Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans

. 2021 Apr 16 ; 19 (1) : 77. [epub] 20210416

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid33863338

Grantová podpora
CZ.02.2.69/0.0/0.0/16_027/0008357 Ministerstvo Školství, Mládeže a Tělovýchovy (CZ)
CZ.02.2.69/0.0/0.0/20_079/0017809 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000759 Ministerstvo Školství, Mládeže a Tělovýchovy
1541510 Directorate for Biological Sciences
1158119 Grantová Agentura, Univerzita Karlova
19-19297S Grantová Agentura České Republiky
18-28103S Grantová Agentura České Republiky
Fellowship Purkyne Akademie Věd České Republiky
OIA-1655221 National Science Foundation
GBMF9327 Gordon and Betty Moore Foundation

Odkazy

PubMed 33863338
PubMed Central PMC8051059
DOI 10.1186/s12915-021-01007-2
PII: 10.1186/s12915-021-01007-2
Knihovny.cz E-zdroje

BACKGROUND: Apicomplexa is a diverse phylum comprising unicellular endobiotic animal parasites and contains some of the most well-studied microbial eukaryotes including the devastating human pathogens Plasmodium falciparum and Cryptosporidium hominis. In contrast, data on the invertebrate-infecting gregarines remains sparse and their evolutionary relationship to other apicomplexans remains obscure. Most apicomplexans retain a highly modified plastid, while their mitochondria remain metabolically conserved. Cryptosporidium spp. inhabit an anaerobic host-gut environment and represent the known exception, having completely lost their plastid while retaining an extremely reduced mitochondrion that has lost its genome. Recent advances in single-cell sequencing have enabled the first broad genome-scale explorations of gregarines, providing evidence of differential plastid retention throughout the group. However, little is known about the retention and metabolic capacity of gregarine mitochondria. RESULTS: Here, we sequenced transcriptomes from five species of gregarines isolated from cockroaches. We combined these data with those from other apicomplexans, performed detailed phylogenomic analyses, and characterized their mitochondrial metabolism. Our results support the placement of Cryptosporidium as the earliest diverging lineage of apicomplexans, which impacts our interpretation of evolutionary events within the phylum. By mapping in silico predictions of core mitochondrial pathways onto our phylogeny, we identified convergently reduced mitochondria. These data show that the electron transport chain has been independently lost three times across the phylum, twice within gregarines. CONCLUSIONS: Apicomplexan lineages show variable functional restructuring of mitochondrial metabolism that appears to have been driven by adaptations to parasitism and anaerobiosis. Our findings indicate that apicomplexans are rife with convergent adaptations, with shared features including morphology, energy metabolism, and intracellularity.

Zobrazit více v PubMed

Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DMA, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906):498–511. doi: 10.1038/nature01097. PubMed DOI PMC

Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Puiu D, Manque P, Akiyoshi D, Mackey AJ, Pearson WR, Dear PH, Bankier AT, Peterson DL, Abrahamsen MS, Kapur V, Tzipori S, Buck GA. The genome of Cryptosporidium hominis. Nature. 2004;431(7012):1107–1112. doi: 10.1038/nature02977. PubMed DOI

del Campo J, Heger TJ, Rodríguez-Martínez R, Worden AZ, Richards TA, Massana R, Keeling PJ. Assessing the diversity and distribution of apicomplexans in host and free-living environments using high-throughput amplicon data and a phylogenetically informed reference framework. Front Microbiol. 2019;10:2373. doi: 10.3389/fmicb.2019.02373. PubMed DOI PMC

Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC, Ermolaeva MD, Allen JE, Selengut JD, Koo HL, Peterson JD, Pop M, Kosack DS, Shumway MF, Bidwell SL, Shallom SJ, van Aken SE, Riedmuller SB, Feldblyum TV, Cho JK, Quackenbush J, Sedegah M, Shoaibi A, Cummings LM, Florens L, Yates JR, Raine JD, Sinden RE, Harris MA, Cunningham DA, Preiser PR, Bergman LW, Vaidya AB, van Lin LH, Janse CJ, Waters AP, Smith HO, White OR, Salzberg SL, Venter JC, Fraser CM, Hoffman SL, Gardner MJ, Carucci DJ. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature. 2002;419(6906):512–519. doi: 10.1038/nature01099. PubMed DOI

Mather M, Henry K, Vaidya A. Mitochondrial drug targets in apicomplexan parasites. Curr Drug Targets. 2007;8(1):49–60. doi: 10.2174/138945007779315632. PubMed DOI

Ke H, Mather MW. +Targeting mitochondrial functions as antimalarial regime, what is next? Curr Clin Microbiol Rep. 2017;4(4):175–191. doi: 10.1007/s40588-017-0075-5. DOI

Vaidya AB, Mather MW. Mitochondrial evolution and functions in malaria parasites. Annu Rev Microbiol. 2009;63(1):249–267. doi: 10.1146/annurev.micro.091208.073424. PubMed DOI

Hikosaka K, Kita K, Tanabe K. Diversity of mitochondrial genome structure in the phylum Apicomplexa. Mol Biochem Parasit. 2013;188(1):26–33. doi: 10.1016/j.molbiopara.2013.02.006. PubMed DOI

Sheiner L, Vaidya AB, McFadden GI. The metabolic roles of the endosymbiotic organelles of Toxoplasma and Plasmodium spp. Curr Opin Microbiol. 2013;16(4):452–458. doi: 10.1016/j.mib.2013.07.003. PubMed DOI PMC

Lim L, McFadden GI. The evolution, metabolism and functions of the apicoplast. Philos T Roy Soc B. 2010;365(1541):749–763. doi: 10.1098/rstb.2009.0273. PubMed DOI PMC

Ralph SA, D’Ombrain MC, McFadden GI. The apicoplast as an antimalarial drug target. Drug Resist Update. 2001;4(3):145–151. doi: 10.1054/drup.2001.0205. PubMed DOI

Biagini GA, Viriyavejakul P, O’Neill PM, Bray PG, Ward SA. Functional characterization and target validation of alternative complex I of Plasmodium falciparum mitochondria. Antimicrob Agents Ch. 2006;50(5):1841–1851. doi: 10.1128/AAC.50.5.1841-1851.2006. PubMed DOI PMC

Mogi T, Kita K. Diversity in mitochondrial metabolic pathways in parasitic protists Plasmodium and Cryptosporidium. Parasitol Int. 2010;59(3):305–312. doi: 10.1016/j.parint.2010.04.005. PubMed DOI

Oppenheim RD, Creek DJ, Macrae JI, Modrzynska KK, Pino P, Limenitakis J, Polonais V, Seeber F, Barrett MP, Billker O, McConville MJ, Soldati-Favre D. BCKDH: the missing link in apicomplexan mitochondrial metabolism is required for full virulence of Toxoplasma gondii and Plasmodium berghei. Plos Pathog. 2014;10(7):e1004263. doi: 10.1371/journal.ppat.1004263. PubMed DOI PMC

Seeber F, Limenitakis J, Soldati-Favre D. Apicomplexan mitochondrial metabolism: a story of gains, losses and retentions. Trends Parasitol. 2008;24(10):468–478. doi: 10.1016/j.pt.2008.07.004. PubMed DOI

Henriquez FL, Richards TA, Roberts F, McLeod R, Roberts CW. The unusual mitochondrial compartment of Cryptosporidium parvum. Trends Parasitol. 2005;21(2):68–74. doi: 10.1016/j.pt.2004.11.010. PubMed DOI

Rueckert S, Betts EL, Tsaousis AD. The symbiotic spectrum: where do the gregarines fit? Trends Parasitol. 2019;35(9):687–694. doi: 10.1016/j.pt.2019.06.013. PubMed DOI

Boisard J, Florent I. Why the –omic future of Apicomplexa should include gregarines. Biol Cell. 2020;112(6):173–185. doi: 10.1111/boc.202000006. PubMed DOI

Rueckert S, Villette PMAH, Leander BS. Species boundaries in gregarine apicomplexan parasites: a case study-comparison of morphometric and molecular variability in Lecudina cf. tuzetae (Eugregarinorida, Lecudinidae) J Eukaryot Microbiol. 2011;58(4):275–283. doi: 10.1111/j.1550-7408.2011.00553.x. PubMed DOI

Cavalier-Smith T. Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa. Eur J Protistol. 2014;50(5):472–495. doi: 10.1016/j.ejop.2014.07.002. PubMed DOI

Wakeman KC, Heintzelman MB, Leander BS. Comparative ultrastructure and molecular phylogeny of Selenidium melongena n. sp. and S. terebellae Ray 1930 demonstrate niche partitioning in marine gregarine parasites (Apicomplexa) Protist. 2014;165(4):493–511. doi: 10.1016/j.protis.2014.05.007. PubMed DOI

Janouškovec J, Paskerova GG, Miroliubova TS, Mikhailov KV, Birley T, Aleoshin VV, Simdyanov TG. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. eLife. 2019;8 10.7554/eLife.49662. PubMed PMC

Mathur V, Kolísko M, Hehenberger E, Irwin NAT, Leander BS, Kristmundsson Á, et al. Multiple independent origins of apicomplexan-like parasites. Curr Biol. 2019;29:2936–2941.e5. 10.1016/j.cub.2019.07.019. PubMed

Templeton TJ, Enomoto S, Chen W-J, Huang C-G, Lancto CA, Abrahamsen MS, Zhu G. A genome-sequence survey for Ascogregarina taiwanensis supports evolutionary affiliation but metabolic diversity between a gregarine and Cryptosporidium. Mol Biol Evol. 2010;27(2):235–248. doi: 10.1093/molbev/msp226. PubMed DOI PMC

Burki F, Kaplan M, Tikhonenkov DV, Zlatogursky V, Minh BQ, Radaykina LV, et al. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. P Roy Soc B-Biol Sci. 2016;283:20152802. 10.1098/rspb.2015.2802. PubMed PMC

Strassert JFH, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life. Mol Biol Evol. 2019;36:757–65. 10.1093/molbev/msz012. PubMed PMC

Derelle R, López-García P, Timpano H, Moreira D. A phylogenomic framework to study the diversity and evolution of Stramenopiles (=Heterokonts) Mol Biol Evol. 2016;33(11):2890–2898. doi: 10.1093/molbev/msw168. PubMed DOI PMC

Simdyanov TG, Guillou L, Diakin AY, Mikhailov KV, Schrével J, Aleoshin VV. A new view on the morphology and phylogeny of eugregarines suggested by the evidence from the gregarine Ancora sagittata (Leuckart, 1860) Labbé, 1899 (Apicomplexa: Eugregarinida) PeerJ. 2017;5:e3354. doi: 10.7717/peerj.3354. PubMed DOI PMC

Minh BQ, Hahn MW, Lanfear R. New methods to calculate concordance factors for phylogenomic datasets. Mol Biol Evol. 2020;37:2727–33. 10.1093/molbev/msaa106. PubMed PMC

Shen X-X, Hittinger CT, Rokas A. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat Ecol Evol. 2017;1(5):0126. doi: 10.1038/s41559-017-0126. PubMed DOI PMC

Brown MW, Heiss AA, Kamikawa R, Inagaki Y, Yabuki A, Tice AK, Shiratori T, Ishida KI, Hashimoto T, Simpson AGB, Roger AJ. Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol Evol. 2018;10(2):427–433. doi: 10.1093/gbe/evy014. PubMed DOI PMC

Heiss AA, Kolisko M, Ekelund F, Brown MW, Roger AJ, Simpson AGB. Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes. Roy Soc Open Sci. 2018;5(4):171707. doi: 10.1098/rsos.171707. PubMed DOI PMC

Philippe H, Zhou Y, Brinkmann H, Rodrigue N, Delsuc F. Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol. 2005;5(1):50. doi: 10.1186/1471-2148-5-50. PubMed DOI PMC

Wang H-C, Susko E, Roger AJ. The relative importance of modeling site pattern heterogeneity versus partition-wise heterotachy in phylogenomic inference. Syst Biol. 2019;68(6):1003–1019. doi: 10.1093/sysbio/syz021. PubMed DOI

Salomaki ED, Eme L, Brown MW, Kolisko M. Releasing uncurated datasets is essential for reproducible phylogenomics. Nat Ecol Evol. 2020;4(11):1435–1437. doi: 10.1038/s41559-020-01296-w. PubMed DOI

Leitch GJ, He Q. Cryptosporidiosis-an overview. J Biomed Res. 2012;25(1):1–16. doi: 10.1016/S1674-8301(11)60001-8. PubMed DOI PMC

Black MW, Boothroyd JC. Lytic cycle of Toxoplasma gondii. Microbiol Mol Biol R. 2000;64(3):607–623. doi: 10.1128/MMBR.64.3.607-623.2000. PubMed DOI PMC

Baer K, Klotz C, Kappe SHI, Schnieder T, Frevert U. Release of hepatic Plasmodium yoelii merozoites into the pulmonary microvasculature. Plos Pathog. 2007;3(11):e171. doi: 10.1371/journal.ppat.0030171. PubMed DOI PMC

Patten R. Notes on a new protozoon, Piridium sociabile n.gen., n.sp., from the foot of Buccinum undatum. Parasitology. 1936;28(4):502–516. doi: 10.1017/S003118200002268X. DOI

Stairs CW, Roger AJ, Hampl V. Eukaryotic pyruvate formate lyase and its activating enzyme were acquired laterally from a Firmicute. Mol Biol Evol. 2011;28(7):2087–2099. doi: 10.1093/molbev/msr032. PubMed DOI

Foth BJ, Stimmler LM, Handman E, Crabb BS, Hodder AN, McFadden GI. The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast: the single, plastidic PDH of Plasmodium falciparum. Mol Microbiol. 2004;55(1):39–53. doi: 10.1111/j.1365-2958.2004.04407.x. PubMed DOI

Ctrnacta V, Ault JG, Stejskal F, Keithly JS. Localization of pyruvate: NADP+ oxidoreductase in sporozoites of Cryptosporidium parvum. The J Eukaryot Microbiol. 2006;53:225–31. 10.1111/j.1550-7408.2006.00099.x. PubMed

Liu S, Roellig DM, Guo Y, Li N, Frace MA, Tang K, Zhang L, Feng Y, Xiao L. Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics. 2016;17(1):1006. doi: 10.1186/s12864-016-3343-5. PubMed DOI PMC

Stairs CW, Leger MM, Roger AJ. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos T Roy Soc B. 2015;370(1678):20140326. doi: 10.1098/rstb.2014.0326. PubMed DOI PMC

Muller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol R. 2012;76(2):444–495. doi: 10.1128/MMBR.05024-11. PubMed DOI PMC

Guo F, Zhang H, Payne HR, Zhu G. Differential gene expression and protein localization of Cryptosporidium parvum fatty Acyl-CoA synthetase isoforms. J Eukaryot Microbiol. 2016;63:233–46. 10.1111/jeu.12272. PubMed PMC

Dubois D, Fernandes S, Amiar S, Dass S, Katris NJ, Botté CY, Yamaryo-Botté Y. Toxoplasma gondii acetyl-CoA synthetase is involved in fatty acid elongation (of long fatty acid chains) during tachyzoite life stages. J Lipid Res. 2018;59(6):994–1004. doi: 10.1194/jlr.M082891. PubMed DOI PMC

Field J, Rosenthal B, Samuelson J. Early lateral transfer of genes encoding malic enzyme, acetyl-CoA synthetase and alcohol dehydrogenases from anaerobic prokaryotes to Entamoeba histolytica. Mol Microbiol. 2000;38:446–55. 10.1046/j.1365-2958.2000.02143.x. PubMed

Jerlström-Hultqvist J, Einarsson E, Xu F, Hjort K, Ek B, Steinhauf D, Hultenby K, Bergquist J, Andersson JO, Svärd SG. Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat Commun. 2013;4(1):2493. doi: 10.1038/ncomms3493. PubMed DOI PMC

Nývltová E, Stairs CW, Hrdý I, Rídl J, Mach J, Pačes J, Roger AJ, Tachezy J. Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes. Mol Biol Evol. 2015;32(4):1039–1055. doi: 10.1093/molbev/msu408. PubMed DOI PMC

Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, Silberman JD, Andersson JO, Xu F, Yabuki A, Eme L, Zhang Q, Takishita K, Inagaki Y, Simpson AGB, Hashimoto T, Roger AJ. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol. 2017;1(4):0092. doi: 10.1038/s41559-017-0092. PubMed DOI PMC

Sanchez LB, Müller M. Purification and characterization of the acetate forming enzyme, acetyl-CoA synthetase (ADP-forming) from the amitochondriate protist, Giardia lamblia. FEBS Lett. 1996;378:240–4. 10.1016/0014-5793(95)01463-2. PubMed

Tielens AGM, van Grinsven KWA, Henze K, van Hellemond JJ, Martin W. Acetate formation in the energy metabolism of parasitic helminths and protists. Int J Parasitol. 2010;40(4):387–397. doi: 10.1016/j.ijpara.2009.12.006. PubMed DOI

LaGier MJ, Tachezy J, Stejskal F, Kutisova K, Keithly JS. Mitochondrial-type iron–sulfur cluster biosynthesis genes (IscS and IscU) in the apicomplexan Cryptosporidium parvum. Microbiology. 2003;149(12):3519–3530. doi: 10.1099/mic.0.26365-0. PubMed DOI

Putignani L, Tait A, Smith HV, Horner D, Tovar J, Tetley L, et al. Characterization of a mitochondrion-like organelle in Cryptosporidium parvum. Parasitology. 2004;129(1):1–18. doi: 10.1017/S003118200400527X. PubMed DOI

MacRae JI, Dixon MW, Dearnley MK, Chua HH, Chambers JM, Kenny S, et al. Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum. BMC Biol. 2013;11(1):67. doi: 10.1186/1741-7007-11-67. PubMed DOI PMC

Denton H, Roberts CW, Alexander J, Thong kam-wah, Coombs GH. Enzymes of energy metabolism in the bradyzoites and tachyzoites of Toxoplasma gondii. FEMS Microbiol Lett 1996;137:103–108. 10.1111/j.1574-6968.1996.tb08090.x. PubMed

Sturm A, Mollard V, Cozijnsen A, Goodman CD, McFadden GI. Mitochondrial ATP synthase is dispensable in blood-stage Plasmodium berghei rodent malaria but essential in the mosquito phase. P Natl Acad Sci USA. 2015;112(33):10216–10223. doi: 10.1073/pnas.1423959112. PubMed DOI PMC

Stechmann A, Hamblin K, Pérez-Brocal V, Gaston D, Richmond GS, van der Giezen M, Clark CG, Roger AJ. Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol. 2008;18(8):580–585. doi: 10.1016/j.cub.2008.03.037. PubMed DOI PMC

Makiuchi T, Nozaki T. Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie. 2014;100:3–17. doi: 10.1016/j.biochi.2013.11.018. PubMed DOI

Rotterová J, Salomaki E, Pánek T, Bourland W, Žihala D, Táborský P, Edgcomb VP, Beinart RA, Kolísko M, Čepička I. Genomics of new ciliate lineages provides insight into the evolution of obligate anaerobiosis. Curr Biol. 2020;30(11):2037–2050.e6. doi: 10.1016/j.cub.2020.03.064. PubMed DOI

Gawryluk RMR, Stairs CW. Diversity of electron transport chains in anaerobic protists. BBA-Bioenergetics. 1862;2021:148334. 10.1016/j.bbabio.2020.148334. PubMed

Li M, Yang H, Gu J-D. Phylogenetic diversity and axial distribution of microbes in the intestinal tract of the polychaete Neanthes glandicincta. Microb Ecol. 2009;58(4):892–902. doi: 10.1007/s00248-009-9550-8. PubMed DOI

Boxma B, de Graaf RM, van der Staay GWM, van Alen TA, Ricard G, Gabaldón T, van Hoek AHAM, Moon-van der Staay SY, Koopman WJH, van Hellemond JJ, Tielens AGM, Friedrich T, Veenhuis M, Huynen MA, Hackstein JHP. An anaerobic mitochondrion that produces hydrogen. Nature. 2005;434(7029):74–79. doi: 10.1038/nature03343. PubMed DOI

Gawryluk RMR, Kamikawa R, Stairs CW, Silberman JD, Brown MW, Roger AJ. The earliest stages of mitochondrial adaptation to low oxygen revealed in a novel rhizarian. Curr Biol. 2016;26(20):2729–2738. doi: 10.1016/j.cub.2016.08.025. PubMed DOI

Stairs CW, Eme L, Muñoz-Gómez SA, Cohen A, Dellaire G, Shepherd JN, Fawcett JP, Roger AJ. Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis. eLife. 2018;7 10.7554/eLife.34292. PubMed PMC

Tielens AGM, Rotte C, van Hellemond JJ, Martin W. Mitochondria as we don’t know them. Trends Biochem Sci. 2002;27(11):564–572. doi: 10.1016/S0968-0004(02)02193-X. PubMed DOI

Lonjers ZT, Dickson EL, Chu T-PT, Kreutz JE, Neacsu FA, Anders KR, Shepherd JN. Identification of a new gene required for the biosynthesis of rhodoquinone in Rhodospirillum rubrum. J Bacteriol. 2012;194(5):965–971. doi: 10.1128/JB.06319-11. PubMed DOI PMC

Bernert AC, Jacobs EJ, Reinl SR, Choi CCY, Roberts Buceta PM, Culver JC, et al. Recombinant RquA catalyzes the in vivo conversion of ubiquinone to rhodoquinone in Escherichia coli and Saccharomyces cerevisiae. BBA-Mol Cell Biol L. 1864;2019:1226–34. 10.1016/j.bbalip.2019.05.007. PubMed PMC

Del Borrello S, Lautens M, Dolan K, Tan JH, Davie T, Schertzberg MR, et al. Rhodoquinone biosynthesis in C. elegans requires precursors generated by the kynurenine pathway. eLife. 2019;8 10.7554/eLife.48165. PubMed PMC

Lapointe J, Wang Y, Bigras E, Hekimi S. The submitochondrial distribution of ubiquinone affects respiration in long-lived Mclk1+/− mice. J Cell Biol. 2012;199(2):215–224. doi: 10.1083/jcb.201203090. PubMed DOI PMC

Padilla-López S, Jiménez-Hidalgo M, Martín-Montalvo A, Clarke CF, Navas P, Santos-Ocaña C. Genetic evidence for the requirement of the endocytic pathway in the uptake of coenzyme Q6 in Saccharomyces cerevisiae. BBA-Biomembranes. 1788;2009:1238–48. 10.1016/j.bbamem.2009.03.018. PubMed PMC

Raven JA. Determinants, and implications, of the shape and size of thylakoids and cristae. J Plant Physiol. 2021;257:153342. doi: 10.1016/j.jplph.2020.153342. PubMed DOI

Mühleip A, Kock Flygaard R, Ovciarikova J, Lacombe A, Fernandes P, Sheiner L, Amunts A. ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria. Nat Commun. 2021;12(1):120. doi: 10.1038/s41467-020-20381-z. PubMed DOI PMC

Salunke R, Mourier T, Banerjee M, Pain A, Shanmugam D. Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii. Plos Biol. 2018;16(7):e2006128. doi: 10.1371/journal.pbio.2006128. PubMed DOI PMC

Kuvardina ON, Simdyanov TG. Fine structure of syzygy in Selenidium pennatum (Sporozoa, Archigregarinida) Protistology. 2002;2:169–177.

Valigurová A, Vaškovicová N, Diakin A, Paskerova GG, Simdyanov TG, Kováčiková M. Motility in blastogregarines (Apicomplexa): native and drug-induced organisation of Siedleckia nematoides cytoskeletal elements. Plos One. 2017;12(6):e0179709. doi: 10.1371/journal.pone.0179709. PubMed DOI PMC

Desportes I, Schrével J. Treatise on zoology - anatomy, taxonomy, biology. The gregarines (2 vols): the early branching Apicomplexa. Leiden: Brill; 2013.

Toso MA, Omoto CK. Gregarina niphandrodes may lack both a plastid genome and organelle. J Eukaryot Microbiol. 2007;54:66–72. 10.1111/j.1550-7408.2006.00229.x. PubMed

Tronchin G, Schrevel J. Chronologie des modifications ultrastructurales au cours de la croissance de Gregarina blaberae. J Protozool. 1977;24:67–82. 10.1111/j.1550-7408.1977.tb05282.x. PubMed

Landers SC. The fine structure of the gamont of Pterospora floridiensis (Apicomplexa: Eugregarinida) J Eukaryot Microbiol. 2002;49:220–226. doi: 10.1111/j.1550-7408.2002.tb00526.x. PubMed DOI

Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, van der Giezen M, Hernández M, Müller M, Lucocq JM. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature. 2003;426(6963):172–176. doi: 10.1038/nature01945. PubMed DOI

Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, Soukal P, Hroudová M, Doležal P, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Vlček Č, Hampl V. A eukaryote without a mitochondrial organelle. Curr Biol. 2016;26(10):1274–1284. doi: 10.1016/j.cub.2016.03.053. PubMed DOI

Salomaki ED, Kolisko M. There is treasure everywhere: reductive plastid evolution in Apicomplexa in light of their close relatives. Biomolecules. 2019;9(8):378. doi: 10.3390/biom9080378. PubMed DOI PMC

Stairs CW, Eme L, Brown MW, Mutsaers C, Susko E, Dellaire G, Soanes DM, van der Giezen M, Roger AJ. A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr Biol. 2014;24(11):1176–1186. doi: 10.1016/j.cub.2014.04.033. PubMed DOI

Mi-ichi F, Yousuf MA, Nakada-Tsukui K, Nozaki T. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. P Nat Acad Sci USA. 2009;106(51):21731–21736. doi: 10.1073/pnas.0907106106. PubMed DOI PMC

Maralikova B, Ali V, Nakada-Tsukui K, Nozaki T, van der Giezen M, Henze K, Tovar J. Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria. Cell Microbiol. 2010;12(3):331–342. doi: 10.1111/j.1462-5822.2009.01397.x. PubMed DOI

Nyvltova E, Sutak R, Harant K, Sedinova M, Hrdy I, Paces J, Vlcek C, Tachezy J. NIF-type iron-sulfur cluster assembly system is duplicated and distributed in the mitochondria and cytosol of Mastigamoeba balamuthi. P Nat Acad Sci USA. 2013;110(18):7371–7376. doi: 10.1073/pnas.1219590110. PubMed DOI PMC

Babady NE, Pang Y-P, Elpeleg O, Isaya G. Cryptic proteolytic activity of dihydrolipoamide dehydrogenase. P Nat Acad Sci USA. 2007;104(15):6158–6163. doi: 10.1073/pnas.0610618104. PubMed DOI PMC

Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, Tanaka M, Satoh N, Bachtrog D, Wilson ACC, von Dohlen CD, Fukatsu T, McCutcheon JP. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell. 2013;153(7):1567–1578. doi: 10.1016/j.cell.2013.05.040. PubMed DOI

Leger MM, Eme L, Hug LA, Roger AJ. Novel hydrogenosomes in the microaerophilic Jakobid Stygiella incarcerata. Mol Biol Evol. 2016;33(9):2318–36. 10.1111/j.1550-7408.2002.tb00526.x. PubMed PMC

Van Etten J, Bhattacharya D. Horizontal gene transfer in eukaryotes: not if, but how much? Trends Genet. 2020;36(12):915–925. doi: 10.1016/j.tig.2020.08.006. PubMed DOI

Nosenko T, Bhattacharya D. Horizontal gene transfer in chromalveolates. BMC Evol Biol. 2007;7(1):173. doi: 10.1186/1471-2148-7-173. PubMed DOI PMC

van der Rest ME, Frank C, Molenaar D. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli. J Bacteriol. 2000;182(24):6892–6899. doi: 10.1128/JB.182.24.6892-6899.2000. PubMed DOI PMC

Molenaar D, van der Rest ME, Drysch A, Yücel R. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum. J Bacteriol. 2000;182(24):6884–6891. doi: 10.1128/JB.182.24.6884-6891.2000. PubMed DOI PMC

Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, et al. Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. J Eukaryot Microbiol. 2019;66:4–119. PubMed PMC

Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W. Pyruvate:NADP oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol. 2001;18(5):710–720. doi: 10.1093/oxfordjournals.molbev.a003853. PubMed DOI

Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014;9(1):171–181. doi: 10.1038/nprot.2014.006. PubMed DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI

Aurrecoechea C, Barreto A, Basenko EY, Brestelli J, Brunk BP, Cade S, Crouch K, Doherty R, Falke D, Fischer S, Gajria B, Harb OS, Heiges M, Hertz-Fowler C, Hu S, Iodice J, Kissinger JC, Lawrence C, Li W, Pinney DF, Pulman JA, Roos DS, Shanmugasundram A, Silva-Franco F, Steinbiss S, Stoeckert CJ, Jr, Spruill D, Wang H, Warrenfeltz S, Zheng J. EuPathDB: the eukaryotic pathogen genomics database resource. Nucleic Acids Res. 2017;45(D1):D581–D591. doi: 10.1093/nar/gkw1105. PubMed DOI PMC

Multiple independent origins of apicomplexan-like parasites. NCBI Bioproject PRJNA539986. 2019. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA539986/. Accessed 3 Jan 2020.

Janouškovec J, Paskerova GG, Miroliubova TS, Mikhailov KV, Birley T, Aleoshin VV, et al. Transcriptomes of apicomplexan parasites. NCBI Bioproject PRJNA557242. 2019. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA557242/. Accessed 3 Jan 2020.

Sequencing of a metagenome and metatranscriptome from a Nephromyces-enriched renal sac of Molgula occidentalis. NCBI Bioproject PRJNA524113. 2019. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA524113/. . Accessed 3 Jan 2020.

Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, Beszteri B, Bidle KD, Cameron CT, Campbell L, Caron DA, Cattolico RA, Collier JL, Coyne K, Davy SK, Deschamps P, Dyhrman ST, Edvardsen B, Gates RD, Gobler CJ, Greenwood SJ, Guida SM, Jacobi JL, Jakobsen KS, James ER, Jenkins B, John U, Johnson MD, Juhl AR, Kamp A, Katz LA, Kiene R, Kudryavtsev A, Leander BS, Lin S, Lovejoy C, Lynn D, Marchetti A, McManus G, Nedelcu AM, Menden-Deuer S, Miceli C, Mock T, Montresor M, Moran MA, Murray S, Nadathur G, Nagai S, Ngam PB, Palenik B, Pawlowski J, Petroni G, Piganeau G, Posewitz MC, Rengefors K, Romano G, Rumpho ME, Rynearson T, Schilling KB, Schroeder DC, Simpson AGB, Slamovits CH, Smith DR, Smith GJ, Smith SR, Sosik HM, Stief P, Theriot E, Twary SN, Umale PE, Vaulot D, Wawrik B, Wheeler GL, Wilson WH, Xu Y, Zingone A, Worden AZ. The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. Plos Biol. 2014;12(6):e1001889. doi: 10.1371/journal.pbio.1001889. PubMed DOI PMC

Nenarokov S, Kolisko M. Winston Cleaner. github.com/Seraff/WinstonCleaner. Accessed 8 Aug 2019.

Salomaki ED, Terpis KX, Rueckert S, Kotyk M, Varadínová ZK, Čepička I, et al. Phylogenomic dataset files for: Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans. figshare. 2021. doi: 10.6084/m9.figshare.13344227.v1. PubMed PMC

Whelan S, Irisarri I, Burki F. PREQUAL: detecting non-homologous characters in sets of unaligned homologous sequences. Bioinformatics. 2018;34(22):3929–3930. doi: 10.1093/bioinformatics/bty448. PubMed DOI

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Ali RH, Bogusz M, Whelan S. Identifying clusters of high confidence homologies in multiple sequence alignments. Mol Biol Evol. 2019;36(10):2340–2351. doi: 10.1093/molbev/msz142. PubMed DOI PMC

Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC

Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10(1):210. doi: 10.1186/1471-2148-10-210. PubMed DOI PMC

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2016;34:772–3. 10.1093/molbev/msw260. PubMed

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74. 10.1093/molbev/msu300. PubMed PMC

Lartillot N, Rodrigue N, Stubbs D, Richer J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol 2013;62:611–615, 4, doi: 10.1093/sysbio/syt022. PubMed

Salomaki ED, Terpis KX, Rueckert S, Kotyk M, Varadínová ZK, Čepička I, et al. Phylogenomic log files for: Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans. figshare. 2021. doi: 10.6084/m9.figshare.13927292.v2. PubMed PMC

Shen X-X, Li Y, Hittinger CT, Chen X, Rokas A. An investigation of irreproducibility in maximum likelihood phylogenetic inference. Nat Commun. 2020;11(1):6096. doi: 10.1038/s41467-020-20005-6. PubMed DOI PMC

Tice AK, Žihala D, Pánek T, Jones R, Salomaki ED, Nenarokov S, et al. PhyloFisher: a phylogenomic package for resolving deep eukaryotic relationships https://github.com/TheBrownLab/PhyloFisher. Accessed 15 Sept 2019. PubMed PMC

Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst Biol. 2002;51(3):492–508. doi: 10.1080/10635150290069913. PubMed DOI

Smith DGS, Gawryluk RMR, Spencer DF, Pearlman RE, Siu KWM, Gray MW. Exploring the mitochondrial proteome of the ciliate protozoon Tetrahymena thermophila: direct analysis by tandem mass spectrometry. J Mol Biol. 2007;374(3):837–863. doi: 10.1016/j.jmb.2007.09.051. PubMed DOI

Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, et al. Data from: Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Dryad. 2018; 10.5061/dryad.34qd7. PubMed PMC

Seidi A, Muellner-Wong LS, Rajendran E, Tjhin ET, Dagley LF, Aw VY, et al. Elucidating the mitochondrial proteome of Toxoplasma gondii reveals the presence of a divergent cytochrome c oxidase. eLife. 2018;7 10.7554/eLife.38131. PubMed PMC

Rotterová J, Salomaki ED, Pánek T, Bourland W, Žihala D, Táborský P, et al. Genomics of new ciliate lineages provides insight into the evolution of obligate anaerobiosis - single gene datasets for phylogenomic analysis of anaerobic ciliates (SAL, Ciliophora), protein datasets for mitochondrial pathways prediction, and mitochondrial genomes. Dryad. 2020; 10.5061/dryad.vx0k6djnm.

Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–1659. doi: 10.1093/bioinformatics/btl158. PubMed DOI

Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, Nielsen H. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2019;2(5):e201900429. doi: 10.26508/lsa.201900429. PubMed DOI PMC

Almagro Armenteros JJ, Sønderby CK, Sønderby SK, Nielsen H, Winther O. DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics. 2017;33(21):3387–3395. doi: 10.1093/bioinformatics/btx431. PubMed DOI

Salomaki ED, Terpis KX, Rueckert S, Kotyk M, Varadínová ZK, Čepička I, et al. Mitochondrial gene dataset files for: Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans. figshare. 2021. doi: 10.6084/m9.figshare.13928252.v1. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Expanded gene and taxon sampling of diplomonads shows multiple switches to parasitic and free-living lifestyle

. 2024 Sep 27 ; 22 (1) : 217. [epub] 20240927

Encyclopedia of Family A DNA Polymerases Localized in Organelles: Evolutionary Contribution of Bacteria Including the Proto-Mitochondrion

. 2024 Feb 01 ; 41 (2) : .

Reconstruction of Plastid Proteomes of Apicomplexans and Close Relatives Reveals the Major Evolutionary Outcomes of Cryptic Plastids

. 2023 Jan 04 ; 40 (1) : .

Reduced mitochondria provide an essential function for the cytosolic methionine cycle

. 2022 Dec 05 ; 32 (23) : 5057-5068.e5. [epub] 20221107

PhyloFisher: A phylogenomic package for resolving eukaryotic relationships

. 2021 Aug ; 19 (8) : e3001365. [epub] 20210806

Nutrient Acquisition and Attachment Strategies in Basal Lineages: A Tough Nut to Crack in the Evolutionary Puzzle of Apicomplexa

. 2021 Jul 02 ; 9 (7) : . [epub] 20210702

Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans

. 2021 Apr 16 ; 19 (1) : 77. [epub] 20210416

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.13350524.v1, 10.6084/m9.figshare.13344884.v1, 10.6084/m9.figshare.13344227.v1, 0.6084/m9.figshare.13927292.v2, 10.6084/m9.figshare.13928252.v1

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...