Alterations in the health of hibernating bats under pathogen pressure

. 2018 Apr 17 ; 8 (1) : 6067. [epub] 20180417

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29666436
Odkazy

PubMed 29666436
PubMed Central PMC5904171
DOI 10.1038/s41598-018-24461-5
PII: 10.1038/s41598-018-24461-5
Knihovny.cz E-zdroje

In underground hibernacula temperate northern hemisphere bats are exposed to Pseudogymnoascus destructans, the fungal agent of white-nose syndrome. While pathological and epidemiological data suggest that Palearctic bats tolerate this infection, we lack knowledge about bat health under pathogen pressure. Here we report blood profiles, along with body mass index (BMI), infection intensity and hibernation temperature, in greater mouse-eared bats (Myotis myotis). We sampled three European hibernacula that differ in geomorphology and microclimatic conditions. Skin lesion counts differed between contralateral wings of a bat, suggesting variable exposure to the fungus. Analysis of blood parameters suggests a threshold of ca. 300 skin lesions on both wings, combined with poor hibernation conditions, may distinguish healthy bats from those with homeostatic disruption. Physiological effects manifested as mild metabolic acidosis, decreased glucose and peripheral blood eosinophilia which were strongly locality-dependent. Hibernating bats displaying blood homeostasis disruption had 2 °C lower body surface temperatures. A shallow BMI loss slope with increasing pathogen load suggested a high degree of infection tolerance. European greater mouse-eared bats generally survive P. destructans invasion, despite some health deterioration at higher infection intensities (dependant on hibernation conditions). Conservation measures should minimise additional stressors to conserve constrained body reserves of bats during hibernation.

Zobrazit více v PubMed

Graham AL, et al. Fitness consequences of immune responses: strengthening the empirical framework for ecoimmunology. Funct. Ecol. 2011;25:5–17. doi: 10.1111/j.1365-2435.2010.01777.x. DOI

Lochmiller RL, Deerenberg C. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos. 2000;88:87–98. doi: 10.1034/j.1600-0706.2000.880110.x. DOI

Sheldon BC, Verhulst S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. & Evol. 1996;11:317–321. doi: 10.1016/0169-5347(96)10039-2. PubMed DOI

Stearns SC. Life-history tactics: a review of the ideas. Q. Rev. Biol. 1976;51:3–47. doi: 10.1086/409052. PubMed DOI

Costantini D, Møller AP. Does immune response cause oxidative stress in birds? A meta-analysis. Comp. Biochem. Phys. A. 2009;153:339–344. doi: 10.1016/j.cbpa.2009.03.010. PubMed DOI

Norris K, Evans MR. Ecological immunology: life history trade-offs and immune defense in birds. Behav. Ecol. 2000;11:19–26. doi: 10.1093/beheco/11.1.19. DOI

Turbill C, Bieber C, Ruf T. Hibernation is associated with increased survival and the evolution of slow life histories among mammals. P. Roy. Soc. B: Biol. Sci. 2011;278:3355–3363. doi: 10.1098/rspb.2011.0190. PubMed DOI PMC

Humphries MM, Thomas DW, Speakman JR. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature. 2002;418:313–316. doi: 10.1038/nature00828. PubMed DOI

Moore MS, et al. Energy conserving thermoregulatory patterns and lower disease severity in a bat resistant to the impacts of white-nose syndrome. J. Comp. Physiol. B. 2018;188:163–176. doi: 10.1007/s00360-017-1109-2. PubMed DOI

Cryan P, Meteyer C, Boyles J, Blehert D. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol. 2010;8:135. doi: 10.1186/1741-7007-8-135. PubMed DOI PMC

Blehert DS, et al. Bat white-nose syndrome: an emerging fungal pathogen? Science. 2009;323:227. doi: 10.1126/science.1163874. PubMed DOI

Gargas A, Trest MT, Christensen M, Volk TJ, Blehert DS. Geomyces destructans sp nov associated with bat white-nose syndrome. Mycotaxon. 2009;108:147–154. doi: 10.5248/108.147. DOI

Frick WF, et al. An emerging disease causes regional population collapse of a common North American bat species. Science. 2010;329:679–682. doi: 10.1126/science.1188594. PubMed DOI

Lorch JM, et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature. 2011;480:376–378. doi: 10.1038/nature10590. PubMed DOI

Coleman JTH, Reichard JD. Bat white-nose syndrome in 2014: A brief assessment seven years after discovery of a virulent fungal pathogen in North America. Outlooks on Pest Management. 2014;25:374–377. doi: 10.1564/v25_dec_08. DOI

Lorch JM, et al. First detection of bat white-nose syndrome in Western North America. mSphere. 2016;1:e00148–16. doi: 10.1128/mSphere.00148-16. PubMed DOI PMC

Martínková N, et al. Increasing incidence of Geomyces destructans fungus in bats from the Czech Republic and Slovakia. PLoS ONE. 2010;5:e13853. doi: 10.1371/journal.pone.0013853. PubMed DOI PMC

Pikula J, et al. Histopathology confirms white-nose syndrome in bats in Europe. J. Wildlife Dis. 2012;48:207–211. doi: 10.7589/0090-3558-48.1.207. PubMed DOI

Pikula J, et al. White-nose syndrome pathology grading in Nearctic and Palearctic bats. PLoS ONE. 2017;12:e0180435. doi: 10.1371/journal.pone.0180435. PubMed DOI PMC

Zukal J, et al. White-nose syndrome fungus: a generalist pathogen of hibernating bats. PLoS ONE. 2014;9:e97224. doi: 10.1371/journal.pone.0097224. PubMed DOI PMC

Zukal J, et al. White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci. Rep.-UK. 2016;6:19829. doi: 10.1038/srep19829. PubMed DOI PMC

Bandouchova H, et al. Pseudogymnoascus destructans: Evidence of virulent skin invasion for bats under natural conditions, Europe. Transbound. Emerg. Dis. 2015;62:1–5. doi: 10.1111/tbed.12282. PubMed DOI

Meteyer CU, et al. Histopathologic criteria to confirm white-nose syndrome in bats. J. Vet. Diagn. Invest. 2009;21:411–414. doi: 10.1177/104063870902100401. PubMed DOI

Field KA, et al. The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown myotis. PLoS Pathol. 2015;11:e1005168. doi: 10.1371/journal.ppat.1005168. PubMed DOI PMC

Mascuch SJ, et al. Direct detection of fungal siderophores on bats with white-nose syndrome via fluorescence microscopy-guided ambient ionization mass spectrometry. PLoS ONE. 2015;10:e0119668. doi: 10.1371/journal.pone.0119668. PubMed DOI PMC

O’Donoghue AJ, et al. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. P. Natl. Acad. Sci. 2015;112:7478–7483. doi: 10.1073/pnas.1507082112. PubMed DOI PMC

Flieger M, et al. Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection. Sci. Rep.-UK. 2016;6:33200. doi: 10.1038/srep33200. PubMed DOI PMC

Blehert DS. Fungal disease and the developing story of bat white-nose syndrome. PLoS Pathol. 2012;8:e1002779. doi: 10.1371/journal.ppat.1002779. PubMed DOI PMC

Verant ML, et al. White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. BMC Physiol. 2014;14:10. doi: 10.1186/s12899-014-0010-4. PubMed DOI PMC

Reeder DM, et al. Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome. PLoS ONE. 2012;7:e38920. doi: 10.1371/journal.pone.0038920. PubMed DOI PMC

Cryan PM, et al. Electrolyte depletion in white-nose syndrome bats. J. Wildlife Dis. 2013;49:398–402. doi: 10.7589/2012-04-121. PubMed DOI

Warnecke L, et al. Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality. Biol. Letters. 2013;9:20130177. doi: 10.1098/rsbl.2013.0177. PubMed DOI PMC

Warnecke L, et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. P. Natl. Acad. Sci. 2012;109:6999–7003. doi: 10.1073/pnas.1200374109. PubMed DOI PMC

Campana MG, et al. White-Nose Syndrome Fungus in a 1918 Bat Specimen from France. Emerg. Infect. Dis. 2017;23:1611–1612. doi: 10.3201/eid2309.170875. PubMed DOI PMC

Zahradníková, A. J. et al. Historic and geographic surveillance of Pseudogymnoascus destructans possible from collections of bat parasites. Transbound. Emerg. Dis. 65, 303-308 (2018). PubMed

Leopardi S, Blake D, Puechmaille SJ. White-Nose Syndrome fungus introduced from Europe to North America. Curr. Biol. 2015;25:R217–R219. doi: 10.1016/j.cub.2015.01.047. PubMed DOI

Drees KP, et al. Phylogenetics of a Fungal Invasion: Origins and Widespread Dispersal of White-Nose Syndrome. mBio. 2017;8:e01941–01917. doi: 10.1128/mBio.01941-17. PubMed DOI PMC

Schneider DS, Ayres JS. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat. Review Immunol. 2008;8:889–895. doi: 10.1038/nri2432. PubMed DOI PMC

Raberg L, Graham AL, Read AF. Decomposing health: tolerance and resistance to parasites in animals. Philos. T. Roy. Soc. B. 2009;364:37–49. doi: 10.1098/rstb.2008.0184. PubMed DOI PMC

Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science. 2012;335:936–941. doi: 10.1126/science.1214935. PubMed DOI PMC

Behnke JM, Barnard CJ, Wakelin D. Understanding chronic nematode infections: Evolutionary considerations, current hypotheses and the way forward. Int. J. Parasitol. 1992;22:861–907. doi: 10.1016/0020-7519(92)90046-N. PubMed DOI

Kutzer MAM, Armitage SAO. Maximising fitness in the face of parasites: a review of host tolerance. Zoology. 2016;119:281–289. doi: 10.1016/j.zool.2016.05.011. PubMed DOI

Urbanczyk, Z. Significance of the Nietoperek Reserve for Central European populations of Myotis myotis (Mammalia: Chiroptera) in Prague Studies in Mammalogy (eds. Horáček, I. & Vohralík, V.) 213–215 (Charles University Press, 1992).

Řehák Z, Gaisler. J. Long-term changes in the number of bats in the largest man-made hibernaculum of the Czech Republic. Acta Chiropterol. 1999;1:113–123.

Zukal J, Řehák Z, Kovařík M. Bats of the Sloupsko-šošůvské cave (Moravian Karst, Central Moravia) Lynx. 2003;34:205–220.

Kokurewicz T, Ogórek R, Pusz W, Matkowski K. Bats increase the number of cultivable airborne fungi in the “Nietoperek” bat reserve in western Poland. Microb. Ecol. 2016;72:36–48. doi: 10.1007/s00248-016-0763-3. PubMed DOI PMC

Řehák Z, Gaisler J. Bats wintering in the abandoned mines under the Jelení road near Malá Morávka in the Jeseníky Mts (Czech Republic) Vespertilio. 2001;5:265–270.

Hebelka, J. & Rožnovský, J. (eds). Stanovení závislosti jeskynního mikroklimatu na vnějších klimatických podmínkách ve zpřístupněných jeskyních České republiky [Determination of cave microclimate dependence on external climatic conditions in accessible caves of the Czech Republic]. Acta Speleologica3, (2011). (in Czech).

Brunet-Rossinni, A. K. & Wilkinson, G. S. Methods for age estimation and the study of senescence in bats in Ecological and Behavioral Methods for the Study of Bats (eds Kunz, T. H. & Parsons, S.) 315–325 (The Johns Hopkins University Press, 2009).

Kunz TH, Wrazen JA, Burnett CD. Changes in body mass and fat reserves in pre-hibernating little brown bats (Myotis lucifugus) Ecoscience. 1998;5:8–17. doi: 10.1080/11956860.1998.11682443. DOI

Pikula J, et al. Reproduction of rescued vespertilionid bats (Nyctalus noctula) in captivity: veterinary and physiologic aspects. Vet. Clin. N. Am.: Exotic Animal Practice. 2017;20:665–677. PubMed

Shuey MM, Drees KP, Lindner DL, Keim P, Foster JT. Highly sensitive quantitative PCR for the detection and differentiation of Pseudogymnoascus destructans and other Pseudogymnoascus species. Appl. Environ. Microb. 2014;80:1726–1731. doi: 10.1128/AEM.02897-13. PubMed DOI PMC

Lučan RK, et al. Ectoparasites may serve as vectors for the white-nose syndrome fungus. Parasites Vectors. 2016;9:16. doi: 10.1186/s13071-016-1302-2. PubMed DOI PMC

Turner GG, et al. Nonlethal screening of bat-wing skin with the use of ultraviolet fluorescence to detect lesions indicative of white-nose syndrome. J. Wildlife Dis. 2014;50:566–573. doi: 10.7589/2014-03-058. PubMed DOI

Puechmaille SJ, et al. Pan-european distribution of white-nose syndrome fungus (Geomyces destructans) not associated with mass mortality. PLoS ONE. 2011;6:e19167. doi: 10.1371/journal.pone.0019167. PubMed DOI PMC

Wibbelt G, et al. White-nose syndrome fungus (Geomyces destructans) in bats, Europe. Emerg. Infect. Dis. 2010;16:1237–1243. doi: 10.3201/eid1608.100002. PubMed DOI PMC

Zukal, J., Berková, H., Banďouchová, H., Kovacova, V. & Pikula, J. Bats and caves: activity and ecology of bats wintering in caves. In: Cave Investigation (eds Karabulut, S. & Cinku, M. C.), InTech, Rijeka, (2017).

Hoyt JR, et al. Widespread bat white-nose syndrome fungus, Northeastern China. Emerg. Infect. Dis. 2016;22:140. doi: 10.3201/eid2201.151314. PubMed DOI PMC

Hayman DTS, Pulliam JRC, Marshall JC, Cryan PM, Webb CT. Environment, host, and fungal traits predict continental-scale white-nose syndrome in bats. Science Advances. 2016;2:e1500831. doi: 10.1126/sciadv.1500831. PubMed DOI PMC

Lilley TM, et al. Immune responses in hibernating little brown myotis (Myotis lucifugus) with white-nose syndrome. Proc. R. Soc. B-Biol. Sci. 2017;284:8. doi: 10.1098/rspb.2016.2232. PubMed DOI PMC

Moore MS, et al. Hibernating Little Brown Myotis (Myotis lucifugus) Show Variable Immunological Responses to White-Nose Syndrome. PLoS One. 2013;8:e58976. doi: 10.1371/journal.pone.0058976. PubMed DOI PMC

Verant ML, Boyles JG, Waldrep W, Jr., Wibbelt G, Blehert DS. Temperature-Dependent Growth of Geomyces destructans, the Fungus That Causes Bat White-Nose Syndrome. PLoS One. 2012;7:e46280. doi: 10.1371/journal.pone.0046280. PubMed DOI PMC

Meteyer CU, et al. Recovery of little brown bats (Myotis lucifugus) from natural infection with Geomyces destructans, white-nose syndrome. J. Wildlife Dis. 2011;47:618–626. doi: 10.7589/0090-3558-47.3.618. PubMed DOI

Meteyer CU, Barber D, Mandl NJ. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome. Virulence. 2012;3:583–588. doi: 10.4161/viru.22330. PubMed DOI PMC

Reichard JD, Kunz TH. White-nose syndrome inflicts lasting injuries to the wings of little brown myotis (Myotis lucifugus) Acta Chiropterol. 2009;11:457–464. doi: 10.3161/150811009X485684. DOI

Fuller NW, et al. Free-ranging little brown myotis (Myotis lucifugus) heal from wing damage associated with white-nose syndrome. EcoHealth. 2011;8:154–162. doi: 10.1007/s10393-011-0705-y. PubMed DOI

Voigt CC. Bat flight with bad wings: Is flight metabolism affected by damaged wings? J. Exp. Biol. 2013;216:1516–1521. doi: 10.1242/jeb.079509. PubMed DOI

Speakman JR. The physiological costs of reproduction in small mammals. Philos. T. Roy. Soc. B. 2008;363:375–398. doi: 10.1098/rstb.2007.2145. PubMed DOI PMC

Jonasson KA, Willis CKR. Changes in body condition of hibernating bats support the thrifty female hypothesis and predict consequences for populations with white-nose syndrome. PLoS ONE. 2011;6:e21061. doi: 10.1371/journal.pone.0021061. PubMed DOI PMC

Davy CM, et al. Conservation implications of physiological carry-over effects in bats recovering from white-nose syndrome. Conserv. Biol. 2017;31:615–624. doi: 10.1111/cobi.12841. PubMed DOI

Francl KE, Ford WM, Sparks DW, Brack VJ. Capture and reproductive trends in summer bat communities in West Virginia: Assessing the impact of white-nose syndrome. J. Fish Wildl. Manag. 2012;3:33–42. doi: 10.3996/062011-JFWM-039. DOI

Bandouchova H, et al. Tularemia induces different biochemical responses in BALB/c mice and common voles. BMC Infect. Dis. 2009;9:101. doi: 10.1186/1471-2334-9-101. PubMed DOI PMC

Boyer B, Barnes B. Molecular and metabolic aspects of mammalian hibernation expression of the hibernation phenotype results from the coordinated regulation of multiple physiological and molecular events during preparation for and entry into torpor. BioScience. 1999;49:713–724. doi: 10.2307/1313595. DOI

McGuire LP, et al. White-nose syndrome disease severity and a comparison of diagnostic methods. EcoHealth. 2016;13:60–71. doi: 10.1007/s10393-016-1107-y. PubMed DOI

Simons CM, Stratton CW, Kim AS. Peripheral blood eosinophilia as a clue to the diagnosis of an occult Coccidioides infection. Hum. Pathol. 2011;42:449–453. doi: 10.1016/j.humpath.2010.09.005. PubMed DOI

Pikula J, et al. Heavy metals and metallothionein in vespertilionid bats foraging over aquatic habitats in the Czech Republic. Environ. Toxicol. Chem. 2010;29:501–506. doi: 10.1002/etc.80. PubMed DOI

Bayat S, Geiser F, Kristiansen P, Wilson SC. Organic contaminants in bats: trends and new issues. Environ. Int. 2014;63:40–52. doi: 10.1016/j.envint.2013.10.009. PubMed DOI

Secord AL, et al. Contaminants of emerging concern in bats from the northeastern United States. Arch. Environ. Con. Tox. 2015;69:411–421. doi: 10.1007/s00244-015-0196-x. PubMed DOI PMC

Zukal J, Pikula J, Bandouchova H. Bats as bioindicators of heavy metal pollution: history and prospect. Mamm. Biol. 2015;80:220–227. doi: 10.1016/j.mambio.2015.01.001. DOI

Holmstrup M, et al. Interactions between effects of environmental chemicals and natural stressors: a review. Sci. Total Environ. 2010;408:3746–3762. doi: 10.1016/j.scitotenv.2009.10.067. PubMed DOI

Speakman JR, Webb PI, Racey PA. Effects of disturbance on the energy expenditure of hibernating bats. J. Appl. Ecol. 1991;28:1087–1104. doi: 10.2307/2404227. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Higher antibody titres against Pseudogymnoascus destructans are associated with less white-nose syndrome skin lesions in Palearctic bats

. 2023 ; 14 () : 1269526. [epub] 20231208

Performance of bat-derived macrophages at different temperatures

. 2022 ; 9 () : 978756. [epub] 20220909

Blood Parasites and Health Status of Hibernating and Non-Hibernating Noctule Bats (Nyctalus noctula)

. 2022 May 14 ; 10 (5) : . [epub] 20220514

Active surveillance for antibodies confirms circulation of lyssaviruses in Palearctic bats

. 2020 Dec 10 ; 16 (1) : 482. [epub] 20201210

Transcriptional host-pathogen responses of Pseudogymnoascus destructans and three species of bats with white-nose syndrome

. 2020 Dec ; 11 (1) : 781-794.

Comparative eco-physiology revealed extensive enzymatic curtailment, lipases production and strong conidial resilience of the bat pathogenic fungus Pseudogymnoascus destructans

. 2020 Oct 05 ; 10 (1) : 16530. [epub] 20201005

Low seasonal variation in greater mouse-eared bat (Myotis myotis) blood parameters

. 2020 ; 15 (7) : e0234784. [epub] 20200707

Phagocyte activity reflects mammalian homeo- and hetero-thermic physiological states

. 2020 Jul 06 ; 16 (1) : 232. [epub] 20200706

Resistance is futile: RNA-sequencing reveals differing responses to bat fungal pathogen in Nearctic Myotis lucifugus and Palearctic Myotis myotis

. 2019 Oct ; 191 (2) : 295-309. [epub] 20190910

Hibernation temperature-dependent Pseudogymnoascus destructans infection intensity in Palearctic bats

. 2018 Dec 31 ; 9 (1) : 1734-1750.

White-nose syndrome detected in bats over an extensive area of Russia

. 2018 Jun 18 ; 14 (1) : 192. [epub] 20180618

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace