Performance of bat-derived macrophages at different temperatures

. 2022 ; 9 () : 978756. [epub] 20220909

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36157196

Heterothermy, as a temperature-dependent physiological continuum, may affect host-pathogen interactions through modulation of immune responses. Here, we evaluated proliferation and functional performance of a macrophage cell line established from the greater mouse-eared (Myotis myotis) bat at 8, 17.5, and 37°C to simulate body temperatures during hibernation, daily torpor and euthermia. Macrophages were also frozen to -20°C and then examined for their ability to proliferate in the immediate post-thaw period. We show that bat macrophages can proliferate at lower temperatures, though their growth rate is significantly slower than at 37°C. The cells differed in their shape, size and ability to attach to the plate surface at both lower temperatures, being spheroidal and free in suspension at 8°C and epithelial-like, spindle-shaped and/or spheroidal at 17.5°C. While phagocytosis at temperatures of 8 and 17.5°C amounted to 85.8 and 83.1% of the activity observed at 37°C, respectively, full phagocytic activity was restored within minutes of translocation into a higher temperature. Bat-derived macrophages were also able to withstand temperatures of -20°C in a cryoprotectant-free cultivation medium and, in the immediate post-thaw period, became viable and were able to proliferate. Our in vitro data enhance understanding of macrophage biology.

Zobrazit více v PubMed

Andrews MT. Advances in molecular biology of hibernation in mammals. BioEssays. (2007) 29:431–40. 10.1002/bies.20560 PubMed DOI

Carey HV, Andrews MT, Martin SL. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev. (2003) 83:1153–81. 10.1152/physrev.00008.2003 PubMed DOI

Xu Y, Shao C, Fedorov VB, Goropashnaya AV, Barnes BM, Yan J. Molecular signatures of mammalian hibernation: comparisons with alternative phenotypes. BMC Genom. (2013) 14:1–13. 10.1186/1471-2164-14-567 PubMed DOI PMC

Dietz M, Kalko EKV. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton's bats (Myotis daubentonii). J Comp Physiol B. (2006) 176:223–31. 10.1007/s00360-005-0043-x PubMed DOI

Lausen CL, Barclayr MR. Thermoregulation and roost selection by reproductive female big brown bats (Eptesicus fuscus) roosting in rock crevices. J Zool. (2003) 260:235–44. 10.1017/S0952836903003686 DOI

Wojciechowski MS, Jefimow M, Tegowska E. Environmental conditions, rather than season, determine torpor use and temperature selection in large mouse-eared bats (Myotis myotis). Comp Biochem Physiol A Mol Integr Physiol. (2007) 147:828–40. 10.1016/j.cbpa.2006.06.039 PubMed DOI

Bouma HR, Carey HV, Kroese FG. Hibernation: the immune system at rest? J Leukoc Biol. (2010) 88:619–24. 10.1189/jlb.0310174 PubMed DOI

Boyer BB, Barnes BM. Molecular and metabolic aspects of mammalian hibernation: expression of the hibernation phenotype results from the coordinated regulation of multiple physiological and molecular events during preparation for and entry into torpor. Bioscience. (1999) 49:713–24. 10.2307/1313595 DOI

McNab BK. The behavior of temperate cave bats in a subtropical environment. Ecology. (1974) 55:943–58. 10.2307/1940347 DOI

Bartonicka T, Bandouchova H, Berkova H, Blazek J, Lucan R, Horacek I, et al. . Deeply torpid bats can change position without elevation of body temperature. J Therm Biol. (2017) 63:119–23. 10.1016/j.jtherbio.2016.12.005 PubMed DOI

Blazek J, Zukal J, Bandouchova H, Berkova H, Kovacova V, Martinkova N, et al. . Numerous cold arousals and rare arousal cascades as a hibernation strategy in European Myotis bats. J Therm Biol. (2019) 82:150–6. 10.1016/j.jtherbio.2019.04.002 PubMed DOI

Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL. et al. Bat white-nose syndrome: an emerging fungal pathogen? Science. (2009) 323:227–227. 10.1126/science.1163874 PubMed DOI

Bachorec E, Bartonička T, Heger T, Pikula J, Zukal J. Cold arousal-A mechanism used by hibernating bats to reduce the energetic costs of disturbance. J Therm Biol. (2021) 101:103107. 10.1016/j.jtherbio.2021.103107 PubMed DOI

Luis AD, Hudson PJ. Hibernation patterns in mammals: a role for bacterial growth? Funct Ecol. (2006) 20:471–7. 10.1111/j.1365-2435.2006.01119.x DOI

Bouma HR, Strijkstra AM, Talaei F, Henning RH, Carey HV, Kroese FG. The hibernating immune system. In: Ruf T, Bieber C, Arnold W, Millesi E, editors. Living in a Seasonal World. Springer: Berlin; (2012). p. 259–70.

Heger T, Zukal J, Seidlova V, Nemcova M, Necas D, Papezikova I, et al. . Measurement of phagocyte activity in heterotherms. Acta Vet Brno. (2020) 89:79–87. 10.2754/avb202089010079 DOI

Pikula J, Heger T, Bandouchova H, Kovacova V, Nemcova M, Papezikova I, et al. . Phagocyte activity reflects mammalian homeo-and hetero-thermic physiological states. BMC Vet Res. (2020) 16:1–13. 10.1186/s12917-020-02450-z PubMed DOI PMC

Ruf T, Geiser F. Daily torpor and hibernation in birds and mammals. Biol Rev. (2015) 90:891–926. 10.1111/brv.12137 PubMed DOI PMC

Webb PI, Speakman JR, Racey PA. How hot is a hibernaculum? A review of the temperatures at which bats hibernate. Can J Zool. (1996) 74:761–5. 10.1139/z96-087 DOI

Meteyer CU, Barber D, Mandl JN. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome. Virulence. (2012) 3:583–8. 10.4161/viru.22330 PubMed DOI PMC

Maniero GD. Ground squirrel splenic macrophages bind lipopolysaccharide over a wide range of temperatures at all phases of their annual hibernation cycle. Comp Immunol Microbiol Infect Dis. (2005) 28:297–309. 10.1016/j.cimid.2005.08.001 PubMed DOI

Prendergast BJ, Freeman DA, Zucker I, Nelson RJ. Periodic arousal from hibernation is necessary for initiation of immune responses in ground squirrels. Am J Physiol Regul Integr Comp Physiol. (2002) 282:R1054–62. 10.1152/ajpregu.00562.2001 PubMed DOI

Uribe-Querol E, Rosales C. Phagocytosis: our current understanding of a universal biological process. Front Immunol. (2020) 11:1066. 10.3389/fimmu.2020.01066 PubMed DOI PMC

Gordon S, Plüddemann A. Tissue macrophages: heterogeneity and functions. BMC Biol. (2017) 15:1–18. 10.1186/s12915-017-0392-4 PubMed DOI PMC

Gordon S. The macrophage: past, present and future. Eur J Immunol. (2007) 37:9–17. 10.1002/eji.200737638 PubMed DOI

O'Neill LAJ, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. J Exp Med. (2015) 213:15–23. 10.1084/jem.20151570 PubMed DOI PMC

Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. (2011) 11:723–37. 10.1038/nri3073 PubMed DOI PMC

Kacprzyk J, Hughes GM, Palsson-McDermott EM, Quinn SR, Puechmaille SJ, O'neill LA, et al. . A potent anti-inflammatory response in bat macrophages may be linked to extended longevity and viral tolerance. Acta Chiropt. (2017) 19:219–28. 10.3161/15081109ACC2017.19.2.001 DOI

Douglas SD, Douglas AG. Structure, receptors, and functions of monocytes and macrophages. In: Kaushansky K, Lichtman MA, Prchal JT, Levi M, Press O, Burns L, Caligiuri M, editors. Williams Hematology. 9th ed. New York, NY: McGraw-Hill Education; (2015).

Pohanka M, Snopkova S, Havlickova K, Bostik P, Sinkorova Z, Fusek J, et al. . Macrophage-assisted inflammation and pharmacological regulation of the cholinergic anti-inflammatory pathway. Curr Med Chem. (2011) 18:539–51. 10.2174/092986711794480140 PubMed DOI

Flieger M, Bandouchova H, Cerny J, Chudíčková M, Kolarik M, Kovacova V. et al. Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection. Sci Rep. (2016) 6:33200. 10.1038/srep33200 PubMed DOI PMC

Frick WF, Pollock JF, Hicks AC, Langwig KE, Reynolds DS, Turner GG, et al. . An emerging disease causes regional population collapse of a common North American bat species. Science. (2010) 329:679–82. 10.1126/science.1188594 PubMed DOI

Mandl JN, Ahmed R, Barreiro LB, Daszak P, Epstein JH, Virgin HW, et al. . Reservoir host immune responses to emerging zoonotic viruses. Cell. (2015) 160:20–35. 10.1016/j.cell.2014.12.003 PubMed DOI PMC

Mandl JN, Schneider C, Schneider DS, Baker ML. Going to bat (s) for studies of disease tolerance. Front Immunol. (2018) 9:2112. 10.3389/fimmu.2018.02112 PubMed DOI PMC

Martinkova N, Pikula J, Zukal J, Kovacova V, Bandouchova H, Bartonička T, et al. . Hibernation temperature-dependent Pseudogymnoascus destructans infection intensity in Palearctic bats. Virulence. (2018) 9:1734–50. 10.1080/21505594.2018.1548685 PubMed DOI PMC

Pikula J, Amelon SK, Bandouchova H, Bartonička T, Berkova H, Brichta J, et al. . White-nose syndrome pathology grading in Nearctic and Palearctic bats. PLoS ONE. (2017) 12:e0180435. 10.1371/journal.pone.0180435 PubMed DOI PMC

Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev. (2006) 19:531–45. 10.1128/CMR.00017-06 PubMed DOI PMC

Davy CM, Donaldson ME, Bandouchova H, Breit AM, Dorville NAS, Dzal YA, et al. . Transcriptional host-pathogen responses of Pseudogymnoascus destructans and three species of bats with white-nose syndrome. Virulence. (2020) 11:781–94. 10.1080/21505594.2020.1768018 PubMed DOI PMC

Seidlova V, Nemcova M, Pikula J, Bartonička T, Ghazaryan A, Heger T, et al. . Urinary shedding of leptospires in Palearctic bats. Transbound Emerg Dis. (2021) 68:3089–95. 10.1111/tbed.14011 PubMed DOI

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. . A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. (2020) 579:270–3. 10.1038/s41586-020-2012-7 PubMed DOI PMC

Abdelsalam EEE, Bandouchova H, Heger T, Kanova M, Kobelkova K, Němcová M, et al. . Polychlorinated biphenyl toxicity in the thyroid gland of wild ungulates: an in vitro model. Acta Vet Brno. (2020) 89:151–62. 10.2754/avb202089020151 DOI

Bandouchova H, Bartonička T, Berkova H, Brichta J, Kokurewicz T, Kovacova V, et al. . Alterations in the health of hibernating bats under pathogen pressure. Sci Rep. (2018) 8:6067. 10.1038/s41598-018-24461-5 PubMed DOI PMC

He X, Korytár T, Zhu Y, Pikula J, Bandouchova H, Zukal J, et al. . Establishment of Myotis myotis cell lines-model for investigation of host-pathogen interaction in a natural host for emerging viruses. PLoS ONE. (2014) 9:e109795. 10.1371/journal.pone.0109795 PubMed DOI PMC

Horsthemke M, Bachg AC, Groll K, Moyzio S, Müther B, Hemkemeyer SA, et al. . Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion. J Biol Chem. (2017) 292:7258–73. 10.1074/jbc.M116.766923 PubMed DOI PMC

Yancey PH, Somero GN. Temperature dependence of intracellular pH: its role in the conservation of pyruvate apparentK m values of vertebrate lactate dehydrogenases. J Comp Physiol. (1978) 125:129–34. 10.1007/BF00686748 DOI

Chang-Liu CM, Woloschak GE. Effect of passage number on cellular response to DNA-damaging agents: cell survival and gene expression. Cancer Lett. (1997) 113:77–86. 10.1016/S0304-3835(97)04599-0 PubMed DOI

Warheit DB, Hill LH, Brody AR. Surface morphology and correlated phagocytic capacity of pulmonary macrophages lavaged from the lungs of rats. Exp Lung Res. (1984) 6:71–82. 10.3109/01902148409087896 PubMed DOI

Tamura Y, Monden M, Shintani M, Kawai A, Shiomi H. Neuroprotective effects of hibernation-regulating substances against low-temperature-induced cell death in cultured hamster hippocampal neurons. Brain Res. (2006) 1108:107–16. 10.1016/j.brainres.2006.06.020 PubMed DOI

Mazur P. Kinetics of water loss from cells at sub-zero temperatures and the likelihood of intracellular freezing. J Gen Physiol. (1963) 47:347–69. 10.1085/jgp.47.2.347 PubMed DOI PMC

Stephenson NG. Effects of temperature on reptilian and other cells. Embryol Exp Morph. (1966) 16:455–67. 10.1242/dev.16.3.455 PubMed DOI

Schmidt EP, Kuebler WM, Lee WL, Downey GP. Adhesion molecules: master controllers of the circulatory system. Compr Physiol. (2011) 2:945–73. 10.1002/cphy.c150020 PubMed DOI

Ungai-Salánki R, Peter B, Gerecsei T, Orgovan N, Horvath R, Szabó B. A practical review on the measurement tools for cellular adhesion force. Adv Colloid Interface Sci. (2019) 269:309–33. 10.1016/j.cis.2019.05.005 PubMed DOI

Mylvaganam S, Freeman SA, Grinstein S. The cytoskeleton in phagocytosis and macropinocytosis. Curr Biol. (2021) 31:R619–32. 10.1016/j.cub.2021.01.036 PubMed DOI

Medalia O, Beck M, Ecke M, Weber I, Neujahr R, Baumeister W, et al. . Organization of actin networks in intact filopodia. Curr Biol. (2007) 17:79–84. 10.1016/j.cub.2006.11.022 PubMed DOI

Brown EJ, Gresham HD. Cytoskeleton in phagocytosis. In: Paul WE, editor. Fundamental Immunology. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; (2003).

Winokur R, Hartwig JH. Mechanism of shape change in chilled human platelets. Blood. (1995) 85:1796–804. 10.1182/blood.V85.7.1796.bloodjournal8571796 PubMed DOI

Kuznetsova EV, Feoktistova NY, Naidenko SV, Surov AV, Tikhonova NB, Kozlovskii JE. Seasonal changes in blood cells and biochemical parameters in the Mongolian hamster (Allocricetulus curtatus). Biol Bul. (2016) 43:344–9. 10.1134/S1062359016040087 PubMed DOI

Mazur P, Farrant J, Leibo SP, Chu EHY. Survival of hamster tissue culture cells after freezing and thawing: interactions between protective solutes and cooling and warming rates. Cryobiology. (1969) 6:1–9. 10.1016/S0011-2240(69)80002-7 PubMed DOI

Shima A, Matsuda R. The expression of myogenin, but not of MyoD, is temperature-sensitive in mouse skeletal muscle cells. Zoolog Sci. (2008) 25:1066–74. 10.2108/zsj.25.1066 PubMed DOI

Burdon RH. Temperature and animal cell protein synthesis. Symp Soc Exp Biol. (1987) 41:113–33. PubMed

Harding RL, Halevy O, Yahav S, Velleman SG. The effect of temperature on proliferation and differentiation of chicken skeletal muscle satellite cells isolated from different muscle types. Physiol Rep. (2016) 4:e12770. 10.14814/phy2.12770 PubMed DOI PMC

Fujita J. Cold shock response in mammalian cells. J Mol Microbiol Biotechnol. (1999) 1:243–55. PubMed

Leibo SP, Farrant J, Mazur P, Hanna Jr, Smith LH. Effects of freezing on marrow stem cell suspensions: interactions of cooling and warming rates in the presence of pvp, sucrose, or glycerol. Cryobiology. (1970) 6:315–32. 10.1016/S0011-2240(70)80086-4 PubMed DOI

Lake NC. An investigation into the effects of cold upon the body. Lancet. (1917) 2:557–62. 10.1016/S0140-6736(00)44847-6 DOI

Fuller B, Green C, Grischenko VI. Cooling, cryopreservation and gene expression in mammalian cells. Probl Cryobiol Cryomed. (2004) 3:58–71. PubMed

Zukal J, Bandouchova H, Brichta J, Cmokova A, Jaron KS, Kolarik M, et al. . White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci Rep. (2016) 6:1–17. 10.1038/srep19829 PubMed DOI PMC

Lorch JM, Meteyer CU, Behr MJ, Boyles JG, Cryan PM, Hicks AC, et al. . Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature. (2011) 480:376–8. 10.1038/nature10590 PubMed DOI

Lin HH, Faunce DE, Stacey M, Terajewicz A, Nakamura T, Zhang-Hoover J, et al. . The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J Exp Med. (2005) 201:1615–25. 10.1084/jem.20042307 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace