Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
CZ.02.2.69/0.0/0.0/16_027/0008357
Ministerstvo Školství, Mládeže a Tělovýchovy (CZ)
CZ.02.2.69/0.0/0.0/20_079/0017809
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000759
Ministerstvo Školství, Mládeže a Tělovýchovy
1541510
Directorate for Biological Sciences
1158119
Grantová Agentura, Univerzita Karlova
19-19297S
Grantová Agentura České Republiky
18-28103S
Grantová Agentura České Republiky
Fellowship Purkyne
Akademie Věd České Republiky
OIA-1655221
National Science Foundation
GBMF9327
Gordon and Betty Moore Foundation
PubMed
33863338
PubMed Central
PMC8051059
DOI
10.1186/s12915-021-01007-2
PII: 10.1186/s12915-021-01007-2
Knihovny.cz E-zdroje
- Klíčová slova
- Anaerobic metabolism, Apicomplexa, Eugregarines, Evolution, Mitochondria, Mitosome, Parasitism, Phylogenomics,
- MeSH
- analýza jednotlivých buněk MeSH
- Apicomplexa * genetika MeSH
- fylogeneze MeSH
- lidé MeSH
- mitochondrie * genetika MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
BACKGROUND: Apicomplexa is a diverse phylum comprising unicellular endobiotic animal parasites and contains some of the most well-studied microbial eukaryotes including the devastating human pathogens Plasmodium falciparum and Cryptosporidium hominis. In contrast, data on the invertebrate-infecting gregarines remains sparse and their evolutionary relationship to other apicomplexans remains obscure. Most apicomplexans retain a highly modified plastid, while their mitochondria remain metabolically conserved. Cryptosporidium spp. inhabit an anaerobic host-gut environment and represent the known exception, having completely lost their plastid while retaining an extremely reduced mitochondrion that has lost its genome. Recent advances in single-cell sequencing have enabled the first broad genome-scale explorations of gregarines, providing evidence of differential plastid retention throughout the group. However, little is known about the retention and metabolic capacity of gregarine mitochondria. RESULTS: Here, we sequenced transcriptomes from five species of gregarines isolated from cockroaches. We combined these data with those from other apicomplexans, performed detailed phylogenomic analyses, and characterized their mitochondrial metabolism. Our results support the placement of Cryptosporidium as the earliest diverging lineage of apicomplexans, which impacts our interpretation of evolutionary events within the phylum. By mapping in silico predictions of core mitochondrial pathways onto our phylogeny, we identified convergently reduced mitochondria. These data show that the electron transport chain has been independently lost three times across the phylum, twice within gregarines. CONCLUSIONS: Apicomplexan lineages show variable functional restructuring of mitochondrial metabolism that appears to have been driven by adaptations to parasitism and anaerobiosis. Our findings indicate that apicomplexans are rife with convergent adaptations, with shared features including morphology, energy metabolism, and intracellularity.
Department of Biological Sciences University of Rhode Island Kingston RI USA
Department of Zoology Faculty of Science Charles University Prague Prague Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
School of Applied Sciences Edinburgh Napier University Edinburgh Scotland UK
Zobrazit více v PubMed
Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DMA, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906):498–511. doi: 10.1038/nature01097. PubMed DOI PMC
Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Puiu D, Manque P, Akiyoshi D, Mackey AJ, Pearson WR, Dear PH, Bankier AT, Peterson DL, Abrahamsen MS, Kapur V, Tzipori S, Buck GA. The genome of Cryptosporidium hominis. Nature. 2004;431(7012):1107–1112. doi: 10.1038/nature02977. PubMed DOI
del Campo J, Heger TJ, Rodríguez-Martínez R, Worden AZ, Richards TA, Massana R, Keeling PJ. Assessing the diversity and distribution of apicomplexans in host and free-living environments using high-throughput amplicon data and a phylogenetically informed reference framework. Front Microbiol. 2019;10:2373. doi: 10.3389/fmicb.2019.02373. PubMed DOI PMC
Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC, Ermolaeva MD, Allen JE, Selengut JD, Koo HL, Peterson JD, Pop M, Kosack DS, Shumway MF, Bidwell SL, Shallom SJ, van Aken SE, Riedmuller SB, Feldblyum TV, Cho JK, Quackenbush J, Sedegah M, Shoaibi A, Cummings LM, Florens L, Yates JR, Raine JD, Sinden RE, Harris MA, Cunningham DA, Preiser PR, Bergman LW, Vaidya AB, van Lin LH, Janse CJ, Waters AP, Smith HO, White OR, Salzberg SL, Venter JC, Fraser CM, Hoffman SL, Gardner MJ, Carucci DJ. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature. 2002;419(6906):512–519. doi: 10.1038/nature01099. PubMed DOI
Mather M, Henry K, Vaidya A. Mitochondrial drug targets in apicomplexan parasites. Curr Drug Targets. 2007;8(1):49–60. doi: 10.2174/138945007779315632. PubMed DOI
Ke H, Mather MW. +Targeting mitochondrial functions as antimalarial regime, what is next? Curr Clin Microbiol Rep. 2017;4(4):175–191. doi: 10.1007/s40588-017-0075-5. DOI
Vaidya AB, Mather MW. Mitochondrial evolution and functions in malaria parasites. Annu Rev Microbiol. 2009;63(1):249–267. doi: 10.1146/annurev.micro.091208.073424. PubMed DOI
Hikosaka K, Kita K, Tanabe K. Diversity of mitochondrial genome structure in the phylum Apicomplexa. Mol Biochem Parasit. 2013;188(1):26–33. doi: 10.1016/j.molbiopara.2013.02.006. PubMed DOI
Sheiner L, Vaidya AB, McFadden GI. The metabolic roles of the endosymbiotic organelles of Toxoplasma and Plasmodium spp. Curr Opin Microbiol. 2013;16(4):452–458. doi: 10.1016/j.mib.2013.07.003. PubMed DOI PMC
Lim L, McFadden GI. The evolution, metabolism and functions of the apicoplast. Philos T Roy Soc B. 2010;365(1541):749–763. doi: 10.1098/rstb.2009.0273. PubMed DOI PMC
Ralph SA, D’Ombrain MC, McFadden GI. The apicoplast as an antimalarial drug target. Drug Resist Update. 2001;4(3):145–151. doi: 10.1054/drup.2001.0205. PubMed DOI
Biagini GA, Viriyavejakul P, O’Neill PM, Bray PG, Ward SA. Functional characterization and target validation of alternative complex I of Plasmodium falciparum mitochondria. Antimicrob Agents Ch. 2006;50(5):1841–1851. doi: 10.1128/AAC.50.5.1841-1851.2006. PubMed DOI PMC
Mogi T, Kita K. Diversity in mitochondrial metabolic pathways in parasitic protists Plasmodium and Cryptosporidium. Parasitol Int. 2010;59(3):305–312. doi: 10.1016/j.parint.2010.04.005. PubMed DOI
Oppenheim RD, Creek DJ, Macrae JI, Modrzynska KK, Pino P, Limenitakis J, Polonais V, Seeber F, Barrett MP, Billker O, McConville MJ, Soldati-Favre D. BCKDH: the missing link in apicomplexan mitochondrial metabolism is required for full virulence of Toxoplasma gondii and Plasmodium berghei. Plos Pathog. 2014;10(7):e1004263. doi: 10.1371/journal.ppat.1004263. PubMed DOI PMC
Seeber F, Limenitakis J, Soldati-Favre D. Apicomplexan mitochondrial metabolism: a story of gains, losses and retentions. Trends Parasitol. 2008;24(10):468–478. doi: 10.1016/j.pt.2008.07.004. PubMed DOI
Henriquez FL, Richards TA, Roberts F, McLeod R, Roberts CW. The unusual mitochondrial compartment of Cryptosporidium parvum. Trends Parasitol. 2005;21(2):68–74. doi: 10.1016/j.pt.2004.11.010. PubMed DOI
Rueckert S, Betts EL, Tsaousis AD. The symbiotic spectrum: where do the gregarines fit? Trends Parasitol. 2019;35(9):687–694. doi: 10.1016/j.pt.2019.06.013. PubMed DOI
Boisard J, Florent I. Why the –omic future of Apicomplexa should include gregarines. Biol Cell. 2020;112(6):173–185. doi: 10.1111/boc.202000006. PubMed DOI
Rueckert S, Villette PMAH, Leander BS. Species boundaries in gregarine apicomplexan parasites: a case study-comparison of morphometric and molecular variability in Lecudina cf. tuzetae (Eugregarinorida, Lecudinidae) J Eukaryot Microbiol. 2011;58(4):275–283. doi: 10.1111/j.1550-7408.2011.00553.x. PubMed DOI
Cavalier-Smith T. Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa. Eur J Protistol. 2014;50(5):472–495. doi: 10.1016/j.ejop.2014.07.002. PubMed DOI
Wakeman KC, Heintzelman MB, Leander BS. Comparative ultrastructure and molecular phylogeny of Selenidium melongena n. sp. and S. terebellae Ray 1930 demonstrate niche partitioning in marine gregarine parasites (Apicomplexa) Protist. 2014;165(4):493–511. doi: 10.1016/j.protis.2014.05.007. PubMed DOI
Janouškovec J, Paskerova GG, Miroliubova TS, Mikhailov KV, Birley T, Aleoshin VV, Simdyanov TG. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. eLife. 2019;8 10.7554/eLife.49662. PubMed PMC
Mathur V, Kolísko M, Hehenberger E, Irwin NAT, Leander BS, Kristmundsson Á, et al. Multiple independent origins of apicomplexan-like parasites. Curr Biol. 2019;29:2936–2941.e5. 10.1016/j.cub.2019.07.019. PubMed
Templeton TJ, Enomoto S, Chen W-J, Huang C-G, Lancto CA, Abrahamsen MS, Zhu G. A genome-sequence survey for Ascogregarina taiwanensis supports evolutionary affiliation but metabolic diversity between a gregarine and Cryptosporidium. Mol Biol Evol. 2010;27(2):235–248. doi: 10.1093/molbev/msp226. PubMed DOI PMC
Burki F, Kaplan M, Tikhonenkov DV, Zlatogursky V, Minh BQ, Radaykina LV, et al. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. P Roy Soc B-Biol Sci. 2016;283:20152802. 10.1098/rspb.2015.2802. PubMed PMC
Strassert JFH, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life. Mol Biol Evol. 2019;36:757–65. 10.1093/molbev/msz012. PubMed PMC
Derelle R, López-García P, Timpano H, Moreira D. A phylogenomic framework to study the diversity and evolution of Stramenopiles (=Heterokonts) Mol Biol Evol. 2016;33(11):2890–2898. doi: 10.1093/molbev/msw168. PubMed DOI PMC
Simdyanov TG, Guillou L, Diakin AY, Mikhailov KV, Schrével J, Aleoshin VV. A new view on the morphology and phylogeny of eugregarines suggested by the evidence from the gregarine Ancora sagittata (Leuckart, 1860) Labbé, 1899 (Apicomplexa: Eugregarinida) PeerJ. 2017;5:e3354. doi: 10.7717/peerj.3354. PubMed DOI PMC
Minh BQ, Hahn MW, Lanfear R. New methods to calculate concordance factors for phylogenomic datasets. Mol Biol Evol. 2020;37:2727–33. 10.1093/molbev/msaa106. PubMed PMC
Shen X-X, Hittinger CT, Rokas A. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat Ecol Evol. 2017;1(5):0126. doi: 10.1038/s41559-017-0126. PubMed DOI PMC
Brown MW, Heiss AA, Kamikawa R, Inagaki Y, Yabuki A, Tice AK, Shiratori T, Ishida KI, Hashimoto T, Simpson AGB, Roger AJ. Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol Evol. 2018;10(2):427–433. doi: 10.1093/gbe/evy014. PubMed DOI PMC
Heiss AA, Kolisko M, Ekelund F, Brown MW, Roger AJ, Simpson AGB. Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes. Roy Soc Open Sci. 2018;5(4):171707. doi: 10.1098/rsos.171707. PubMed DOI PMC
Philippe H, Zhou Y, Brinkmann H, Rodrigue N, Delsuc F. Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol. 2005;5(1):50. doi: 10.1186/1471-2148-5-50. PubMed DOI PMC
Wang H-C, Susko E, Roger AJ. The relative importance of modeling site pattern heterogeneity versus partition-wise heterotachy in phylogenomic inference. Syst Biol. 2019;68(6):1003–1019. doi: 10.1093/sysbio/syz021. PubMed DOI
Salomaki ED, Eme L, Brown MW, Kolisko M. Releasing uncurated datasets is essential for reproducible phylogenomics. Nat Ecol Evol. 2020;4(11):1435–1437. doi: 10.1038/s41559-020-01296-w. PubMed DOI
Leitch GJ, He Q. Cryptosporidiosis-an overview. J Biomed Res. 2012;25(1):1–16. doi: 10.1016/S1674-8301(11)60001-8. PubMed DOI PMC
Black MW, Boothroyd JC. Lytic cycle of Toxoplasma gondii. Microbiol Mol Biol R. 2000;64(3):607–623. doi: 10.1128/MMBR.64.3.607-623.2000. PubMed DOI PMC
Baer K, Klotz C, Kappe SHI, Schnieder T, Frevert U. Release of hepatic Plasmodium yoelii merozoites into the pulmonary microvasculature. Plos Pathog. 2007;3(11):e171. doi: 10.1371/journal.ppat.0030171. PubMed DOI PMC
Patten R. Notes on a new protozoon, Piridium sociabile n.gen., n.sp., from the foot of Buccinum undatum. Parasitology. 1936;28(4):502–516. doi: 10.1017/S003118200002268X. DOI
Stairs CW, Roger AJ, Hampl V. Eukaryotic pyruvate formate lyase and its activating enzyme were acquired laterally from a Firmicute. Mol Biol Evol. 2011;28(7):2087–2099. doi: 10.1093/molbev/msr032. PubMed DOI
Foth BJ, Stimmler LM, Handman E, Crabb BS, Hodder AN, McFadden GI. The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast: the single, plastidic PDH of Plasmodium falciparum. Mol Microbiol. 2004;55(1):39–53. doi: 10.1111/j.1365-2958.2004.04407.x. PubMed DOI
Ctrnacta V, Ault JG, Stejskal F, Keithly JS. Localization of pyruvate: NADP+ oxidoreductase in sporozoites of Cryptosporidium parvum. The J Eukaryot Microbiol. 2006;53:225–31. 10.1111/j.1550-7408.2006.00099.x. PubMed
Liu S, Roellig DM, Guo Y, Li N, Frace MA, Tang K, Zhang L, Feng Y, Xiao L. Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics. 2016;17(1):1006. doi: 10.1186/s12864-016-3343-5. PubMed DOI PMC
Stairs CW, Leger MM, Roger AJ. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos T Roy Soc B. 2015;370(1678):20140326. doi: 10.1098/rstb.2014.0326. PubMed DOI PMC
Muller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol R. 2012;76(2):444–495. doi: 10.1128/MMBR.05024-11. PubMed DOI PMC
Guo F, Zhang H, Payne HR, Zhu G. Differential gene expression and protein localization of Cryptosporidium parvum fatty Acyl-CoA synthetase isoforms. J Eukaryot Microbiol. 2016;63:233–46. 10.1111/jeu.12272. PubMed PMC
Dubois D, Fernandes S, Amiar S, Dass S, Katris NJ, Botté CY, Yamaryo-Botté Y. Toxoplasma gondii acetyl-CoA synthetase is involved in fatty acid elongation (of long fatty acid chains) during tachyzoite life stages. J Lipid Res. 2018;59(6):994–1004. doi: 10.1194/jlr.M082891. PubMed DOI PMC
Field J, Rosenthal B, Samuelson J. Early lateral transfer of genes encoding malic enzyme, acetyl-CoA synthetase and alcohol dehydrogenases from anaerobic prokaryotes to Entamoeba histolytica. Mol Microbiol. 2000;38:446–55. 10.1046/j.1365-2958.2000.02143.x. PubMed
Jerlström-Hultqvist J, Einarsson E, Xu F, Hjort K, Ek B, Steinhauf D, Hultenby K, Bergquist J, Andersson JO, Svärd SG. Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat Commun. 2013;4(1):2493. doi: 10.1038/ncomms3493. PubMed DOI PMC
Nývltová E, Stairs CW, Hrdý I, Rídl J, Mach J, Pačes J, Roger AJ, Tachezy J. Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes. Mol Biol Evol. 2015;32(4):1039–1055. doi: 10.1093/molbev/msu408. PubMed DOI PMC
Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, Silberman JD, Andersson JO, Xu F, Yabuki A, Eme L, Zhang Q, Takishita K, Inagaki Y, Simpson AGB, Hashimoto T, Roger AJ. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol. 2017;1(4):0092. doi: 10.1038/s41559-017-0092. PubMed DOI PMC
Sanchez LB, Müller M. Purification and characterization of the acetate forming enzyme, acetyl-CoA synthetase (ADP-forming) from the amitochondriate protist, Giardia lamblia. FEBS Lett. 1996;378:240–4. 10.1016/0014-5793(95)01463-2. PubMed
Tielens AGM, van Grinsven KWA, Henze K, van Hellemond JJ, Martin W. Acetate formation in the energy metabolism of parasitic helminths and protists. Int J Parasitol. 2010;40(4):387–397. doi: 10.1016/j.ijpara.2009.12.006. PubMed DOI
LaGier MJ, Tachezy J, Stejskal F, Kutisova K, Keithly JS. Mitochondrial-type iron–sulfur cluster biosynthesis genes (IscS and IscU) in the apicomplexan Cryptosporidium parvum. Microbiology. 2003;149(12):3519–3530. doi: 10.1099/mic.0.26365-0. PubMed DOI
Putignani L, Tait A, Smith HV, Horner D, Tovar J, Tetley L, et al. Characterization of a mitochondrion-like organelle in Cryptosporidium parvum. Parasitology. 2004;129(1):1–18. doi: 10.1017/S003118200400527X. PubMed DOI
MacRae JI, Dixon MW, Dearnley MK, Chua HH, Chambers JM, Kenny S, et al. Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum. BMC Biol. 2013;11(1):67. doi: 10.1186/1741-7007-11-67. PubMed DOI PMC
Denton H, Roberts CW, Alexander J, Thong kam-wah, Coombs GH. Enzymes of energy metabolism in the bradyzoites and tachyzoites of Toxoplasma gondii. FEMS Microbiol Lett 1996;137:103–108. 10.1111/j.1574-6968.1996.tb08090.x. PubMed
Sturm A, Mollard V, Cozijnsen A, Goodman CD, McFadden GI. Mitochondrial ATP synthase is dispensable in blood-stage Plasmodium berghei rodent malaria but essential in the mosquito phase. P Natl Acad Sci USA. 2015;112(33):10216–10223. doi: 10.1073/pnas.1423959112. PubMed DOI PMC
Stechmann A, Hamblin K, Pérez-Brocal V, Gaston D, Richmond GS, van der Giezen M, Clark CG, Roger AJ. Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol. 2008;18(8):580–585. doi: 10.1016/j.cub.2008.03.037. PubMed DOI PMC
Makiuchi T, Nozaki T. Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie. 2014;100:3–17. doi: 10.1016/j.biochi.2013.11.018. PubMed DOI
Rotterová J, Salomaki E, Pánek T, Bourland W, Žihala D, Táborský P, Edgcomb VP, Beinart RA, Kolísko M, Čepička I. Genomics of new ciliate lineages provides insight into the evolution of obligate anaerobiosis. Curr Biol. 2020;30(11):2037–2050.e6. doi: 10.1016/j.cub.2020.03.064. PubMed DOI
Gawryluk RMR, Stairs CW. Diversity of electron transport chains in anaerobic protists. BBA-Bioenergetics. 1862;2021:148334. 10.1016/j.bbabio.2020.148334. PubMed
Li M, Yang H, Gu J-D. Phylogenetic diversity and axial distribution of microbes in the intestinal tract of the polychaete Neanthes glandicincta. Microb Ecol. 2009;58(4):892–902. doi: 10.1007/s00248-009-9550-8. PubMed DOI
Boxma B, de Graaf RM, van der Staay GWM, van Alen TA, Ricard G, Gabaldón T, van Hoek AHAM, Moon-van der Staay SY, Koopman WJH, van Hellemond JJ, Tielens AGM, Friedrich T, Veenhuis M, Huynen MA, Hackstein JHP. An anaerobic mitochondrion that produces hydrogen. Nature. 2005;434(7029):74–79. doi: 10.1038/nature03343. PubMed DOI
Gawryluk RMR, Kamikawa R, Stairs CW, Silberman JD, Brown MW, Roger AJ. The earliest stages of mitochondrial adaptation to low oxygen revealed in a novel rhizarian. Curr Biol. 2016;26(20):2729–2738. doi: 10.1016/j.cub.2016.08.025. PubMed DOI
Stairs CW, Eme L, Muñoz-Gómez SA, Cohen A, Dellaire G, Shepherd JN, Fawcett JP, Roger AJ. Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis. eLife. 2018;7 10.7554/eLife.34292. PubMed PMC
Tielens AGM, Rotte C, van Hellemond JJ, Martin W. Mitochondria as we don’t know them. Trends Biochem Sci. 2002;27(11):564–572. doi: 10.1016/S0968-0004(02)02193-X. PubMed DOI
Lonjers ZT, Dickson EL, Chu T-PT, Kreutz JE, Neacsu FA, Anders KR, Shepherd JN. Identification of a new gene required for the biosynthesis of rhodoquinone in Rhodospirillum rubrum. J Bacteriol. 2012;194(5):965–971. doi: 10.1128/JB.06319-11. PubMed DOI PMC
Bernert AC, Jacobs EJ, Reinl SR, Choi CCY, Roberts Buceta PM, Culver JC, et al. Recombinant RquA catalyzes the in vivo conversion of ubiquinone to rhodoquinone in Escherichia coli and Saccharomyces cerevisiae. BBA-Mol Cell Biol L. 1864;2019:1226–34. 10.1016/j.bbalip.2019.05.007. PubMed PMC
Del Borrello S, Lautens M, Dolan K, Tan JH, Davie T, Schertzberg MR, et al. Rhodoquinone biosynthesis in C. elegans requires precursors generated by the kynurenine pathway. eLife. 2019;8 10.7554/eLife.48165. PubMed PMC
Lapointe J, Wang Y, Bigras E, Hekimi S. The submitochondrial distribution of ubiquinone affects respiration in long-lived Mclk1+/− mice. J Cell Biol. 2012;199(2):215–224. doi: 10.1083/jcb.201203090. PubMed DOI PMC
Padilla-López S, Jiménez-Hidalgo M, Martín-Montalvo A, Clarke CF, Navas P, Santos-Ocaña C. Genetic evidence for the requirement of the endocytic pathway in the uptake of coenzyme Q6 in Saccharomyces cerevisiae. BBA-Biomembranes. 1788;2009:1238–48. 10.1016/j.bbamem.2009.03.018. PubMed PMC
Raven JA. Determinants, and implications, of the shape and size of thylakoids and cristae. J Plant Physiol. 2021;257:153342. doi: 10.1016/j.jplph.2020.153342. PubMed DOI
Mühleip A, Kock Flygaard R, Ovciarikova J, Lacombe A, Fernandes P, Sheiner L, Amunts A. ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria. Nat Commun. 2021;12(1):120. doi: 10.1038/s41467-020-20381-z. PubMed DOI PMC
Salunke R, Mourier T, Banerjee M, Pain A, Shanmugam D. Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii. Plos Biol. 2018;16(7):e2006128. doi: 10.1371/journal.pbio.2006128. PubMed DOI PMC
Kuvardina ON, Simdyanov TG. Fine structure of syzygy in Selenidium pennatum (Sporozoa, Archigregarinida) Protistology. 2002;2:169–177.
Valigurová A, Vaškovicová N, Diakin A, Paskerova GG, Simdyanov TG, Kováčiková M. Motility in blastogregarines (Apicomplexa): native and drug-induced organisation of Siedleckia nematoides cytoskeletal elements. Plos One. 2017;12(6):e0179709. doi: 10.1371/journal.pone.0179709. PubMed DOI PMC
Desportes I, Schrével J. Treatise on zoology - anatomy, taxonomy, biology. The gregarines (2 vols): the early branching Apicomplexa. Leiden: Brill; 2013.
Toso MA, Omoto CK. Gregarina niphandrodes may lack both a plastid genome and organelle. J Eukaryot Microbiol. 2007;54:66–72. 10.1111/j.1550-7408.2006.00229.x. PubMed
Tronchin G, Schrevel J. Chronologie des modifications ultrastructurales au cours de la croissance de Gregarina blaberae. J Protozool. 1977;24:67–82. 10.1111/j.1550-7408.1977.tb05282.x. PubMed
Landers SC. The fine structure of the gamont of Pterospora floridiensis (Apicomplexa: Eugregarinida) J Eukaryot Microbiol. 2002;49:220–226. doi: 10.1111/j.1550-7408.2002.tb00526.x. PubMed DOI
Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, van der Giezen M, Hernández M, Müller M, Lucocq JM. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature. 2003;426(6963):172–176. doi: 10.1038/nature01945. PubMed DOI
Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, Soukal P, Hroudová M, Doležal P, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Vlček Č, Hampl V. A eukaryote without a mitochondrial organelle. Curr Biol. 2016;26(10):1274–1284. doi: 10.1016/j.cub.2016.03.053. PubMed DOI
Salomaki ED, Kolisko M. There is treasure everywhere: reductive plastid evolution in Apicomplexa in light of their close relatives. Biomolecules. 2019;9(8):378. doi: 10.3390/biom9080378. PubMed DOI PMC
Stairs CW, Eme L, Brown MW, Mutsaers C, Susko E, Dellaire G, Soanes DM, van der Giezen M, Roger AJ. A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr Biol. 2014;24(11):1176–1186. doi: 10.1016/j.cub.2014.04.033. PubMed DOI
Mi-ichi F, Yousuf MA, Nakada-Tsukui K, Nozaki T. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. P Nat Acad Sci USA. 2009;106(51):21731–21736. doi: 10.1073/pnas.0907106106. PubMed DOI PMC
Maralikova B, Ali V, Nakada-Tsukui K, Nozaki T, van der Giezen M, Henze K, Tovar J. Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria. Cell Microbiol. 2010;12(3):331–342. doi: 10.1111/j.1462-5822.2009.01397.x. PubMed DOI
Nyvltova E, Sutak R, Harant K, Sedinova M, Hrdy I, Paces J, Vlcek C, Tachezy J. NIF-type iron-sulfur cluster assembly system is duplicated and distributed in the mitochondria and cytosol of Mastigamoeba balamuthi. P Nat Acad Sci USA. 2013;110(18):7371–7376. doi: 10.1073/pnas.1219590110. PubMed DOI PMC
Babady NE, Pang Y-P, Elpeleg O, Isaya G. Cryptic proteolytic activity of dihydrolipoamide dehydrogenase. P Nat Acad Sci USA. 2007;104(15):6158–6163. doi: 10.1073/pnas.0610618104. PubMed DOI PMC
Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, Tanaka M, Satoh N, Bachtrog D, Wilson ACC, von Dohlen CD, Fukatsu T, McCutcheon JP. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell. 2013;153(7):1567–1578. doi: 10.1016/j.cell.2013.05.040. PubMed DOI
Leger MM, Eme L, Hug LA, Roger AJ. Novel hydrogenosomes in the microaerophilic Jakobid Stygiella incarcerata. Mol Biol Evol. 2016;33(9):2318–36. 10.1111/j.1550-7408.2002.tb00526.x. PubMed PMC
Van Etten J, Bhattacharya D. Horizontal gene transfer in eukaryotes: not if, but how much? Trends Genet. 2020;36(12):915–925. doi: 10.1016/j.tig.2020.08.006. PubMed DOI
Nosenko T, Bhattacharya D. Horizontal gene transfer in chromalveolates. BMC Evol Biol. 2007;7(1):173. doi: 10.1186/1471-2148-7-173. PubMed DOI PMC
van der Rest ME, Frank C, Molenaar D. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli. J Bacteriol. 2000;182(24):6892–6899. doi: 10.1128/JB.182.24.6892-6899.2000. PubMed DOI PMC
Molenaar D, van der Rest ME, Drysch A, Yücel R. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum. J Bacteriol. 2000;182(24):6884–6891. doi: 10.1128/JB.182.24.6884-6891.2000. PubMed DOI PMC
Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, et al. Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. J Eukaryot Microbiol. 2019;66:4–119. PubMed PMC
Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W. Pyruvate:NADP oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol. 2001;18(5):710–720. doi: 10.1093/oxfordjournals.molbev.a003853. PubMed DOI
Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014;9(1):171–181. doi: 10.1038/nprot.2014.006. PubMed DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Aurrecoechea C, Barreto A, Basenko EY, Brestelli J, Brunk BP, Cade S, Crouch K, Doherty R, Falke D, Fischer S, Gajria B, Harb OS, Heiges M, Hertz-Fowler C, Hu S, Iodice J, Kissinger JC, Lawrence C, Li W, Pinney DF, Pulman JA, Roos DS, Shanmugasundram A, Silva-Franco F, Steinbiss S, Stoeckert CJ, Jr, Spruill D, Wang H, Warrenfeltz S, Zheng J. EuPathDB: the eukaryotic pathogen genomics database resource. Nucleic Acids Res. 2017;45(D1):D581–D591. doi: 10.1093/nar/gkw1105. PubMed DOI PMC
Multiple independent origins of apicomplexan-like parasites. NCBI Bioproject PRJNA539986. 2019. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA539986/. Accessed 3 Jan 2020.
Janouškovec J, Paskerova GG, Miroliubova TS, Mikhailov KV, Birley T, Aleoshin VV, et al. Transcriptomes of apicomplexan parasites. NCBI Bioproject PRJNA557242. 2019. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA557242/. Accessed 3 Jan 2020.
Sequencing of a metagenome and metatranscriptome from a Nephromyces-enriched renal sac of Molgula occidentalis. NCBI Bioproject PRJNA524113. 2019. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA524113/. . Accessed 3 Jan 2020.
Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, Beszteri B, Bidle KD, Cameron CT, Campbell L, Caron DA, Cattolico RA, Collier JL, Coyne K, Davy SK, Deschamps P, Dyhrman ST, Edvardsen B, Gates RD, Gobler CJ, Greenwood SJ, Guida SM, Jacobi JL, Jakobsen KS, James ER, Jenkins B, John U, Johnson MD, Juhl AR, Kamp A, Katz LA, Kiene R, Kudryavtsev A, Leander BS, Lin S, Lovejoy C, Lynn D, Marchetti A, McManus G, Nedelcu AM, Menden-Deuer S, Miceli C, Mock T, Montresor M, Moran MA, Murray S, Nadathur G, Nagai S, Ngam PB, Palenik B, Pawlowski J, Petroni G, Piganeau G, Posewitz MC, Rengefors K, Romano G, Rumpho ME, Rynearson T, Schilling KB, Schroeder DC, Simpson AGB, Slamovits CH, Smith DR, Smith GJ, Smith SR, Sosik HM, Stief P, Theriot E, Twary SN, Umale PE, Vaulot D, Wawrik B, Wheeler GL, Wilson WH, Xu Y, Zingone A, Worden AZ. The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. Plos Biol. 2014;12(6):e1001889. doi: 10.1371/journal.pbio.1001889. PubMed DOI PMC
Nenarokov S, Kolisko M. Winston Cleaner. github.com/Seraff/WinstonCleaner. Accessed 8 Aug 2019.
Salomaki ED, Terpis KX, Rueckert S, Kotyk M, Varadínová ZK, Čepička I, et al. Phylogenomic dataset files for: Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans. figshare. 2021. doi: 10.6084/m9.figshare.13344227.v1. PubMed PMC
Whelan S, Irisarri I, Burki F. PREQUAL: detecting non-homologous characters in sets of unaligned homologous sequences. Bioinformatics. 2018;34(22):3929–3930. doi: 10.1093/bioinformatics/bty448. PubMed DOI
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Ali RH, Bogusz M, Whelan S. Identifying clusters of high confidence homologies in multiple sequence alignments. Mol Biol Evol. 2019;36(10):2340–2351. doi: 10.1093/molbev/msz142. PubMed DOI PMC
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10(1):210. doi: 10.1186/1471-2148-10-210. PubMed DOI PMC
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2016;34:772–3. 10.1093/molbev/msw260. PubMed
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74. 10.1093/molbev/msu300. PubMed PMC
Lartillot N, Rodrigue N, Stubbs D, Richer J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol 2013;62:611–615, 4, doi: 10.1093/sysbio/syt022. PubMed
Salomaki ED, Terpis KX, Rueckert S, Kotyk M, Varadínová ZK, Čepička I, et al. Phylogenomic log files for: Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans. figshare. 2021. doi: 10.6084/m9.figshare.13927292.v2. PubMed PMC
Shen X-X, Li Y, Hittinger CT, Chen X, Rokas A. An investigation of irreproducibility in maximum likelihood phylogenetic inference. Nat Commun. 2020;11(1):6096. doi: 10.1038/s41467-020-20005-6. PubMed DOI PMC
Tice AK, Žihala D, Pánek T, Jones R, Salomaki ED, Nenarokov S, et al. PhyloFisher: a phylogenomic package for resolving deep eukaryotic relationships https://github.com/TheBrownLab/PhyloFisher. Accessed 15 Sept 2019. PubMed PMC
Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst Biol. 2002;51(3):492–508. doi: 10.1080/10635150290069913. PubMed DOI
Smith DGS, Gawryluk RMR, Spencer DF, Pearlman RE, Siu KWM, Gray MW. Exploring the mitochondrial proteome of the ciliate protozoon Tetrahymena thermophila: direct analysis by tandem mass spectrometry. J Mol Biol. 2007;374(3):837–863. doi: 10.1016/j.jmb.2007.09.051. PubMed DOI
Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, et al. Data from: Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Dryad. 2018; 10.5061/dryad.34qd7. PubMed PMC
Seidi A, Muellner-Wong LS, Rajendran E, Tjhin ET, Dagley LF, Aw VY, et al. Elucidating the mitochondrial proteome of Toxoplasma gondii reveals the presence of a divergent cytochrome c oxidase. eLife. 2018;7 10.7554/eLife.38131. PubMed PMC
Rotterová J, Salomaki ED, Pánek T, Bourland W, Žihala D, Táborský P, et al. Genomics of new ciliate lineages provides insight into the evolution of obligate anaerobiosis - single gene datasets for phylogenomic analysis of anaerobic ciliates (SAL, Ciliophora), protein datasets for mitochondrial pathways prediction, and mitochondrial genomes. Dryad. 2020; 10.5061/dryad.vx0k6djnm.
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–1659. doi: 10.1093/bioinformatics/btl158. PubMed DOI
Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, Nielsen H. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2019;2(5):e201900429. doi: 10.26508/lsa.201900429. PubMed DOI PMC
Almagro Armenteros JJ, Sønderby CK, Sønderby SK, Nielsen H, Winther O. DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics. 2017;33(21):3387–3395. doi: 10.1093/bioinformatics/btx431. PubMed DOI
Salomaki ED, Terpis KX, Rueckert S, Kotyk M, Varadínová ZK, Čepička I, et al. Mitochondrial gene dataset files for: Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans. figshare. 2021. doi: 10.6084/m9.figshare.13928252.v1. PubMed PMC
Reduced mitochondria provide an essential function for the cytosolic methionine cycle
PhyloFisher: A phylogenomic package for resolving eukaryotic relationships
figshare
10.6084/m9.figshare.13350524.v1, 10.6084/m9.figshare.13344884.v1, 10.6084/m9.figshare.13344227.v1, 0.6084/m9.figshare.13927292.v2, 10.6084/m9.figshare.13928252.v1