Nutrient Acquisition and Attachment Strategies in Basal Lineages: A Tough Nut to Crack in the Evolutionary Puzzle of Apicomplexa
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
GPP506/10/P372
Grantová Agentura České Republiky
GBP505/12/G112
Grantová Agentura České Republiky
MEB021127
Ministry of Education, Youth and Sports of the Czech Republic
7AMB14FR013
Ministry of Education, Youth and Sports of the Czech Republic
ECO-NET project 2131QM
French Ministry for Europe and Foreign Affairs
LabEx ANR-10-LABX-0003-BCDiv
Agence Nationale de la Recherche
ANR-11-IDEX-0004-02
Investissements d'avenir
ATM-Microorganismes, ATM-Génomique et Collections, ATM-Emergence, AVIV department
Interdisciplinary programmes of the MNHN
PubMed
34361866
PubMed Central
PMC8303630
DOI
10.3390/microorganisms9071430
PII: microorganisms9071430
Knihovny.cz E-zdroje
- Klíčová slova
- apical complex, attachment, epimerite, feeder organelle, mucron, myzocytosis, nutrition, parasitophorous vacuole/sac, pores, trophozoite,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Apicomplexa are unicellular eukaryotes that parasitise a wide spectrum of invertebrates and vertebrates, including humans. In their hosts, they occupy a variety of niches, from extracellular cavities (intestine, coelom) to epicellular and intracellular locations, depending on the species and/or developmental stages. During their evolution, Apicomplexa thus developed an exceptionally wide range of unique features to reach these diversified parasitic niches and to survive there, at least long enough to ensure their own transmission or that of their progeny. This review summarises the current state of knowledge on the attachment/invasive and nutrient uptake strategies displayed by apicomplexan parasites, focusing on trophozoite stages of their so far poorly studied basal representatives, which mostly parasitise invertebrate hosts. We describe their most important morphofunctional features, and where applicable, discuss existing major similarities and/or differences in the corresponding mechanisms, incomparably better described at the molecular level in the more advanced Apicomplexa species, of medical and veterinary significance, which mainly occupy intracellular niches in vertebrate hosts.
Zobrazit více v PubMed
Adl S.M., Bass D., Lane C.E., Lukes J., Schoch C.L., Smirnov A., Agatha S., Berney C., Brown M.W., Burki F., et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 2019;66:4–119. doi: 10.1111/jeu.12691. PubMed DOI PMC
Cox F.E.G. The evolutionary expansion of the Sporozoa. Int. J. Parasitol. 1994;24:1301–1316. doi: 10.1016/0020-7519(94)90197-X. PubMed DOI
Levine N.D., Corliss J.O., Cox F.E.G., Deroux G., Grain J., Honigberg B.M., Leedale G.F., Loeblich A.R., Lom I.J., Lynn D., et al. A newly revised classification of the Protozoa. J. Protozool. 1980;27:37–58. doi: 10.1111/j.1550-7408.1980.tb04228.x. PubMed DOI
Janouškovec J., Paskerova G.G., Miroliubova T.S., Mikhailov K.V., Birley T., Aleoshin V.V., Simdyanov T.G. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. Elife. 2019;8:e49662. doi: 10.7554/eLife.49662. PubMed DOI PMC
Mathur V., Kolísko M., Hehenberger E., Irwin N.A.T., Leander B.S., Kristmundsson A., Freeman M.A., Keeling P.J. Multiple independent origins of apicomplexan-like parasites. Curr. Biol. 2019;29:2936–2941. doi: 10.1016/j.cub.2019.07.019. PubMed DOI
Janouškovec J., Tikhonenkov D.V., Burki F., Howe A.T., Kolísko M., Mylnikov A.P., Keeling P.J. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc. Natl. Acad. Sci. USA. 2015;112:10200–10207. doi: 10.1073/pnas.1423790112. PubMed DOI PMC
Rueckert S., Betts E.L., Tsaousis A.D. The symbiotic spectrum: Where do the gregarines fit? Trends Parasitol. 2019;35:687–694. doi: 10.1016/j.pt.2019.06.013. PubMed DOI
Carreno R.A., Martin D.S., Barta J.R. Cryptosporidium is more closely related to the gregarines than to coccidia as shown by phylogenetic analysis of apicomplexan parasites inferred using small-subunit ribosomal RNA gene sequences. Parasitol. Res. 1999;85:899–904. doi: 10.1007/s004360050655. PubMed DOI
Barta J.R., Thompson R.C.A. What is Cryptosporidium? Reappraising its biology and phylogenetic affinities. Trends Parasitol. 2006;22:463–468. doi: 10.1016/j.pt.2006.08.001. PubMed DOI
Leander B.S., Lloyd S.A.J., Marshall W., Landers S.C. Phylogeny of marine gregarines (Apicomplexa)-Pterospora, Lithocystis and Lankesteria-and the origin(s) of coelomic parasitism. Protist. 2006;157:45–60. doi: 10.1016/j.protis.2005.10.002. PubMed DOI
Valigurová A., Hofmannová L., Koudela B., Vávra J. An ultrastructural comparison of the attachment sites between Gregarina steini and Cryptosporidium muris. J. Eukaryot. Microbiol. 2007;54:495–510. doi: 10.1111/j.1550-7408.2007.00291.x. PubMed DOI
Valigurová A. Sophisticated adaptations of Gregarina cuneata (Apicomplexa) feeding stages for epicellular parasitism. PLoS ONE. 2012;7:e42606. doi: 10.1371/journal.pone.0042606. PubMed DOI PMC
Diakin A., Paskerova G.G., Simdyanov T.G., Aleoshin V.V., Valigurová A. Morphology and molecular phylogeny of coelomic gregarines (Apicomplexa) with different types of motility: Urospora ovalis and U. travisiae from the polychaete Travisia forbesii. Protist. 2016;167:279–301. doi: 10.1016/j.protis.2016.05.001. PubMed DOI
Paskerova G.G., Miroliubova T.S., Diakin A., Kováčiková M., Valigurová A., Guillou L., Aleoshin V.V., Simdyanov T.G. Fine structure and molecular phylogenetic position of two marine gregarines, Selenidium pygospionis sp. n. and S. pherusae sp. n., with notes on the phylogeny of Archigregarinida (Apicomplexa) Protist. 2018;169:826–852. doi: 10.1016/j.protis.2018.06.004. PubMed DOI
Valigurová A., Paskerova G.G., Diakin A., Kováčiková M., Simdyanov T.G. Protococcidian Eleutheroschizon duboscqi, an unusual apicomplexan interconnecting gregarines and cryptosporidia. PLoS ONE. 2015;10:e0125063. doi: 10.1371/journal.pone.0125063. PubMed DOI PMC
Schrével J., Valigurová A., Prensier G., Chambouvet A., Florent I., Guillou L. Ultrastructure of Selenidium pendula, the type species of archigregarines, and phylogenetic relations to other marine Apicomplexa. Protist. 2016;167:339–368. doi: 10.1016/j.protis.2016.06.001. PubMed DOI
Simdyanov T.G., Paskerova G.G., Valigurová A., Diakin A., Kováčiková M., Schrével J., Guillou L., Dobrovolskij A.A., Aleoshin V.V. First ultrastructural and molecular phylogenetic evidence from the blastogregarines, an early branching lineage of plesiomorphic Apicomplexa. Protist. 2018;169:697–726. doi: 10.1016/j.protis.2018.04.006. PubMed DOI
Boisard J., Florent I. Why the –omic future of Apicomplexa should include gregarines. Biol. Cell. 2020;112:173–185. doi: 10.1111/boc.202000006. PubMed DOI
Portman N., Šlapeta J. The flagellar contribution to the apical complex: A new tool for the eukaryotic Swiss Army knife? Trends Parasitol. 2014;30:58–64. doi: 10.1016/j.pt.2013.12.006. PubMed DOI
Graindorge A., Frénal K., Jacot D., Salamun J., Marq J.B., Soldati-Favre D. The conoid associated motor MyoH is indispensable for Toxoplasma gondii entry and exit from host cells. PLoS Pathog. 2016;12:e1005388. doi: 10.1371/journal.ppat.1005388. PubMed DOI PMC
Tardieux I., Baum J. Reassessing the mechanics of parasite motility and host-cell invasion. J. Cell Biol. 2016;214:507–515. doi: 10.1083/jcb.201605100. PubMed DOI PMC
Gubbels M.J., Duraisingh M.T. Evolution of apicomplexan secretory organelles. Int. J. Parasitol. 2012;42:1071–1081. doi: 10.1016/j.ijpara.2012.09.009. PubMed DOI PMC
Swapna L.S., Parkinson J. Genomics of apicomplexan parasites. Crit. Rev. Biochem. Mol. Biol. 2017;52:254–273. doi: 10.1080/10409238.2017.1290043. PubMed DOI PMC
Pavlou G., Biesaga M., Touquet B., Lagal V., Balland M., Dufour A., Hakimi M.A., Tardieux I. Toxoplasma parasite twisting motion mechanically induces host cell membrane fission to complete invasion within a protective vacuole. Cell Host Microbe. 2018;24:81–96. doi: 10.1016/j.chom.2018.06.003. PubMed DOI
Hakimi M.A., Olias P., Sibley L.D. Toxoplasma effectors targeting host signaling and transcription. Clin. Microbiol. Rev. 2017;30:615–645. doi: 10.1128/CMR.00005-17. PubMed DOI PMC
Boucher L.E., Bosch J. The apicomplexan glideosome and adhesins—Structures and function. J. Struct. Biol. 2015;190:93–114. doi: 10.1016/j.jsb.2015.02.008. PubMed DOI PMC
Templeton T.J., Pain A. Diversity of extracellular proteins during the transition from the ‘proto-apicomplexan’ alveolates to the apicomplexan obligate parasites. Parasitology. 2016;143:1–17. doi: 10.1017/S0031182015001213. PubMed DOI
Bartošová-Sojková P., Oppenheim R.D., Soldati-Favre D., Lukeš J. Epicellular apicomplexans: Parasites “on the way in”. PLoS Pathog. 2015;11:e1005080. doi: 10.1371/journal.ppat.1005080. PubMed DOI PMC
Dogga S.K., Bartošová-Sojková P., Lukeš J., Soldati-Favre D. Phylogeny, morphology, and metabolic and invasive capabilities of epicellular fish coccidium Goussia janae. Protist. 2015;166:659–676. doi: 10.1016/j.protis.2015.09.003. PubMed DOI
Simdyanov T.G., Kuvardina O.N. Fine structure and putative feeding mechanism of the archigregarine Selenidium orientale (Apicomplexa: Gregarinomorpha) Eur. J. Protistol. 2007;43:17–25. doi: 10.1016/j.ejop.2006.09.003. PubMed DOI
Cavalier-Smith T., Chao E.E. Protalveolate phylogeny and systematics and the origins of Sporozoa and dinoflagellates (phylum Myzozoa nom. nov.) Eur. J. Protistol. 2004;40:185–212. doi: 10.1016/j.ejop.2004.01.002. DOI
Leander B.S. Marine gregarines: Evolutionary prelude to the apicomplexan radiation? Trends Parasitol. 2008;24:60–67. doi: 10.1016/j.pt.2007.11.005. PubMed DOI
Dos Santos Pacheco N., Tosetti N., Koreny L., Waller R.F., Soldati-Favre D. Evolution, composition, assembly, and function of the conoid in Apicomplexa. Trends Parasitol. 2020;36:688–704. doi: 10.1016/j.pt.2020.05.001. PubMed DOI
Leander B.S., Keeling P.J. Morphostasis in alveolate evolution. Trends Ecol. Evol. 2003;18:395–402. doi: 10.1016/S0169-5347(03)00152-6. DOI
Okamoto N., Keeling P.J. The 3D structure of the apical complex and association with the flagellar apparatus revealed by serial TEM tomography in Psammosa pacifica, a distant relative of the Apicomplexa. PLoS ONE. 2014;9:e84653. doi: 10.1371/journal.pone.0084653. PubMed DOI PMC
Füssy Z., Oborník M. Reductive Evolution of apicomplexan parasites from phototrophic ancestors. In: Pontarotti P., editor. Evolutionary Biology: Self/Nonself Evolution, Species and Complex Traits Evolution, Methods and Concepts. Springer International Publishing; Cham, Switzerland: 2017. pp. 217–236.
Salomaki E.D., Terpis K.X., Rueckert S., Kotyk M., Varadínová Z.K., Čepička I., Lane C.E., Kolisko M. Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans. BMC Biol. 2021;19:77. doi: 10.1186/s12915-021-01007-2. PubMed DOI PMC
Jackson A.P., Otto T.D., Aslett M., Armstrong S.D., Bringaud F., Schlacht A., Hartley C., Sanders M., Wastling J.M., Dacks J.B., et al. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr. Biol. 2016;26:161–172. doi: 10.1016/j.cub.2015.11.055. PubMed DOI PMC
Leander B.S., Esson H.J., Breglia S.A. Macroevolution of complex cytoskeletal systems in euglenids. BioEssays. 2007;29:987–1000. doi: 10.1002/bies.20645. PubMed DOI
Burns J.A., Pittis A.A., Kim E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat. Ecol. Evol. 2018;2:697–704. doi: 10.1038/s41559-018-0477-7. PubMed DOI
Dyson J., Grahame J., Evennett P.J. The mucron of the gregarine Digyalum oweni (Protozoa: Apicomplexa), parasitic in Littorina species (Mollusca: Gastropoda) J. Nat. Hist. 1993;27:557–564. doi: 10.1080/00222939300770311. DOI
Dyson J., Grahame J., Evennett P.J. The apical complex of the gregarine Digyalum oweni (Protozoa: Apicomplexa) J. Nat. Hist. 1994;28:1–7. doi: 10.1080/00222939400770011. DOI
Simdyanov T.G., Guillou L., Diakin A.Y., Mikhailov K.V., Schrével J., Aleoshin V.V. A new view on the morphology and phylogeny of eugregarines suggested by the evidence from the gregarine Ancora sagittata (Leuckart, 1860) Labbé, 1899 (Apicomplexa: Eugregarinida) PeerJ. 2017;5:e3354. doi: 10.7717/peerj.3354. PubMed DOI PMC
Valigurová A., Vaškovicová N., Diakin A., Paskerova G.G., Simdyanov T.G., Kováčiková M. Motility in blastogregarines (Apicomplexa): Native and drug-induced organisation of Siedleckia nematoides cytoskeletal elements. PLoS ONE. 2017;12:e0179709. doi: 10.1371/journal.pone.0179709. PubMed DOI PMC
Leander B.S. Ultrastructure of the archigregarine Selenidium vivax (Apicomplexa)—A dynamic parasite of sipunculid worms (host: Phascolosoma agassizii) Mar. Biol. Res. 2006;2:178–190. doi: 10.1080/17451000600724395. DOI
Schrével J., Vivier E. Étude de l’ultrastructure et du role de la région antérieure (mucron et épimérite) de grégarines parasites d’annélides polychètes. Protistologica. 1966;2:17–28.
Desportes I., Schrével J., editors. Treatise on Zoology-Anatomy, Taxonomy, Biology. Brill; Leiden, The Netherlands: 2013. The gregarines: The early branching Apicomplexa (2 vols) p. 781.
Kováčiková M., Simdyanov T.G., Diakin A., Valigurová A. Structures related to attachment and motility in the marine eugregarine Cephaloidophora cf. communis (Apicomplexa) Eur. J. Protistol. 2017;59:1–13. doi: 10.1016/j.ejop.2017.02.006. PubMed DOI
MacMillan W.G. Gregarine attachment organelles-structure and permeability of an interspecific cell junction. Parasitology. 1973;66:207–214. doi: 10.1017/S0031182000044553. DOI
Valigurová A., Koudela B. Fine structure of trophozoites of the gregarine Leidyana ephestiae (Apicomplexa: Eugregarinida) parasitic in Ephestia kuehniella larvae (Lepidoptera) Eur. J. Protistol. 2005;41:209–218. doi: 10.1016/j.ejop.2005.05.005. DOI
Valigurová A., Koudela B. Morphological analysis of the cellular, interactions between the eugregarine Gregarina garnhami (Apicomplexa) and the epithelium of its host, the desert locust Schistocerca gregaria. Eur. J. Protistol. 2008;44:197–207. doi: 10.1016/j.ejop.2007.11.006. PubMed DOI
Valigurová A., Michalková V., Koudela B. Eugregarine trophozoite detachment from the host epithelium via epimerite retraction: Fiction or fact? Int. J. Parasitol. 2009;39:1235–1242. doi: 10.1016/j.ijpara.2009.04.009. PubMed DOI
Cook T.J.P., Janovy J., Clopton R.E. Epimerite-host epithelium relationships among eugregarines parasitizing the damselflies Enallagma civile and Ischnura verticalis. J. Parasitol. 2001;87:988–996. doi: 10.2307/3285220. PubMed DOI
Fowell R.R. The fibrillar structures of protozoa, with special reference to schizogregarines of the genus Selenidium. J. R. Micr. Soc. 1936;56:12–28. doi: 10.1111/j.1365-2818.1936.tb01499.x. DOI
Schrével J. Contribution a l’étude des Selenidiidae parasites d’annélides polychètes. II. Ultrastructure de quelques trophozoïtes. Protistologica. 1971;7:101–130.
Schrével J. L’ultrastructure de la région antérieure de la grégarine Selenidium et son intérêt pour l’étude de la nutrition chez les sporozoaires. J. Microsc. 1968;7:391–410.
Dyson J., Evennett P.J., Grahame J. Histochemical studies of some hydrolytic enzymes in the gregarine Digyalum oweni (Protozoa: Apicomplexa) Arch. Protistenk. 1995;145:94–99. doi: 10.1016/S0003-9365(11)80302-7. DOI
Roberts J.B. Ph.D. Thesis. University of Wales; Bangor, UK: 1979. Studies on Some Gregarines from Polychaete Worms. Unpublished.
Desportes I. Ultrastructure et développement des grégarines du genre Stylocephalus. Ann. Sci. Nat. 1969;12:31–96.
Sheffield H.G., Garnham P.C., Shiroishi T. The fine structure of the sporozoite of Lankesteria culicis. J. Protozool. 1971;18:98–105. doi: 10.1111/j.1550-7408.1971.tb03289.x. PubMed DOI
Hildebrand H.F. Electron-microscopic investigation on evolution stages of trophozoite of Didymophyes gigantea (Sporozoa, Gregarinida).1. Fine structure of protomerite and epimerite and relationship between host and parasite. Z. Parasitenkd. 1976;49:193–215. doi: 10.1007/BF00380590. PubMed DOI
Schrével J., Philippe M. The gregarines. In: Kreier J.P., editor. Parasitic Protozoa. 2nd ed. Volume 4. Academic Press; New York, NY, USA: 1993. pp. 133–245.
Weisser J. Nemoci Hmyzu. Nakladatelství Československé akademie věd; Prague, Czechoslovakia: 1966. p. 554.
Tronchin G., Schrével J. Chronologie des modifications ultrastructurales au cours de la croissance de Gregarina blaberae. J. Protozool. 1977;24:67–82. doi: 10.1111/j.1550-7408.1977.tb05282.x. PubMed DOI
Schrével J. Observations biologiques et ultrastructurales sur les Selenidiidae et leurs consequences sur la systematique des Gregarinomorphes. J. Protozool. 1971;18:448–470. doi: 10.1111/j.1550-7408.1971.tb03355.x. DOI
Lucarotti C.J. Cytology of Leidyana canadensis (Apicomplexa: Eugregarinida) in Lambdina fiscellaria fiscellaria larvae (Lepidoptera: Geometridae) J. Invertebr. Pathol. 2000;75:117–125. doi: 10.1006/jipa.1999.4911. PubMed DOI
Devauchelle G. Étude ultrastructurale du développement des grégarines du Tenebrio molitor L. Protistologica. 1968;4:313–332.
Ghazali M., Philippe M., Deguercy A., Gounon P., Gallo J.M., Schrével J. Actin and spectrin-like (Mr = 260-240 000) proteins in gregarines. Biol. Cell. 1989;67:173–184.
Schrével J., Vivier E. Etude au microscope électronique de la région antérieure des Grégarines: Le mucron de Lecudina pellucida (Koll.) Mingazzini et l’épimérite de Sycia inopinata Léger. Protistologica. 1966;2:17–28.
Baudoin J. Sur l’ultrastructure de la région antérieure de la grégarine Ancyrophora puytoraci. Protistologica. 1969;5:431–439.
Ormières R. Pyxinia firmus (Leger, 1892), Eugregarine parasite of the Coleoptera Dermestes frischi Kugel. An ultrastructural study. Z. Parasitenkd. 1977;53:13–22. doi: 10.1007/BF00383110. DOI
Desai R.N. Cytochemical demonstration of some hydrolytic enzymes in some gregarines (Protozoa: Sporozoa). I. The nonspecific acid and alkaline phosphatases. Acta Protozool. 1985;24:319–326.
Desai R.N. Cytochemical studies of some hydrolytic enzymes in gregarines. II: β-glucuronidase activity in different stages of the gregarine Stylocephalus conoides Devdhar, 1962 (Protozoa: Sporozoa) Acta Protozool. 1986;25:71–74.
MacMillan W.G. Ph.D. Thesis. University of Glasgow; Glasgow, UK: 1970. Some Aspects of the Biology of Nematocystis magna Schmidt. Unpublished.
Desai R.N., Nadkarni V.B. Studies on steroidogenic potential of the gregarine Stylocephalus conoides Devdhar, 1962 (Protozoa: Sporozoa). A cytochemical study. Arch. Protistenkd. 1987;133:301–308. doi: 10.1016/S0003-9365(87)80063-5. DOI
Ghazali M., Schrével J. Myosin-like protein (M(r)175,000) in Gregarina blaberae. J. Eukaryot. Microbiol. 1993;40:345–354. doi: 10.1111/j.1550-7408.1993.tb04927.x. PubMed DOI
Harry O.G. Gregarines: Their effect on the growth of the desert locust (Schistocerca gregaria) Nature. 1970;225:964–966. doi: 10.1038/225964a0. PubMed DOI
Heintzelman M.B. Actin and myosin in Gregarina polymorpha. Cell Motil. Cytoskeleton. 2004;58:83–95. doi: 10.1002/cm.10178. PubMed DOI
Valigurová A., Vaškovicová N., Musilová N., Schrével J. The enigma of eugregarine epicytic folds: Where gliding motility originates? Front. Zool. 2013;10:57. doi: 10.1186/1742-9994-10-57. PubMed DOI PMC
Vávra J. Lankesteria barretti n. sp. (Eugregarinida, Diplocystidae), a parasite of the mosquito Aedes triseriatus (Say) and a review of the genus Lankesteria Mingazzini. J. Protozool. 1969;16:546–570. doi: 10.1111/j.1550-7408.1969.tb02314.x. PubMed DOI
Walsh R.D., Jr., Callaway C.S. The fine structure of the gregarine Lankesteria culicis parasitic in the yellow fever mosquito Aedes aegypti. J. Protozool. 1969;16:536–545. doi: 10.1111/j.1550-7408.1969.tb02313.x. PubMed DOI
Tronchin G., Philippe M., Mocquard J.P., Schrével J. Cycle biologique de Gregarina blaberae: Description, chronologie, étude de la croissance, influence du cycle de l’hôte, Blaberus craniifer. Protistologica. 1986;22:127–142.
Martin R.E. The transportome of the malaria parasite. Biol. Rev. 2020;95:305–332. doi: 10.1111/brv.12565. PubMed DOI
Spielmann T., Gras S., Sabitzki R., Meissner M. Endocytosis in Plasmodium and Toxoplasma parasites. Trends Parasitol. 2020;36:520–532. doi: 10.1016/j.pt.2020.03.010. PubMed DOI
Prensier G., Dubremetz J.F., Schrével J. The unique adaptation of the life cycle of the coelomic gregarine Diplauxis hatti to its host Perinereis cultrifera (Annelida, Polychaeta): An experimental and ultrastructural study. J. Eukaryot. Microbiol. 2008;55:541–553. doi: 10.1111/j.1550-7408.2008.00361.x. PubMed DOI
Vivier E., Devauchelle G., Petitprez A., Porchet-Hennere E., Prensier G., Schrével J., Vinckier D. Observations on comparative cytology in sporozoans. Part 1. The sperficial structures in vegetative forms. Protistologica. 1970;6:127–150.
Schrével J. Polysaccharides of cell-surface of gregarines (Protozoa Parasites). 1. Ultrastructure and cytochemistry. J. Microsc. 1972;15:21–40.
Warner F.D. The fine structure of Rhynchocystis pilosa (Sporozoa, Eugregarinida) J. Protozool. 1968;15:59–73. doi: 10.1111/j.1550-7408.1968.tb02090.x. DOI
Kováčiková M., Vaškovicová N., Nebesářová J., Valigurová A. Effect of jasplakinolide and cytochalasin D on cortical elements involved in the gliding motility of the eugregarine Gregarina garnhami (Apicomplexa) Eur. J. Protistol. 2018;66:97–114. doi: 10.1016/j.ejop.2018.08.006. PubMed DOI
Schrével J., Caigneaux E., Gros D., Philippe M. The 3 cortical membranes of the gregarines. 1. Ultrastructural organization of Gregarina blaberae. J. Cell Sci. 1983;61:151–174. doi: 10.1242/jcs.61.1.151. PubMed DOI
Walker M.H., Lane N.J., Lee W.M. Freeze-fracture studies on the pellicle of the eugregarine, Gregarina garnhami (Eugregarinida, Protozoa) J. Ultrastruct. Res. 1984;88:66–76. doi: 10.1016/S0022-5320(84)90182-5. DOI
Kováčiková M., Paskerova G.G., Diakin A., Simdyanov T.G., Vaškovicová N., Valigurová A. Motility and cytoskeletal organisation in the archigregarine Selenidium pygospionis (Apicomplexa): Observations on native and experimentally affected parasites. Parasitol. Res. 2019;118:2651–2667. doi: 10.1007/s00436-019-06381-z. PubMed DOI
Leander B.S. Molecular phylogeny and ultrastructure of Selenidium serpulae (Apicomplexa, Archigregarinia) from the calcareous tubeworm Serpula vermicularis (Annelida, Polychaeta, Sabellida) Zool. Scr. 2007;36:213–227. doi: 10.1111/j.1463-6409.2007.00272.x. DOI
Valigurová A., Jirků M., Koudela B., Gelnar M., Modrý D., Šlapeta J. Cryptosporidia: Epicellular parasites embraced by the host cell membrane. Int. J. Parasitol. 2008;38:913–922. doi: 10.1016/j.ijpara.2007.11.003. PubMed DOI
Melicherová J., Hofmannová L., Valigurová A. Response of cell lines to actual and simulated inoculation with Cryptosporidium proliferans. Eur. J. Protistol. 2018;62:101–121. doi: 10.1016/j.ejop.2017.12.003. PubMed DOI
Butaeva F., Paskerova G., Entzeroth R. Ditrypanocystis sp. (Apicomplexa, Gregarinia, Selenidiidae): The mode of survival in the gut of Enchytraeus albidus (Annelida, Oligochaeta, Enchytraeidae) is close to that of the coccidian genus Cryptosporidium. Tsitologiia. 2006;48:695–704. PubMed
Ryan U., Paparini A., Monis P., Hijjawi N. It’s official-Cryptosporidium is a gregarine: What are the implications for the water industry? Water Res. 2016;105:305–313. doi: 10.1016/j.watres.2016.09.013. PubMed DOI
Clode P.L., Koh W.H., Thompson R.C.A. Life without a host cell: What is Cryptosporidium? Trends Parasitol. 2015;31:614–624. doi: 10.1016/j.pt.2015.08.005. PubMed DOI
Borowski H., Thompson R.C., Armstrong T., Clode P.L. Morphological characterization of Cryptosporidium parvum life-cycle stages in an in vitro model system. Parasitology. 2010;137:13–26. doi: 10.1017/S0031182009990837. PubMed DOI
Cavalier-Smith T. Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa. Eur. J. Protistol. 2014;50:472–495. doi: 10.1016/j.ejop.2014.07.002. PubMed DOI
Melicherová J., Ilgová J., Kváč M., Sak B., Koudela B., Valigurová A. Life cycle of Cryptosporidium muris in two rodents with different responses to parasitization. Parasitology. 2014;141:287–303. doi: 10.1017/S0031182013001637. PubMed DOI
Jirků M., Valigurová A., Koudela B., Křížek J., Modrý D., Šlapeta J. New species of Cryptosporidium Tyzzer, 1907 (Apicomplexa) from amphibian host: Morphology, biology and phylogeny. Folia Parasitol. 2008;55:81–94. doi: 10.14411/fp.2008.011. PubMed DOI
Lumb R., Smith K., Odonoghue P.J., Lanser J.A. Ultrastructure of the attachment of Cryptosporidium sporozoites to tissue-culture cells. Parasitol. Res. 1988;74:531–536. doi: 10.1007/BF00531630. PubMed DOI
Nelson J.B., O’Hara S.P., Small A.J., Tietz P.S., Choudhury A.K., Pagano R.E., Chen X.M., LaRusso N.F. Cryptosporidium parvum infects human cholangiocytes via sphingolipid-enriched membrane microdomains. Cell. Microbiol. 2006;8:1932–1945. doi: 10.1111/j.1462-5822.2006.00759.x. PubMed DOI PMC
Vetterling J.M., Takeuchi A., Madden P.A. Ultrastructure of Cryptosporidium wrairi from the guinea pig. J. Protozool. 1971;18:248–260. doi: 10.1111/j.1550-7408.1971.tb03316.x. PubMed DOI
Forney J.R., DeWald D.B., Yang S.G., Speer C.A., Healey M.C. A role for host phosphoinositide 3-kinase and cytoskeletal remodeling during Cryptosporidium parvum infection. Infect. Immun. 1999;67:844–852. doi: 10.1128/IAI.67.2.844-852.1999. PubMed DOI PMC
O’Hara S.P., Small A.J., Chen X.M., LaRusso N.F. Host cell actin remodeling in response to Cryptosporidium. Subcell. Biochem. 2008;47:92–100. PubMed
Beyer T.V., Svezhova N.V., Sidorenko N.V., Khokhlov S.E. Cryptosporidium parvum (Coccidia, Apicomplexa): Some new ultrastructural observations on its endogenous development. Eur. J. Protistol. 2000;36:151–159. doi: 10.1016/S0932-4739(00)80034-6. DOI
Landsberg J.H., Paperna I. Ultrastructural study of the coccidian Cryptosporidium sp. from stomachs of juvenile cichlid fish. Dis. Aquat. Organ. 1986;2:13–20. doi: 10.3354/dao002013. DOI
Thompson R.C.A., Koh W.H., Clode P.L. Cryptosporidium—What is it? Food Waterborne Parasitol. 2016;4:54–61. doi: 10.1016/j.fawpar.2016.08.004. DOI
Tzipori S., Griffiths J.K. Natural history and biology of Cryptosporidium parvum. Adv. Parasitol. 1998;40:5–36. doi: 10.1016/S0065-308X(08)60116-5. PubMed DOI
Perkins M.E., Riojas Y.A., Wu T.W., Le Blancq S.M. CpABC, a Cryptosporidium parvum ATP-binding cassette protein at the host-parasite boundary in intracellular stages. Proc. Natl. Acad. Sci. USA. 1999;96:5734–5739. doi: 10.1073/pnas.96.10.5734. PubMed DOI PMC
Yoshikawa H., Iseki M. Freeze-fracture study of the site of attachment of Cryptosporidium muris in gastric glands. J. Protozool. 1992;39:539–544. doi: 10.1111/j.1550-7408.1992.tb04848.x. PubMed DOI
O’Hara S.P., Chen X.-M. The cell biology of Cryptosporidium infection. Microbes Infect. 2011;13:721–730. doi: 10.1016/j.micinf.2011.03.008. PubMed DOI PMC
Koh W., Thompson A., Edwards H., Monis P., Clode P.L. Extracellular excystation and development of Cryptosporidium: Tracing the fate of oocysts within Pseudomonas aquatic biofilm systems. BMC Microbiol. 2014;14:281. doi: 10.1186/s12866-014-0281-8. PubMed DOI PMC
Dyková I., Lom J. Fish coccidia: Critical notes on life cycles, classification and pathogenicity. J. Fish Dis. 1981;4:487–505. doi: 10.1111/j.1365-2761.1981.tb01161.x. DOI
Lukeš J. Life cycle of Goussia pannonica (Molnar, 1989) (Apicomplexa, Eimeriorina), an extracytoplasmic coccidium from the white bream Blicca bjoerkna. J. Protozool. 1992;39:484–494. doi: 10.1111/j.1550-7408.1992.tb04836.x. DOI
Molnar K., Baska F. Light and electron microscopic studies on Epieimeria anguillae (Léger & Hollande, 1922), a coccidium parasitizing the European eel, Anguilla anguilla L. J. Fish Dis. 1986;9:99–110.
Beyer T.V., Sidorenko N.V., Svezhova N.V. Cell interaction with intracellular parasitism of cryptosporidia. I. The influence of Cryptosporidium parvum (Coccidia, Sporozoa) on phosphatase activity in the small intestine of experimentally infected new-born rats. Cytology. 1995;37:829–837. PubMed
Beyer T.V., Svezhova N.V., Radchenko A.I., Sidorenko N.V. Parasitophorous vacuole: Morphofunctional diversity in different coccidian genera (a short insight into the problem) Cell Biol. Int. 2002;26:861–871. doi: 10.1006/cbir.2002.0943. PubMed DOI
Benajiba M.H., Marques A., Lom J., Bouix G. Ultrastructure and sporogony of Eimeria (syn. Epieimeria) anguillae (Apicomplexa) in the eel (Anguilla anguilla). J. Eukaryot. Microbiol. 1994;41:215–222. doi: 10.1111/j.1550-7408.1994.tb01500.x. DOI
Bonnin A., Lapillonne A., Petrella T., Lopez J., Chaponnier C., Gabbiani G., Robine S., Dubremetz J.F. Immunodetection of the microvillous cytoskeleton molecules villin and ezrin in the parasitophorous vacuole wall of Cryptosporidium parvum (Protozoa: Apicomplexa) Eur. J. Cell Biol. 1999;78:794–801. doi: 10.1016/S0171-9335(99)80030-2. PubMed DOI
Walker D.M., Oghumu S., Gupta G., McGwire B.S., Drew M.E., Satoskar A.R. Mechanisms of cellular invasion by intracellular parasites. Cell. Mol. Life Sci. 2014;71:1245–1263. doi: 10.1007/s00018-013-1491-1. PubMed DOI PMC
Arredondo S.A., Schepis A., Reynolds L., Kappe S.H.I. Secretory organelle function in the Plasmodium sporozoite. Trends Parasitol. 2021;37:651–663. doi: 10.1016/j.pt.2021.01.008. PubMed DOI
Bannister L.H. The interactions of intracellular Protista and their host cells, with special reference to heterotrophic organisms. Proc. R. Soc. Lond. B. Biol. Sci. 1979;204:141–163. PubMed
Goldberg D.E., Zimmerberg J. Hardly vacuous: The parasitophorous vacuolar membrane of malaria parasites. Trends Parasitol. 2020;36:138–146. doi: 10.1016/j.pt.2019.11.006. PubMed DOI PMC
Rudzinska M.A., Trager W., Lewengrub S.J., Gubert E. An electron microscopic study of Babesia microti invading erythrocytes. Cell Tissue Res. 1976;169:323–334. doi: 10.1007/BF00219605. PubMed DOI
Beck J.R., Ho C.-M. Transport mechanisms at the malaria parasite-host cell interface. PLoS Pathog. 2021;17:e1009394. doi: 10.1371/journal.ppat.1009394. PubMed DOI PMC
Goldberg D.E. Hemoglobin degradation. In: Compans R.W., Cooper M.D., Honjo T., Koprowski H., Melchers F., Oldstone M.B.A., Olsnes S., Potter M., Vogt P.K., Wagner H., et al., editors. Malaria: Drugs, Disease and Post-Genomic Biology. Springer; Berlin/Heidelberg, Germany: 2005. pp. 275–291.
Wunderlich J., Rohrbach P., Dalton J.P. The malaria digestive vacuole. Front. Biosci. 2012;4:1424–1448. PubMed
Xie S.C., Ralph S.A., Tilley L. K13, the cytostome, and artemisinin resistance. Trends Parasitol. 2020;36:533–544. doi: 10.1016/j.pt.2020.03.006. PubMed DOI
Žižka Z. Fine structure of the neogregarine Farinocystis tribolii Weiser, 1953. Developmental stages in sporogony and parasite-host relations. Z. Parasitenkd. 1977;54:217–228. doi: 10.1007/BF00390113. PubMed DOI
Schrével J., Desportes I. Gregarines. In: Mehlhorn H., editor. Encyclopedia of Parasitology. Springer; Berlin/Heidelberg, Germany: 2016. pp. 1142–1188.
Vávra J., McLaughlin R.E. Fine Structure of some developmental stages of Mattesia grandis Mclaughlin (Sporozoa, Neogregarinida), a parasite of boll weevil Anthonomus grandis Boheman. J. Protozool. 1970;17:483–496. doi: 10.1111/j.1550-7408.1970.tb04716.x. DOI
Larsson J.I.R. On the cytology and fine structure of the neogregarine Syncystis aeshnae Tuzet and Manier, 1953 (Apicomplexa, Syncystidae) J. Protozool. 1991;38:383–392. doi: 10.1111/j.1550-7408.1991.tb01375.x. DOI
Žižka Z. Formation of a parasitophorous vacuole in a nonadequate experimental host: Electron microscopical and X-ray microanalytical study. Folia Microbiol. 2005;50:5–12. doi: 10.1007/BF02931287. PubMed DOI
Naville A. Recherches cytologiques sur les schizogrégarines. Z. Zellforsch. Mikrosk. Anat. 1930;11:375–396. doi: 10.1007/BF02485358. DOI
Valigurová A., Koudela B. Ultrastructural study of developmental stages of Mattesia dispora (Neogregarinorida: Lipotrophidae), a parasite of the flour moth Ephestia kuehniella (Lepidoptera) Eur. J. Protistol. 2006;42:313–323. doi: 10.1016/j.ejop.2006.07.007. PubMed DOI
Weiser J. Schizogregariny z hmyzu škodícího zásobám mouky II. Mattesia dispora Naville 1930 a Coelogregarina ephestiae Gheleovitch 1947. Věstník Československé Zoologické Společnosti. 1954;17:73–90.
Žižka Z. An electron microscope study of autoinfection in neogregarines (Sporozoa, Neogregarinida) J. Protozool. 1972;19:275–280. doi: 10.1111/j.1550-7408.1972.tb03457.x. DOI
Tanada Y., Kaya H.K. Insect Pathology. Academic Press; San Diego, CA, USA: 1993. p. 666.
Ormières R., Massot M., Massot N. Ophryocystis schneideri Lég. Hagenm., 1900 néogrégarine parasite de Blaps ďAlgérie. Cycle et étude ultrastructurale. Protistologica. 1978;14:483–492.
Žižka Z. Fine structure of the neogragarine Farinocystis tribolii Weiser, 1953. Syzygy and gametes formation. Protistologica. 1978;14:209–215.
ŽIžka Z. Fine structure of the neogregarine Farinocystis tribolii Weiser, 1953: Free gametocytes. Acta Protozool. 1978;17:255–259.
Žižka Z. Fine structure of the neogregarine Farinocystis tribolii Weiser, 1953. Developmental stages in merogony. J. Protozool. 1978;25:50–56. doi: 10.1111/j.1550-7408.1978.tb03867.x. PubMed DOI
Žižka Z. The fine structure of some developmental stages of Farinocystis tribolii Weiser (Sporozoa, Neogregarinida) from the fat body of the beetle Tribolium castaneum Herbst. J. Protozool. 1971;17:46.
Leander B.S., Ramey P.A. Cellular identity of a novel small subunit rDNA sequence clade of apicomplexans: Description of the marine parasite Rhytidocystis polygordiae n. Sp (Host: Polygordius sp., polychaeta) J. Eukaryot. Microbiol. 2006;53:280–291. doi: 10.1111/j.1550-7408.2006.00109.x. PubMed DOI
Rueckert S., Leander B.S. Phylogenetic position and description of Rhytidocystis cyamus sp. n. (Apicomplexa, Rhytidocystidae): A novel intestinal parasite of the north-eastern Pacific ‘stink worm’ (Polychaeta, Opheliidae, Travisia pupa) Mar. Biodivers. 2009;39:227–234. doi: 10.1007/s12526-009-0014-7. DOI
Miroliubova T.S., Simdyanov T.G., Mikhailov K.V., Aleoshin V.V., Janouškovec J., Belova P.A., Paskerova G.G. Polyphyletic origin, intracellular invasion, and meiotic genes in the putatively asexual agamococcidians (Apicomplexa incertae sedis) Sci. Rep. 2020;10:15847. doi: 10.1038/s41598-020-72287-x. PubMed DOI PMC
Guérardel Y., Leleu D., Coppin A., Liénard L., Slomianny C., Strecker G., Ball S., Tomavo S. Amylopectin biogenesis and characterization in the protozoan parasite Toxoplasma gondii, the intracellular development of which is restricted in the HepG2 cell line. Microbes Infect. 2005;7:41–48. doi: 10.1016/j.micinf.2004.09.007. PubMed DOI
Harris J.R., Adrian M., Petry F. Amylopectin: A major component of the residual body in Cryptosporidium parvum oocysts. Parasitology. 2004;128:269–282. doi: 10.1017/S003118200300458X. PubMed DOI
Wang C.C., Weppelman R.M., Lopez-Ramos B. Isolation of amylopectin granules and identification of amylopectin phosphorylase in the oocysts of Eimeria tenella. J. Protozool. 1975;22:560–564. doi: 10.1111/j.1550-7408.1975.tb05233.x. PubMed DOI
Mercier C., Schrével J., Stark J.R. The storage polysaccharide (paraglycogen) of the gregarine, Gregarina blaberae: Cytology and biochemistry. Comp. Biochem. Physiol. B Comp. Biochem. 1973;44:1001–1010. doi: 10.1016/0305-0491(73)90252-6. DOI
Ryley J.F., Bentley M., Manners D.J., Stark J.R. Amylopectin, the storage polysaccharide of the Coccidia Eimeria brunetti and E. tenella. J. Parasitol. 1969;55:839–845. doi: 10.2307/3277227. PubMed DOI
Nakai Y., Ogimoto K. Utilization of carbohydrate by Eimeria tenella sporozoites. Nihon Juigaku Zasshi. 1983;45:501–506. doi: 10.1292/jvms1939.45.501. PubMed DOI
Michalski W.P., Edgar J.A., Prowse S.J. Mannitol metabolism in Eimeria tenella. Int. J. Parasitol. 1992;22:1157–1163. doi: 10.1016/0020-7519(92)90035-J. PubMed DOI
Coppin A., Varré J.S., Lienard L., Dauvillée D., Guérardel Y., Soyer-Gobillard M.O., Buléon A., Ball S., Tomavo S. Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry. J. Mol. Evol. 2005;60:257–267. doi: 10.1007/s00239-004-0185-6. PubMed DOI