Performance of bat-derived macrophages at different temperatures
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36157196
PubMed Central
PMC9500541
DOI
10.3389/fvets.2022.978756
Knihovny.cz E-zdroje
- Klíčová slova
- Chiroptera (bats), daily torpor, hibernation, in vitro model, macrophage biology, phagocytic activity, temperature-dependent proliferation,
- Publikační typ
- časopisecké články MeSH
Heterothermy, as a temperature-dependent physiological continuum, may affect host-pathogen interactions through modulation of immune responses. Here, we evaluated proliferation and functional performance of a macrophage cell line established from the greater mouse-eared (Myotis myotis) bat at 8, 17.5, and 37°C to simulate body temperatures during hibernation, daily torpor and euthermia. Macrophages were also frozen to -20°C and then examined for their ability to proliferate in the immediate post-thaw period. We show that bat macrophages can proliferate at lower temperatures, though their growth rate is significantly slower than at 37°C. The cells differed in their shape, size and ability to attach to the plate surface at both lower temperatures, being spheroidal and free in suspension at 8°C and epithelial-like, spindle-shaped and/or spheroidal at 17.5°C. While phagocytosis at temperatures of 8 and 17.5°C amounted to 85.8 and 83.1% of the activity observed at 37°C, respectively, full phagocytic activity was restored within minutes of translocation into a higher temperature. Bat-derived macrophages were also able to withstand temperatures of -20°C in a cryoprotectant-free cultivation medium and, in the immediate post-thaw period, became viable and were able to proliferate. Our in vitro data enhance understanding of macrophage biology.
CEITEC Central European Institute of Technology University of Veterinary Sciences Brno Brno Czechia
Department of Botany and Zoology Masaryk University Brno Czechia
Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sofia Bulgaria
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czechia
Zobrazit více v PubMed
Andrews MT. Advances in molecular biology of hibernation in mammals. BioEssays. (2007) 29:431–40. 10.1002/bies.20560 PubMed DOI
Carey HV, Andrews MT, Martin SL. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev. (2003) 83:1153–81. 10.1152/physrev.00008.2003 PubMed DOI
Xu Y, Shao C, Fedorov VB, Goropashnaya AV, Barnes BM, Yan J. Molecular signatures of mammalian hibernation: comparisons with alternative phenotypes. BMC Genom. (2013) 14:1–13. 10.1186/1471-2164-14-567 PubMed DOI PMC
Dietz M, Kalko EKV. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton's bats (Myotis daubentonii). J Comp Physiol B. (2006) 176:223–31. 10.1007/s00360-005-0043-x PubMed DOI
Lausen CL, Barclayr MR. Thermoregulation and roost selection by reproductive female big brown bats (Eptesicus fuscus) roosting in rock crevices. J Zool. (2003) 260:235–44. 10.1017/S0952836903003686 DOI
Wojciechowski MS, Jefimow M, Tegowska E. Environmental conditions, rather than season, determine torpor use and temperature selection in large mouse-eared bats (Myotis myotis). Comp Biochem Physiol A Mol Integr Physiol. (2007) 147:828–40. 10.1016/j.cbpa.2006.06.039 PubMed DOI
Bouma HR, Carey HV, Kroese FG. Hibernation: the immune system at rest? J Leukoc Biol. (2010) 88:619–24. 10.1189/jlb.0310174 PubMed DOI
Boyer BB, Barnes BM. Molecular and metabolic aspects of mammalian hibernation: expression of the hibernation phenotype results from the coordinated regulation of multiple physiological and molecular events during preparation for and entry into torpor. Bioscience. (1999) 49:713–24. 10.2307/1313595 DOI
McNab BK. The behavior of temperate cave bats in a subtropical environment. Ecology. (1974) 55:943–58. 10.2307/1940347 DOI
Bartonicka T, Bandouchova H, Berkova H, Blazek J, Lucan R, Horacek I, et al. . Deeply torpid bats can change position without elevation of body temperature. J Therm Biol. (2017) 63:119–23. 10.1016/j.jtherbio.2016.12.005 PubMed DOI
Blazek J, Zukal J, Bandouchova H, Berkova H, Kovacova V, Martinkova N, et al. . Numerous cold arousals and rare arousal cascades as a hibernation strategy in European Myotis bats. J Therm Biol. (2019) 82:150–6. 10.1016/j.jtherbio.2019.04.002 PubMed DOI
Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL. et al. Bat white-nose syndrome: an emerging fungal pathogen? Science. (2009) 323:227–227. 10.1126/science.1163874 PubMed DOI
Bachorec E, Bartonička T, Heger T, Pikula J, Zukal J. Cold arousal-A mechanism used by hibernating bats to reduce the energetic costs of disturbance. J Therm Biol. (2021) 101:103107. 10.1016/j.jtherbio.2021.103107 PubMed DOI
Luis AD, Hudson PJ. Hibernation patterns in mammals: a role for bacterial growth? Funct Ecol. (2006) 20:471–7. 10.1111/j.1365-2435.2006.01119.x DOI
Bouma HR, Strijkstra AM, Talaei F, Henning RH, Carey HV, Kroese FG. The hibernating immune system. In: Ruf T, Bieber C, Arnold W, Millesi E, editors. Living in a Seasonal World. Springer: Berlin; (2012). p. 259–70.
Heger T, Zukal J, Seidlova V, Nemcova M, Necas D, Papezikova I, et al. . Measurement of phagocyte activity in heterotherms. Acta Vet Brno. (2020) 89:79–87. 10.2754/avb202089010079 DOI
Pikula J, Heger T, Bandouchova H, Kovacova V, Nemcova M, Papezikova I, et al. . Phagocyte activity reflects mammalian homeo-and hetero-thermic physiological states. BMC Vet Res. (2020) 16:1–13. 10.1186/s12917-020-02450-z PubMed DOI PMC
Ruf T, Geiser F. Daily torpor and hibernation in birds and mammals. Biol Rev. (2015) 90:891–926. 10.1111/brv.12137 PubMed DOI PMC
Webb PI, Speakman JR, Racey PA. How hot is a hibernaculum? A review of the temperatures at which bats hibernate. Can J Zool. (1996) 74:761–5. 10.1139/z96-087 DOI
Meteyer CU, Barber D, Mandl JN. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome. Virulence. (2012) 3:583–8. 10.4161/viru.22330 PubMed DOI PMC
Maniero GD. Ground squirrel splenic macrophages bind lipopolysaccharide over a wide range of temperatures at all phases of their annual hibernation cycle. Comp Immunol Microbiol Infect Dis. (2005) 28:297–309. 10.1016/j.cimid.2005.08.001 PubMed DOI
Prendergast BJ, Freeman DA, Zucker I, Nelson RJ. Periodic arousal from hibernation is necessary for initiation of immune responses in ground squirrels. Am J Physiol Regul Integr Comp Physiol. (2002) 282:R1054–62. 10.1152/ajpregu.00562.2001 PubMed DOI
Uribe-Querol E, Rosales C. Phagocytosis: our current understanding of a universal biological process. Front Immunol. (2020) 11:1066. 10.3389/fimmu.2020.01066 PubMed DOI PMC
Gordon S, Plüddemann A. Tissue macrophages: heterogeneity and functions. BMC Biol. (2017) 15:1–18. 10.1186/s12915-017-0392-4 PubMed DOI PMC
Gordon S. The macrophage: past, present and future. Eur J Immunol. (2007) 37:9–17. 10.1002/eji.200737638 PubMed DOI
O'Neill LAJ, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. J Exp Med. (2015) 213:15–23. 10.1084/jem.20151570 PubMed DOI PMC
Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. (2011) 11:723–37. 10.1038/nri3073 PubMed DOI PMC
Kacprzyk J, Hughes GM, Palsson-McDermott EM, Quinn SR, Puechmaille SJ, O'neill LA, et al. . A potent anti-inflammatory response in bat macrophages may be linked to extended longevity and viral tolerance. Acta Chiropt. (2017) 19:219–28. 10.3161/15081109ACC2017.19.2.001 DOI
Douglas SD, Douglas AG. Structure, receptors, and functions of monocytes and macrophages. In: Kaushansky K, Lichtman MA, Prchal JT, Levi M, Press O, Burns L, Caligiuri M, editors. Williams Hematology. 9th ed. New York, NY: McGraw-Hill Education; (2015).
Pohanka M, Snopkova S, Havlickova K, Bostik P, Sinkorova Z, Fusek J, et al. . Macrophage-assisted inflammation and pharmacological regulation of the cholinergic anti-inflammatory pathway. Curr Med Chem. (2011) 18:539–51. 10.2174/092986711794480140 PubMed DOI
Flieger M, Bandouchova H, Cerny J, Chudíčková M, Kolarik M, Kovacova V. et al. Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection. Sci Rep. (2016) 6:33200. 10.1038/srep33200 PubMed DOI PMC
Frick WF, Pollock JF, Hicks AC, Langwig KE, Reynolds DS, Turner GG, et al. . An emerging disease causes regional population collapse of a common North American bat species. Science. (2010) 329:679–82. 10.1126/science.1188594 PubMed DOI
Mandl JN, Ahmed R, Barreiro LB, Daszak P, Epstein JH, Virgin HW, et al. . Reservoir host immune responses to emerging zoonotic viruses. Cell. (2015) 160:20–35. 10.1016/j.cell.2014.12.003 PubMed DOI PMC
Mandl JN, Schneider C, Schneider DS, Baker ML. Going to bat (s) for studies of disease tolerance. Front Immunol. (2018) 9:2112. 10.3389/fimmu.2018.02112 PubMed DOI PMC
Martinkova N, Pikula J, Zukal J, Kovacova V, Bandouchova H, Bartonička T, et al. . Hibernation temperature-dependent Pseudogymnoascus destructans infection intensity in Palearctic bats. Virulence. (2018) 9:1734–50. 10.1080/21505594.2018.1548685 PubMed DOI PMC
Pikula J, Amelon SK, Bandouchova H, Bartonička T, Berkova H, Brichta J, et al. . White-nose syndrome pathology grading in Nearctic and Palearctic bats. PLoS ONE. (2017) 12:e0180435. 10.1371/journal.pone.0180435 PubMed DOI PMC
Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev. (2006) 19:531–45. 10.1128/CMR.00017-06 PubMed DOI PMC
Davy CM, Donaldson ME, Bandouchova H, Breit AM, Dorville NAS, Dzal YA, et al. . Transcriptional host-pathogen responses of Pseudogymnoascus destructans and three species of bats with white-nose syndrome. Virulence. (2020) 11:781–94. 10.1080/21505594.2020.1768018 PubMed DOI PMC
Seidlova V, Nemcova M, Pikula J, Bartonička T, Ghazaryan A, Heger T, et al. . Urinary shedding of leptospires in Palearctic bats. Transbound Emerg Dis. (2021) 68:3089–95. 10.1111/tbed.14011 PubMed DOI
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. . A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. (2020) 579:270–3. 10.1038/s41586-020-2012-7 PubMed DOI PMC
Abdelsalam EEE, Bandouchova H, Heger T, Kanova M, Kobelkova K, Němcová M, et al. . Polychlorinated biphenyl toxicity in the thyroid gland of wild ungulates: an in vitro model. Acta Vet Brno. (2020) 89:151–62. 10.2754/avb202089020151 DOI
Bandouchova H, Bartonička T, Berkova H, Brichta J, Kokurewicz T, Kovacova V, et al. . Alterations in the health of hibernating bats under pathogen pressure. Sci Rep. (2018) 8:6067. 10.1038/s41598-018-24461-5 PubMed DOI PMC
He X, Korytár T, Zhu Y, Pikula J, Bandouchova H, Zukal J, et al. . Establishment of Myotis myotis cell lines-model for investigation of host-pathogen interaction in a natural host for emerging viruses. PLoS ONE. (2014) 9:e109795. 10.1371/journal.pone.0109795 PubMed DOI PMC
Horsthemke M, Bachg AC, Groll K, Moyzio S, Müther B, Hemkemeyer SA, et al. . Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion. J Biol Chem. (2017) 292:7258–73. 10.1074/jbc.M116.766923 PubMed DOI PMC
Yancey PH, Somero GN. Temperature dependence of intracellular pH: its role in the conservation of pyruvate apparentK m values of vertebrate lactate dehydrogenases. J Comp Physiol. (1978) 125:129–34. 10.1007/BF00686748 DOI
Chang-Liu CM, Woloschak GE. Effect of passage number on cellular response to DNA-damaging agents: cell survival and gene expression. Cancer Lett. (1997) 113:77–86. 10.1016/S0304-3835(97)04599-0 PubMed DOI
Warheit DB, Hill LH, Brody AR. Surface morphology and correlated phagocytic capacity of pulmonary macrophages lavaged from the lungs of rats. Exp Lung Res. (1984) 6:71–82. 10.3109/01902148409087896 PubMed DOI
Tamura Y, Monden M, Shintani M, Kawai A, Shiomi H. Neuroprotective effects of hibernation-regulating substances against low-temperature-induced cell death in cultured hamster hippocampal neurons. Brain Res. (2006) 1108:107–16. 10.1016/j.brainres.2006.06.020 PubMed DOI
Mazur P. Kinetics of water loss from cells at sub-zero temperatures and the likelihood of intracellular freezing. J Gen Physiol. (1963) 47:347–69. 10.1085/jgp.47.2.347 PubMed DOI PMC
Stephenson NG. Effects of temperature on reptilian and other cells. Embryol Exp Morph. (1966) 16:455–67. 10.1242/dev.16.3.455 PubMed DOI
Schmidt EP, Kuebler WM, Lee WL, Downey GP. Adhesion molecules: master controllers of the circulatory system. Compr Physiol. (2011) 2:945–73. 10.1002/cphy.c150020 PubMed DOI
Ungai-Salánki R, Peter B, Gerecsei T, Orgovan N, Horvath R, Szabó B. A practical review on the measurement tools for cellular adhesion force. Adv Colloid Interface Sci. (2019) 269:309–33. 10.1016/j.cis.2019.05.005 PubMed DOI
Mylvaganam S, Freeman SA, Grinstein S. The cytoskeleton in phagocytosis and macropinocytosis. Curr Biol. (2021) 31:R619–32. 10.1016/j.cub.2021.01.036 PubMed DOI
Medalia O, Beck M, Ecke M, Weber I, Neujahr R, Baumeister W, et al. . Organization of actin networks in intact filopodia. Curr Biol. (2007) 17:79–84. 10.1016/j.cub.2006.11.022 PubMed DOI
Brown EJ, Gresham HD. Cytoskeleton in phagocytosis. In: Paul WE, editor. Fundamental Immunology. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; (2003).
Winokur R, Hartwig JH. Mechanism of shape change in chilled human platelets. Blood. (1995) 85:1796–804. 10.1182/blood.V85.7.1796.bloodjournal8571796 PubMed DOI
Kuznetsova EV, Feoktistova NY, Naidenko SV, Surov AV, Tikhonova NB, Kozlovskii JE. Seasonal changes in blood cells and biochemical parameters in the Mongolian hamster (Allocricetulus curtatus). Biol Bul. (2016) 43:344–9. 10.1134/S1062359016040087 PubMed DOI
Mazur P, Farrant J, Leibo SP, Chu EHY. Survival of hamster tissue culture cells after freezing and thawing: interactions between protective solutes and cooling and warming rates. Cryobiology. (1969) 6:1–9. 10.1016/S0011-2240(69)80002-7 PubMed DOI
Shima A, Matsuda R. The expression of myogenin, but not of MyoD, is temperature-sensitive in mouse skeletal muscle cells. Zoolog Sci. (2008) 25:1066–74. 10.2108/zsj.25.1066 PubMed DOI
Burdon RH. Temperature and animal cell protein synthesis. Symp Soc Exp Biol. (1987) 41:113–33. PubMed
Harding RL, Halevy O, Yahav S, Velleman SG. The effect of temperature on proliferation and differentiation of chicken skeletal muscle satellite cells isolated from different muscle types. Physiol Rep. (2016) 4:e12770. 10.14814/phy2.12770 PubMed DOI PMC
Fujita J. Cold shock response in mammalian cells. J Mol Microbiol Biotechnol. (1999) 1:243–55. PubMed
Leibo SP, Farrant J, Mazur P, Hanna Jr, Smith LH. Effects of freezing on marrow stem cell suspensions: interactions of cooling and warming rates in the presence of pvp, sucrose, or glycerol. Cryobiology. (1970) 6:315–32. 10.1016/S0011-2240(70)80086-4 PubMed DOI
Lake NC. An investigation into the effects of cold upon the body. Lancet. (1917) 2:557–62. 10.1016/S0140-6736(00)44847-6 DOI
Fuller B, Green C, Grischenko VI. Cooling, cryopreservation and gene expression in mammalian cells. Probl Cryobiol Cryomed. (2004) 3:58–71. PubMed
Zukal J, Bandouchova H, Brichta J, Cmokova A, Jaron KS, Kolarik M, et al. . White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci Rep. (2016) 6:1–17. 10.1038/srep19829 PubMed DOI PMC
Lorch JM, Meteyer CU, Behr MJ, Boyles JG, Cryan PM, Hicks AC, et al. . Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature. (2011) 480:376–8. 10.1038/nature10590 PubMed DOI
Lin HH, Faunce DE, Stacey M, Terajewicz A, Nakamura T, Zhang-Hoover J, et al. . The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J Exp Med. (2005) 201:1615–25. 10.1084/jem.20042307 PubMed DOI PMC