106. PubMed DOI PMC
Hirakawa Y, Watanabe A. Organellar DNA polymerases in complex plastid-bearing algae. Biomolecules. 2019:9(4):140. 10.3390/biom9040140. PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018:35(2):518–522. 10.1093/molbev/msx281. PubMed DOI PMC
Horváthová L, Žárský V, Pánek T, Derelle R, Pyrih J, Motyčková A, Klápšťová V, Vinopalová M, Marková L, Voleman L, et al. . Analysis of diverse eukaryotes suggests the existence of an ancestral mitochondrial apparatus derived from the bacterial type II secretion system. Nat Commun. 2021:12(1):2947. 10.1038/s41467-021-23046-7. PubMed DOI PMC
Irisarri I, Strassert JFH, Burki F. Phylogenomic insights into the origin of primary plastids. Syst Biol. 2021:71(1):105–120. 10.1093/sysbio/syab036. PubMed DOI
Jackson C, Knoll AH, Chan CX, Verbruggen H. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci Rep. 2018:8(1):1523. 10.1038/s41598-017-18805-w. PubMed DOI PMC
Janouškovec J, Paskerova GG, Miroliubova TS, Mikhailov KV, Birley T, Aleoshin VV, Simdyanov TG. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. eLife. 2019:8:e49662. 10.7554/eLife.49662. PubMed DOI PMC
Janouškovec J, Tikhonenkov DV, Burki F, Howe AT, Kolísko M, Mylnikov AP, Keeling PJ. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci. USA. 2015:112(33):10200–10207. 10.1073/pnas.1423790112. PubMed DOI PMC
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. . InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014:30(9):1236–1240. 10.1093/bioinformatics/btu031. PubMed DOI PMC
Joo S, Nishimura Y, Cronmiller E, Hong RH, Kariyawasam T, Wang MH, Shao NC, El Akkad S-E-D, Suzuki T, Higashiyama T, et al. . Gene regulatory networks for the haploid-to-diploid transition of Chlamydomonas reinhardtii. Plant Physiol. 2017:175(1):314–332. 10.1104/pp.17.00731. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017:14(6):587–589. 10.1038/nmeth.4285. PubMed DOI PMC
Kamikawa R, Tanifuji G, Kawachi M, Miyashita H, Hashimoto T, Inagaki Y. Plastid genome-based phylogeny pinpointed the origin of the green-colored plastid in the dinoflagellate Lepidodinium chlorophorum. Genome Biol Evol. 2015:7(4):1133–1140. 10.1093/gbe/evv060. PubMed DOI PMC
Karnkowska A, Yubuki N, Maruyama M, Yamaguchi A, Kashiyama Y, Suzaki T, Keeling PJ, Hampl V, Leander BS. Euglenozoan kleptoplasty illuminates the early evolution of photoendosymbiosis. Proc Natl Acad Sci USA. 2023:120(12):e2220100120. 10.1073/pnas.2220100120. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013:30(4):772–780. 10.1093/molbev/mst010. PubMed DOI PMC
Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, et al. . The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014:12(6):e1001889. 10.1371/journal.pbio.1001889. PubMed DOI PMC
Kim JI, Yoon HS, Yi G, Kim HS, Yih W, Shin W. The plastid genome of the cryptomonad Teleaulax amphioxeia. PLoS One. 2015:10(6):e0129284. 10.1371/journal.pone.0129284. PubMed DOI PMC
Kimura S, Uchiyama Y, Kasai N, Namekawa S, Saotome A, Ueda T, Ando T, Ishibashi T, Oshige M, Furukawa T, et al. . A novel DNA polymerase homologous to Escherichia coli DNA polymerase I from a higher plant, rice (Oryza sativa L.). Nucleic Acids Res. 2002:30(7):1585–1592. 10.1093/nar/30.7.1585. PubMed DOI PMC
Klingbeil MM, Motyka SA, Englund PT. Multiple mitochondrial DNA polymerases in Trypanosoma brucei. Mol Cell. 2002:10(1):175–186. 10.1016/S1097-2765(02)00571-3. PubMed DOI
Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001:305(3):567–580. 10.1006/jmbi.2000.4315. PubMed DOI
Kume K, Amagasa T, Hashimoto T, Kitagawa H. NommPred: prediction of mitochondrial and mitochondrion-related organelle proteins of nonmodel organisms. Evol Bioinformatics. 2018:14:1176934318819835. 10.1177/1176934318819835. PubMed DOI PMC
Lartillot N, Rodrigue N, Stubbs D, Richer J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol. 2013:62(4):611–615. 10.1093/sysbio/syt022. PubMed DOI
Lax G, Eglit Y, Eme L, Bertrand EM, Roger AJ, Simpson AGB. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature. 2018:564(7736):410–414. 10.1038/s41586-018-0708-8. PubMed DOI
Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA, Graham SW, Grosse I, Li Z, Melkonian M, Mirarab S, et al. . One thousand plant transcriptomes and the phylogenomics of green plants. Nature. 2019:574(7780):679–685. 10.1038/s41586-019-1693-2. PubMed DOI PMC
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006:22(13):1658–1659. 10.1093/bioinformatics/btl158. PubMed DOI
Mackiewicz P, Gagat P. Monophyly of Archaeplastida supergroup and relationships among its lineages in the light of phylogenetic and phylogenomic studies. Are we close to a consensus? Acta Soc Bot Pol. 2014:83(4):263–280. 10.5586/asbp.2014.044. DOI
Martijn J, Vosseberg J, Guy L, Offre P, Ettema TJG. Phylogenetic affiliation of mitochondria with Alpha-II and Rickettsiales is an artefact. Nat Ecol Evol. 2022:6(12):1829–1831. 10.1038/s41559-022-01871-3. PubMed DOI
Mathur V, Kolísko M, Hehenberger E, Irwin NAT, Leander BS, Kristmundsson Á, Freeman MA, Keeling PJ. Multiple independent origins of apicomplexan-like parasites. Curr Biol. 2019:29(17):2936–2941.e5. 10.1016/j.cub.2019.07.019. PubMed DOI
Mathur V, Salomaki ED, Wakeman KC, Na I, Kwong WK, Kolisko M, Keeling PJ. Reconstruction of plastid proteomes of apicomplexans and close relatives reveals the major evolutionary outcomes of cryptic plastids. Mol Biol Evol. 2023:40(1):msad002. 10.1093/molbev/msad002. PubMed DOI PMC
Matsuo E, Morita K, Nakayama T, Yazaki E, Sarai C, Takahashi K, Iwataki M, Inagaki Y. Comparative plastid genomics of green-colored dinoflagellates unveils parallel genome compaction and RNA editing. Front Plant Sci. 2022:13:918543. 10.3389/fpls.2022.918543. PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020:37(5):1530–1534. 10.1093/molbev/msaa015. PubMed DOI PMC
Miyahara M, Aoi M, Inoue-Kashino N, Kashino Y, Ifuku K. Highly efficient transformation of the diatom Phaeodactylum tricornutum by multi-pulse electroporation. Biosci Biotechnol Biochem. 2013:77(4):874–876. 10.1271/bbb.120936. PubMed DOI
Moog D, Nozawa A, Tozawa Y, Kamikawa R. Substrate specificity of plastid phosphate transporters in a non-photosynthetic diatom and its implication in evolution of red alga-derived complex plastids. Sci Rep. 2020:10(1):1167. 10.1038/s41598-020-58082-8. PubMed DOI PMC
Mori Y, Kimura S, Saotome A, Kasai N, Sakaguchi N, Uchiyama Y, Ishibashi T, Yamamoto T, Chiku H, Sakaguchi K. Plastid DNA polymerases from higher plants, Arabidopsis thaliana. Biochem Biophys Res Commun. 2005:334(1):43–50. 10.1016/j.bbrc.2005.06.052. PubMed DOI
Moriyama T, Sato N. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes. Front Plant Sci. 2014:5:480. 10.3389/fpls.2014.00480. PubMed DOI PMC
Moriyama T, Terasawa K, Fujiwara M, Sato N. Purification and characterization of organellar DNA polymerases in the red alga Cyanidioschyzon merolae. FEBS J. 2008:275(11):2899–2918. 10.1111/j.1742-4658.2008.06426.x. PubMed DOI
Moriyama T, Terasawa K, Sato N. Conservation of POPs, the plant organellar DNA polymerases, in eukaryotes. Protist. 2011:162(1):177–187. 10.1016/j.protis.2010.06.001. PubMed DOI
Mukhopadhyay A, Chen C-Y, Doerig C, Henriquez FL, Roberts CW, Barrett MP. The Toxoplasma gondii plastid replication and repair enzyme complex, PREX. Parasitology. 2009:136(7):747–755. 10.1017/S0031182009006027. PubMed DOI
Muñoz-Gómez SA, Susko E, Williamson K, Eme L, Slamovits CH, Moreira D, López-García P, Roger AJ. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat Ecol Evol. 2022:6(3):253–262. 10.1038/s41559-021-01638-2. PubMed DOI
Nassoury N, Morse D. Protein targeting to the chloroplasts of photosynthetic eukaryotes: getting there is half the fun. Biochim Biophys Acta Mol Cell Res. 2005:1743(1-2):5–19. 10.1016/j.bbamcr.2004.09.017. PubMed DOI
Nishimura Y, Shiratori T, Ishida K, Hashimoto T, Ohkuma M, Inagaki Y. Horizontally-acquired genetic elements in the mitochondrial genome of a centrohelid Marophrys sp. SRT127. Sci Rep. 2019:9(1):4850. 10.1038/s41598-019-41238-6. PubMed DOI PMC
Novák Vanclová AMG, Zoltner M, Kelly S, Soukal P, Záhonová K, Füssy Z, Ebenezer TE, Lacová Dobáková E, Eliáš M, Lukeš J, et al. . Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytol. 2020:225(4):1578–1592. 10.1111/nph.16237. PubMed DOI
Nowack ECM, Melkonian M, Glöckner G. Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol. 2008:18(6):410–418. 10.1016/j.cub.2008.02.051. PubMed DOI
Okazaki T. Days weaving the lagging strand synthesis of DNA—a personal recollection of the discovery of Okazaki fragments and studies on discontinuous replication mechanism. Proc Jpn Acad Ser B. 2017:93(5):322–338. 10.2183/pjab.93.020. PubMed DOI PMC
Ono Y, Sakai A, Takechi K, Takio S, Takusagawa M, Takano H. NtPolI-like1 and NtPolI-like2, bacterial DNA polymerase I homologs isolated from BY-2 cultured tobacco cells, encode DNA polymerases engaged in DNA replication in both plastids and mitochondria. Plant Cell Physiol. 2007:48(12):1679–1692. 10.1093/pcp/pcm140. PubMed DOI
Parent J-S, Lepage E, Brisson N. Divergent roles for the two PolI-like organelle DNA polymerases of Arabidopsis. Plant Physiol. 2011:156(1):254–262. 10.1104/pp.111.173849. PubMed DOI PMC
Patron NJ, Waller RF. Transit peptide diversity and divergence: a global analysis of plastid targeting signals. BioEssays. 2007:29(10):1048–1058. 10.1002/bies.20638. PubMed DOI
Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, Bileschi ML, Bork P, Bridge A, Colwell L, et al. . InterPro in 2022. Nucleic Acids Res. 2023:51(D1):D418–D427. 10.1093/nar/gkac993. PubMed DOI PMC
Petsalaki EI, Bagos PG, Litou ZI, Hamodrakas SJ. PredSL: a tool for the N-terminal sequence-based prediction of protein subcellular localization. Genom Proteom Bioinf. 2006:4(1):48–55. 10.1016/S1672-0229(06)60016-8. PubMed DOI PMC
Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D. An early-branching freshwater cyanobacterium at the origin of plastids. Curr Biol. 2017:27(3):386–391. 10.1016/j.cub.2016.11.056. PubMed DOI PMC
Provasoli L, Mclaughlin JJ, Droop MR. The development of artificial media for marine algae. Arch Mikrobiol. 1957:25(4):392–428. 10.1007/BF00446694. PubMed DOI
Reesey E. Characterization of the mitochondrial DNA polymerase in Plasmodium falciparum; 2017. Available from: https://www.proquest.com/docview/1984381231/abstract/2682E909B503458DPQ/1
Richter DJ, Berney C, Strassert JFH, Poh Y-P, Herman EK, Muñoz-Gómez SA, Wideman JG, Burki F, de Vargas C. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J. 2022:2:e56. 10.24072/pcjournal.173. DOI
Rodríguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, Bohnert HJ, Philippe H, Lang BF. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol. 2005:15(14):1325–1330. 10.1016/j.cub.2005.06.040. PubMed DOI
Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol. 2017:27(21):R1177–R1192. 10.1016/j.cub.2017.09.015. PubMed DOI
Salomaki ED, Terpis KX, Rueckert S, Kotyk M, Varadínová ZK, Čepička I, Lane CE, Kolisko M. Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans. BMC Biol. 2021:19(1):77. 10.1186/s12915-021-01007-2. PubMed DOI PMC
Sarai C, Tanifuji G, Nakayama T, Kamikawa R, Takahashi K, Yazaki E, Matsuo E, Miyashita H, Ishida K, Iwataki M, et al. . Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proc Natl Acad Sci U S A. 2020:117(10):5364–5375. 10.1073/pnas.1911884117. PubMed DOI PMC
Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR, Canese K, Comeau DC, Funk K, Kim S, Klimke W, et al. . Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021:49(D1):D10–D17. 10.1093/nar/gkaa892. PubMed DOI PMC
Schiestl RH, Gietz RD. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989:16(5-6):339–346. 10.1007/BF00340712. PubMed DOI
Schön ME, Zlatogursky VV, Singh RP, Poirier C, Wilken S, Mathur V, Strassert JFH, Pinhassi J, Worden AZ, Keeling PJ, et al. . Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat Commun. 2021:12(1):6651. 10.1038/s41467-021-26918-0. PubMed DOI PMC
Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst Biol. 2002:51(3):492–508. 10.1080/10635150290069913. PubMed DOI
Sibbald SJ, Archibald JM. Genomic insights into plastid evolution. Genome Biol Evol. 2020:12(7):978–990. 10.1093/gbe/evaa096. PubMed DOI PMC
Stairs CW, Eme L, Brown MW, Mutsaers C, Susko E, Dellaire G, Soanes DM, van der Giezen M, Roger AJ. A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr Biol. 2014:24(11):1176–1186. 10.1016/j.cub.2014.04.033. PubMed DOI
Suzuki S, Ishida K-I, Hirakawa Y. Diurnal transcriptional regulation of endosymbiotically derived genes in the chlorarachniophyte Bigelowiella natans. Genome Biol Evol. 2016:8(9):2672–2682. 10.1093/gbe/evw188. PubMed DOI PMC
Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugière S, Hippler M, Ferro M, Bruley C, Peltier G, et al. . PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol. 2012:29(12):3625–3639. 10.1093/molbev/mss178. PubMed DOI
Thumuluri V, Almagro Armenteros JJ, Johansen AR, Nielsen H, Winther O. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 2022:50(W1):W228–W234. 10.1093/nar/gkac278. PubMed DOI PMC
Tice AK, Žihala D, Pánek T, Jones RE, Salomaki ED, Nenarokov S, Burki F, Eliáš M, Eme L, Roger AJ, et al. . PhyloFisher: a phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 2021:19(8):e3001365. 10.1371/journal.pbio.3001365. PubMed DOI PMC
Tikhonenkov DV, Mikhailov KV, Gawryluk RMR, Belyaev AO, Mathur V, Karpov SA, Zagumyonnyi DG, Borodina AS, Prokina KI, Mylnikov AP, et al. . Microbial predators form a new supergroup of eukaryotes. Nature. 2022:612(7941):714–719. 10.1038/s41586-022-05511-5. PubMed DOI
Tikhonenkov DV, Strassert JFH, Janouškovec J, Mylnikov AP, Aleoshin VV, Burki F, Keeling PJ. Predatory colponemids are the sister group to all other alveolates. Mol Phylogenet Evol. 2020:149:106839. 10.1016/j.ympev.2020.106839. PubMed DOI
Turmel M, Gagnon M-C, O’Kelly CJ, Otis C, Lemieux C. The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol. 2009:26(3):631–648. 10.1093/molbev/msn285. PubMed DOI
Wang H-C, Minh BQ, Susko E, Roger AJ. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst Biol. 2018:67(2):216–235. 10.1093/sysbio/syx068. PubMed DOI
Westermann B, Neupert W. Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast. 2000:16(15):1421–1427. 10.1002/1097-0061(200011)16:15<1421::AID-YEA624>3.0.CO;2-U. PubMed DOI
Yabuki A, Gyaltshen Y, Heiss AA, Fujikura K, Kim E. Ophirina amphinema n. gen., n. sp., a new deeply branching discobid with phylogenetic affinity to jakobids. Sci Rep. 2018:8(1):16219. 10.1038/s41598-018-34504-6. PubMed DOI PMC
Yamaguchi A, Yubuki N, Leander BS. Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evol Biol. 2012:12(1):29. 10.1186/1471-2148-12-29. PubMed DOI PMC
Yazaki E, Miyata R, Chikami Y, Harada R, Kawakubo T, Tanifuji G, Nakayama T, Yahata K, Hashimoto T, Inagaki Y. Signs of the plastid: enzymes involved in plastid-localized metabolic pathways in a eugregarine species. Parasitol Int. 2021:83:102364. 10.1016/j.parint.2021.102364. PubMed DOI
Yazaki E, Yabuki A, Imaizumi A, Kume K, Hashimoto T, Inagaki Y. The closest lineage of Archaeplastida is revealed by phylogenomics analyses that include Microheliella maris. Open Biol. 2022:12(4):210376. 10.1098/rsob.210376. PubMed DOI PMC