Establishment of Myotis myotis cell lines--model for investigation of host-pathogen interaction in a natural host for emerging viruses
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25295526
PubMed Central
PMC4190323
DOI
10.1371/journal.pone.0109795
PII: PONE-D-14-13198
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- Chiroptera imunologie virologie MeSH
- interakce hostitele a patogenu * MeSH
- orgánová specificita MeSH
- přirozená imunita MeSH
- viry * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Bats are found to be the natural reservoirs for many emerging viruses. In most cases, severe clinical signs caused by such virus infections are normally not seen in bats. This indicates differences in the virus-host interactions and underlines the necessity to develop natural host related models to study these phenomena. Due to the strict protection of European bat species, immortalized cell lines are the only alternative to investigate the innate anti-virus immune mechanisms. Here, we report about the establishment and functional characterization of Myotis myotis derived cell lines from different tissues: brain (MmBr), tonsil (MmTo), peritoneal cavity (MmPca), nasal epithelium (MmNep) and nervus olfactorius (MmNol) after immortalization by SV 40 large T antigen. The usefulness of these cell lines to study antiviral responses has been confirmed by analysis of their susceptibility to lyssavirus infection and the mRNA patterns of immune-relevant genes after poly I:C stimulation. Performed experiments indicated varying susceptibility to lyssavirus infection with MmBr being considerably less susceptible than the other cell lines. Further investigation demonstrated a strong activation of interferon mediated antiviral response in MmBr contributing to its resistance. The pattern recognition receptors: RIG-I and MDA5 were highly up-regulated during rabies virus infection in MmBr, suggesting their involvement in promotion of antiviral responses. The presence of CD14 and CD68 in MmBr suggested MmBr cells are microglia-like cells which play a key role in host defense against infections in the central nervous system (CNS). Thus the expression pattern of MmBr combined with the observed limitation of lyssavirus replication underpin a protective mechanism of the CNS controlling the lyssavirus infection. Overall, the established cell lines are important tools to analyze antiviral innate immunity in M. myotis against neurotropic virus infections and present a valuable tool for a broad spectrum of future investigations in cellular biology of M. myotis.
Zobrazit více v PubMed
Teeling EC, Madsen O, Van den Bussche RA, de Jong WW, Stanhope MJ, et al. (2002) Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc Natl Acad Sci U S A 99: 1431–1436. PubMed PMC
Simmons NB, Seymour KL, Habersetzer J, Gunnell GF (2008) Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451: 818–821. PubMed
Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T (2006) Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 19: 531–545. PubMed PMC
Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, et al. (2005) Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102: 14040–14045. PubMed PMC
Halpin K, Hyatt AD, Plowright RK, Epstein JH, Daszak P, et al. (2007) Emerging viruses: coming in on a wrinkled wing and a prayer. Clin Infect Dis 44: 711–717. PubMed PMC
Mackenzie JS, Field HE (2004) Emerging encephalitogenic viruses: lyssaviruses and henipaviruses transmitted by frugivorous bats. Arch Virol Suppl: 97–111. PubMed
Dobson AP (2005) Virology. What links bats to emerging infectious diseases? Science 310: 628–629. PubMed
Li W, Shi Z, Yu M, Ren W, Smith C, et al. (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310: 676–679. PubMed
Muller MA, Paweska JT, Leman PA, Drosten C, Grywna K, et al. (2007) Coronavirus antibodies in African bat species. Emerg Infect Dis 13: 1367–1370. PubMed PMC
Shi Z, Hu Z (2008) A review of studies on animal reservoirs of the SARS coronavirus. Virus Res 133: 74–87. PubMed PMC
Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, et al. (2005) Fruit bats as reservoirs of Ebola virus. Nature 438: 575–576. PubMed
McElhinney LM, Marston DA, Leech S, Freuling CM, van der Poel WH, et al. (2013) Molecular epidemiology of bat lyssaviruses in europe. Zoonoses Public Health 60: 35–45. PubMed
Arechiga Ceballos N, Vazquez Moron S, Berciano JM, Nicolas O, Aznar Lopez C, et al. (2013) Novel lyssavirus in bat, Spain. Emerg Infect Dis 19: 793–795. PubMed PMC
Knobel DL, Cleaveland S, Coleman PG, Fevre EM, Meltzer MI, et al. (2005) Re-evaluating the burden of rabies in Africa and Asia. Bulletin of the World Health Organization 83: 360–368. PubMed PMC
Lumio J, Hillbom M, Roine R, Ketonen L, Haltia M, et al. (1986) Human rabies of bat origin in Europe. Lancet 1: 378. PubMed
Johnson N, Vos A, Freuling C, Tordo N, Fooks AR, et al. (2010) Human rabies due to lyssavirus infection of bat origin. Veterinary microbiology 142: 151–159. PubMed
Stantic-Pavlinic M (2005) Public health concerns in bat rabies across Europe. Euro surveillance : bulletin europeen sur les maladies transmissibles = European communicable disease bulletin 10: 217–220. PubMed
Nathwani D, McIntyre PG, White K, Shearer AJ, Reynolds N, et al. (2003) Fatal human rabies caused by European bat Lyssavirus type 2a infection in Scotland. Clin Infect Dis 37: 598–601. PubMed
Wibbelt G, Moore MS, Schountz T, Voigt CC (2010) Emerging diseases in Chiroptera: why bats? Biol Lett 6: 438–440. PubMed PMC
Harris SL, Brookes SM, Jones G, Hutson AM, Fooks AR (2006) Passive surveillance (1987 to 2004) of United Kingdom bats for European bat lyssaviruses. Vet Rec 159: 439–446. PubMed
Middleton DJ, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, et al. (2007) Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus). J Comp Pathol 136: 266–272. PubMed
Williamson MM, Hooper PT, Selleck PW, Westbury HA, Slocombe RF (2000) Experimental hendra virus infectionin pregnant guinea-pigs and fruit Bats (Pteropus poliocephalus). J Comp Pathol 122: 201–207. PubMed
Baker ML, Schountz T, Wang LF (2013) Antiviral immune responses of bats: a review. Zoonoses Public Health 60: 104–116. PubMed PMC
Williamson MM, Hooper PT, Selleck PW, Gleeson LJ, Daniels PW, et al. (1998) Transmission studies of Hendra virus (equine morbillivirus) in fruit bats, horses and cats. Aust Vet J 76: 813–818. PubMed
Johnson N, Vos A, Neubert L, Freuling C, Mansfield KL, et al. (2008) Experimental study of European bat lyssavirus type-2 infection in Daubenton's bats (Myotis daubentonii). J Gen Virol 89: 2662–2672. PubMed
Wynne JW, Wang LF (2013) Bats and viruses: friend or foe? PLoS Pathog 9: e1003651. PubMed PMC
McColl KA, Chamberlain T, Lunt RA, Newberry KM, Middleton D, et al. (2002) Pathogenesis studies with Australian bat lyssavirus in grey-headed flying foxes (Pteropus poliocephalus). Aust Vet J 80: 636–641. PubMed
Crameri G, Todd S, Grimley S, McEachern JA, Marsh GA, et al. (2009) Establishment, immortalisation and characterisation of pteropid bat cell lines. PLoS One 4: e8266. PubMed PMC
Biesold SE, Ritz D, Gloza-Rausch F, Wollny R, Drexler JF, et al. (2011) Type I interferon reaction to viral infection in interferon-competent, immortalized cell lines from the African fruit bat Eidolon helvum. PLoS One 6: e28131. PubMed PMC
Mourya DT, Lakra RJ, Yadav PD, Tyagi P, Raut CG, et al. (2013) Establishment of cell line from embryonic tissue of Pipistrellus ceylonicus bat species from India & its susceptibility to different viruses. Indian J Med Res 138: 224–231. PubMed PMC
Eckerle I, Ehlen L, Kallies R, Wollny R, Corman VM, et al. (2014) Bat airway epithelial cells: a novel tool for the study of zoonotic viruses. PLoS One 9: e84679. PubMed PMC
Virtue ER, Marsh GA, Baker ML, Wang LF (2011) Interferon production and signaling pathways are antagonized during henipavirus infection of fruit bat cell lines. PLoS One 6: e22488. PubMed PMC
He X, Korytar T, Schatz J, Freuling CM, Muller T, et al. (2014) Anti-Lyssaviral Activity of Interferons kappa and omega from the Serotine Bat, Eptesicus serotinus. J Virol 88: 5444–5454. PubMed PMC
Zukal J, Bandouchova H, Bartonicka T, Berkova H, Brack V, et al. (2014) White-nose syndrome fungus: a generalist pathogen of hibernating bats. PLoS One 9: e97224. PubMed PMC
Heinsohn S, Golta S, Kabisch H, zur Stadt U (2005) Standardized detection of Simian virus 40 by real-time quantitative polymerase chain reaction in pediatric malignancies. Haematologica 90: 94–99. PubMed
Schatz J, Freuling CM, Auer E, Goharriz H, Harbusch C, et al. (2014) Enhanced passive bat rabies surveillance in indigenous bat species from Germany - a retrospective study. PLoS Negl Trop Dis 8: e2835. PubMed PMC
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. PubMed
Holness CL, Simmons DL (1993) Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood 81: 1607–1613. PubMed
Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, et al. (2004) Role of microglia in central nervous system infections. Clin Microbiol Rev 17: 942–964, table of contents. PubMed PMC
Takaoka A, Yanai H (2006) Interferon signalling network in innate defence. Cell Microbiol 8: 907–922. PubMed
Levy DE, Marie IJ, Durbin JE (2011) Induction and function of type I and III interferon in response to viral infection. Curr Opin Virol 1: 476–486. PubMed PMC
Honda K, Yanai H, Takaoka A, Taniguchi T (2005) Regulation of the type I IFN induction: a current view. Int Immunol 17: 1367–1378. PubMed
Rieder M, Conzelmann KK (2009) Rhabdovirus evasion of the interferon system. J Interferon Cytokine Res 29: 499–509. PubMed
Zhou P, Cowled C, Todd S, Crameri G, Virtue ER, et al. (2011) Type III IFNs in pteropid bats: differential expression patterns provide evidence for distinct roles in antiviral immunity. J Immunol 186: 3138–3147. PubMed PMC
Carty M, Reinert L, Paludan SR, Bowie AG (2013) Innate antiviral signalling in the central nervous system. Trends Immunol. PubMed
Rieder M, Conzelmann KK (2011) Interferon in rabies virus infection. Adv Virus Res 79: 91–114. PubMed
Menager P, Roux P, Megret F, Bourgeois JP, Le Sourd AM, et al. (2009) Toll-like receptor 3 (TLR3) plays a major role in the formation of rabies virus Negri Bodies. PLoS Pathog 5: e1000315. PubMed PMC
Nakamichi K, Saiki M, Sawada M, Takayama-Ito M, Yamamuro Y, et al. (2005) Rabies virus-induced activation of mitogen-activated protein kinase and NF-kappaB signaling pathways regulates expression of CXC and CC chemokine ligands in microglia. J Virol 79: 11801–11812. PubMed PMC
Ray NB, Power C, Lynch WP, Ewalt LC, Lodmell DL (1997) Rabies viruses infect primary cultures of murine, feline, and human microglia and astrocytes. Arch Virol 142: 1011–1019. PubMed PMC
Zhao P, Yang Y, Feng H, Zhao L, Qin J, et al. (2013) Global gene expression changes in BV2 microglial cell line during rabies virus infection. Infect Genet Evol 20: 257–269. PubMed
Performance of bat-derived macrophages at different temperatures
Species-Specific Molecular Barriers to SARS-CoV-2 Replication in Bat Cells
Active surveillance for antibodies confirms circulation of lyssaviruses in Palearctic bats
Phagocyte activity reflects mammalian homeo- and hetero-thermic physiological states
Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection