Reconstruction of Plastid Proteomes of Apicomplexans and Close Relatives Reveals the Major Evolutionary Outcomes of Cryptic Plastids
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36610734
PubMed Central
PMC9847631
DOI
10.1093/molbev/msad002
PII: 6969433
Knihovny.cz E-zdroje
- Klíčová slova
- apicomplexans, organelle evolution, parasites, plastids, reductive evolution,
- MeSH
- fotosyntéza genetika MeSH
- fylogeneze MeSH
- metabolické sítě a dráhy MeSH
- plastidy * genetika MeSH
- proteom * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom * MeSH
Apicomplexans and related lineages comprise many obligate symbionts of animals; some of which cause notorious diseases such as malaria. They evolved from photosynthetic ancestors and transitioned into a symbiotic lifestyle several times, giving rise to species with diverse non-photosynthetic plastids. Here, we sought to reconstruct the evolution of the cryptic plastids in the apicomplexans, chrompodellids, and squirmids (ACS clade) by generating five new single-cell transcriptomes from understudied gregarine lineages, constructing a robust phylogenomic tree incorporating all ACS clade sequencing datasets available, and using these to examine in detail, the evolutionary distribution of all 162 proteins recently shown to be in the apicoplast by spatial proteomics in Toxoplasma. This expanded homology-based reconstruction of plastid proteins found in the ACS clade confirms earlier work showing convergence in the overall metabolic pathways retained once photosynthesis is lost, but also reveals differences in the degrees of plastid reduction in specific lineages. We show that the loss of the plastid genome is common and unexpectedly find many lineage- and species-specific plastid proteins, suggesting the presence of evolutionary innovations and neofunctionalizations that may confer new functional and metabolic capabilities that are yet to be discovered in these enigmatic organelles.
Zobrazit více v PubMed
Ali RH, Bogusz M, Whelan S, Tamura K. 2019. Identifying clusters of high confidence homologies in multiple sequence alignments. Mol Biol Evol. 36:2340–2351. PubMed PMC
Allen JF. 2017. The CoRR hypothesis for genes in organelles. J Theor Biol. 434:50–57. PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol. 215:403–410. PubMed
Armenteros JJA, Salvatore M, Emanuelsson O, Winther O, Von Heijne G, Elofsson A, Nielsen H. 2019. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2:e201900429. PubMed PMC
Barbrook AC, Howe CJ, Purton S. 2006. Why are plastid genomes retained in non-photosynthetic organisms? Trends Plant Sci. 11:101–108. PubMed
Barylyuk K, Koreny L, Ke H, Butterworth S, Crook OM, Lassadi I, Gupta V, Tromer E, Mourier T, Stevens TJ, et al. . 2020. A comprehensive subcellular atlas of the Toxoplasma proteome via hyperLOPIT provides spatial context for protein functions. Cell Host Microbe. 28:752–766.e9. PubMed PMC
Bateman A, Martin MJ, Orchard S, Magrane M, Agivetova R, Ahmad S, Alpi E, Bowler-Barnett EH, Britto R, Bursteinas B, et al. . 2021. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49:D480–D489. PubMed PMC
Biddau M, Bouchut A, Major J, Saveria T, Tottey J, Oka O, van-Lith M, Jennings KE, Ovciarikova J, DeRocher A, et al. . 2018. Two essential Thioredoxins mediate apicoplast biogenesis, protein import, and gene expression in Toxoplasma gondii. PLoS Pathog. 14:e1006836. PubMed PMC
Boisard J, Duvernois-Berthet E, Duval L, Schrével J, Guillou L, Labat A, Le Panse S, Prensier G, Ponger L, Florent I. 2022. Marine gregarine genomes reveal the breadth of apicomplexan diversity with a partially conserved glideosome machinery. BMC Genomics 23:1–22. PubMed PMC
Boucher MJ, Ghosh S, Zhang L, Lal A, Jang SW, Ju A, Zhang S, Wang X, Ralph SA, Zou J, et al. . 2018. Integrative proteomics and bioinformatic prediction enable a high-confidence apicoplast proteome in malaria parasites. PLoS Biol. 16:e2005895. PubMed PMC
Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. 2019. RnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience 8:1–13. PubMed PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. PubMed PMC
Dorrell RG, Azuma T, Nomura M, de Kerdrel GA, Paoli L, Yang S, Bowler C, Ichiro IK, Miyashita H, Gile GH, et al. . 2019. Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci U S A. 116:6914–6923. PubMed PMC
Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput Biol. 7:e1002195. PubMed PMC
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, et al. . 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 8:1494–1512. PubMed PMC
Henkel S, Frohnecke N, Maus D, McConville MJ, Laue M, Blume M, Seeber F. 2022. Toxoplasma gondii apicoplast-resident ferredoxin is an essential electron transfer protein for the MEP isoprenoid-biosynthetic pathway. J Biol Chem. 298:101468. PubMed PMC
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, et al. . 2019. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47:D309–D314. PubMed PMC
Janouškovec J, Horák A, Oborník M, Lukeš J, Keeling PJ. 2010. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci U S A. 107:10949–10954. PubMed PMC
Janouškovec J, Paskerova GG, Miroliubova TS, Mikhaiiov KV, Birley T, Aieoshin VV, Simdyanov TG. 2019. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. Elife 8:1–24. PubMed PMC
Janouškovec J, Tikhonenkov DV, Burki F, Howe AT, Kolísko M, Mylnikov AP, Keeling PJ. 2015. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci U S A. 112:10200–10207. PubMed PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. 2017. Modelfinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 14:587–589. PubMed PMC
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG As a reference resource for gene and protein annotation. Nucleic Acids Res. 44:D457–D462. PubMed PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:772–780. PubMed PMC
Kloehn J, Lacour CE, Soldati-Favre D. 2021. The metabolic pathways and transporters of the plastid organelle in Apicomplexa. Curr Opin Microbiol. 63:250–258. PubMed
Krause K. 2008. From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr Genet. 54:111–121. PubMed
Kwong WK, del Campo J, Mathur V, Vermeij MJA, Keeling PJ. 2019. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature 568:103–107. PubMed
Laetsch DR, Blaxter ML. 2017. Blobtools: interrogation of genome assemblies. F1000 Research 6:1287.
Lartillot N, Lepage T, Blanquart S. 2009. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25:2286–2288 PubMed
Letunic I, Bork P. 2021. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49:W293–W296. PubMed PMC
Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10.
Mathur V, Kolísko M, Hehenberger E, Irwin NAT, Leander BS, Kristmundsson Á, Freeman MA, Keeling PJ. 2019. Multiple independent origins of apicomplexan-like parasites. Curr Biol. 29:2936–2941.e5. PubMed
Mathur V, Kwong WK, Husnik F, Irwin NAT, Kristmundsson Á, Gestal C, Freeman M, Keeling PJ. 2021. Phylogenomics identifies a new major subgroup of apicomplexans, Marosporida class nov., with extreme apicoplast genome reduction. Genome Biol Evol. 13. PubMed PMC
Mathur V, Wakeman KC, Keeling PJ. 2021. Parallel functional reduction in the mitochondria of apicomplexan parasites. Curr Biol. 31:2920–2928.e4. PubMed
McFadden GI, Reith ME, Munholland J, Lang-Unnasch N. 1996. Plastid in human parasites. Nature 381:482. PubMed
McFadden GI, Roos DS. 1999. Apicomplexan plastids as drug targets. Trends Microbiol. 7:328–333. PubMed
McFadden GI, Yeh E. 2017. The apicoplast: now you see it, now you don’t. Int J Parasitol. 47:137–144. PubMed PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R, Teeling E. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 37:1530–1534. PubMed PMC
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, et al. . 2021. Pfam: the protein families database in 2021. Nucleic Acids Res. 49:D412–D419. PubMed PMC
Mulvey CM, Breckels LM, Geladaki A, Britovšek NK, Nightingale DJH, Christoforou A, Elzek M, Deery MJ, Gatto L, Lilley KS. 2017. Using hyperLOPIT to perform high-resolution mapping of the spatial proteome. Nat Protoc. 12:1110–1135. PubMed
Muñoz-Gómez SA, Slamovits CH. 2018. Chapter three—plastid genomes in the Myzozoa. In: Chaw S-M, Jansen RK, editors. Advances in botanical research. Vol. 85 Plastid genome evolution. London (UK): Academic Press. p. 55–94.
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32:268–274. PubMed PMC
Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. 2014. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 9:171–181. PubMed
Piro F, Focaia R, Dou Z, Masci S, Smith D, Di Cristina M. 2021. An uninvited seat at the dinner table: how apicomplexan parasites scavenge nutrients from the host. Microorganisms 9:2592. PubMed PMC
Price MN, Dehal PS, Arkin AP.. 2010. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. PubMed PMC
Rambaut A. 2014. A graphical viewer of phylogenetic trees. FigTree v1.4.2. Available from:https://github.com/rambaut/figtree
Richter D, Berney C, Strassert J, Poh Y-P, Herman EK, Muñoz-Gómez SA, Wideman JG, Burki F, de Vargas C. 2022. Eukprot: a database of genome-scale predicted proteins across the diversity of eukaryotes. bioRxiv 2020.06.30.180687.
Rueckert S, Betts EL, Tsaousis AD. 2019. The symbiotic spectrum: where do the gregarines fit? Trends Parasitol. 35:687–694. PubMed
Saffo MB, McCoy AM, Rieken C, Slamovits CH. 2010. Nephromyces, a beneficial apicomplexan symbiont in marine animals. Proc Natl Acad Sci U S A. 107:16190–16195. PubMed PMC
Salomaki ED, Eme L, Brown MW, Kolisko M. 2020. Releasing uncurated datasets is essential for reproducible phylogenomics. Nat Ecol Evol. 4114:1435–1437. PubMed
Salomaki ED, Kolisko M. 2019. There is treasure everywhere: reductive plastid evolution in apicomplexa in light of their close relatives. Biomolecules 9:378. PubMed PMC
Salomaki ED, Nickles KR, Lane CE. 2015. The ghost plastid of Choreocolax polysiphoniae. J Phycol. 51:217–221. PubMed
Salomaki ED, Terpis KX, Rueckert S, Kotyk M, Varadínová ZK, Čepička I, Lane CE, Kolisko M. 2021. Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans. BMC Biol. 19:77. PubMed PMC
Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, Connor R, Funk K, Kelly C, Kim S, et al. . 2022. Database resources of the national center for biotechnology information. Nucleic Acids Res. 50:D20–D26. PubMed PMC
Schrével J, Valigurová A, Prensier G, Chambouvet A, Florent I, Guillou L. 2016. Ultrastructure of Selenidium pendula, the type species of archigregarines, and phylogenetic relations to other marine apicomplexa. Protist 167:339–368. PubMed
Shears MJ, Botté CY, McFadden GI. 2015. Fatty acid metabolism in the Plasmodium apicoplast: drugs, doubts and knockouts. Mol Biochem Parasitol. 199:34–50. PubMed
Sheiner L, Vaidya AB, McFadden GI. 2013. The metabolic roles of the endosymbiotic organelles of Toxoplasma and Plasmodium spp. Curr Opin Microbiol. 16:452–458. PubMed PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva E V, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. PubMed
Simdyanov TG, Paskerova GG, Valigurová A, Diakin A, Kováčiková M, Schrével J, Guillou L, Dobrovolskij AA, Aleoshin VV. 2018. First ultrastructural and molecular phylogenetic evidence from the blastogregarines, an early branching lineage of plesiomorphic Apicomplexa. Protist 169:697–726. PubMed
Sobotka R, Esson HJ, Koník P, Trsková E, Moravcová L, Horák A, Dufková P, Oborník M. 2017. Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci Rep. 7:13214. PubMed PMC
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. PubMed PMC
Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H. 2022. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol. 40:1023–1025. PubMed PMC
Tice AK, Žihala D, Pánek T, Jones RE, Salomaki ED, Nenarokov S, Burki F, Eliáš M, Eme L, Roger AJ, et al. . 2021. PhyloFisher: a phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 19:e3001365. PubMed PMC
van Esveld SL, Meerstein-Kessel L, Boshoven C, Baaij JF, Barylyuk K, Coolen JPM, van Strien J, Duim RAJ, Dutilh BE, Garza DR, et al. . 2021. A prioritized and validated resource of mitochondrial proteins in plasmodium identifies unique biology. mSphere 6:e00614-21. PubMed PMC
Votýpka J, Modrý D, Obornik M, Šlapeta J, Lukeš J. 2017. Apicomplexa. In: Archibald JM, Simpson AGB, Slamovits CH, editors. Handbook of the protists. 2nd ed. Cham: Springer International Publishing. p. 567–624.
Wakeman KC, Hiruta S, Kondo Y, Ohtsuka S. 2021. Evidence for host jumping and diversification of marine cephaloidophorid gregarines (apicomplexa) between two distantly related animals, viz., crustaceans and salps. Protist 172:125822. PubMed
Waller RF, Reed MB, Cowman AF, McFadden GI. 2000. Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J. 19:1794–1802. PubMed PMC
Whelan S, Irisarri I, Burki F. 2018. PREQUAL: detecting non-homologous characters in sets of unaligned homologous sequences. Bioinformatics 34:3929–3930. PubMed
Yazaki E, Miyata R, Chikami Y, Harada R, Kawakubo T, Tanifuji G, Nakayama T, Yahata K, Hashimoto T, Inagaki Y. 2021. Signs of the plastid: enzymes involved in plastid-localized metabolic pathways in a eugregarine species. Parasitol Int. 83:102364. PubMed
Zhu G, Marchewka MJ, Keithly JS. 2000. Cryptosporidium parvum appears to lack a plastid genome. Microbiology 146:315–321. PubMed