Alterations in the health of hibernating bats under pathogen pressure
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29666436
PubMed Central
PMC5904171
DOI
10.1038/s41598-018-24461-5
PII: 10.1038/s41598-018-24461-5
Knihovny.cz E-zdroje
- MeSH
- Ascomycota fyziologie MeSH
- Chiroptera krev mikrobiologie fyziologie MeSH
- hibernace * MeSH
- index tělesné hmotnosti MeSH
- interakce hostitele a patogenu * MeSH
- kožní nemoci krev mikrobiologie patologie veterinární MeSH
- mykózy krev mikrobiologie patologie veterinární MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In underground hibernacula temperate northern hemisphere bats are exposed to Pseudogymnoascus destructans, the fungal agent of white-nose syndrome. While pathological and epidemiological data suggest that Palearctic bats tolerate this infection, we lack knowledge about bat health under pathogen pressure. Here we report blood profiles, along with body mass index (BMI), infection intensity and hibernation temperature, in greater mouse-eared bats (Myotis myotis). We sampled three European hibernacula that differ in geomorphology and microclimatic conditions. Skin lesion counts differed between contralateral wings of a bat, suggesting variable exposure to the fungus. Analysis of blood parameters suggests a threshold of ca. 300 skin lesions on both wings, combined with poor hibernation conditions, may distinguish healthy bats from those with homeostatic disruption. Physiological effects manifested as mild metabolic acidosis, decreased glucose and peripheral blood eosinophilia which were strongly locality-dependent. Hibernating bats displaying blood homeostasis disruption had 2 °C lower body surface temperatures. A shallow BMI loss slope with increasing pathogen load suggested a high degree of infection tolerance. European greater mouse-eared bats generally survive P. destructans invasion, despite some health deterioration at higher infection intensities (dependant on hibernation conditions). Conservation measures should minimise additional stressors to conserve constrained body reserves of bats during hibernation.
Department of Botany and Zoology Masaryk University Brno Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Graham AL, et al. Fitness consequences of immune responses: strengthening the empirical framework for ecoimmunology. Funct. Ecol. 2011;25:5–17. doi: 10.1111/j.1365-2435.2010.01777.x. DOI
Lochmiller RL, Deerenberg C. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos. 2000;88:87–98. doi: 10.1034/j.1600-0706.2000.880110.x. DOI
Sheldon BC, Verhulst S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. & Evol. 1996;11:317–321. doi: 10.1016/0169-5347(96)10039-2. PubMed DOI
Stearns SC. Life-history tactics: a review of the ideas. Q. Rev. Biol. 1976;51:3–47. doi: 10.1086/409052. PubMed DOI
Costantini D, Møller AP. Does immune response cause oxidative stress in birds? A meta-analysis. Comp. Biochem. Phys. A. 2009;153:339–344. doi: 10.1016/j.cbpa.2009.03.010. PubMed DOI
Norris K, Evans MR. Ecological immunology: life history trade-offs and immune defense in birds. Behav. Ecol. 2000;11:19–26. doi: 10.1093/beheco/11.1.19. DOI
Turbill C, Bieber C, Ruf T. Hibernation is associated with increased survival and the evolution of slow life histories among mammals. P. Roy. Soc. B: Biol. Sci. 2011;278:3355–3363. doi: 10.1098/rspb.2011.0190. PubMed DOI PMC
Humphries MM, Thomas DW, Speakman JR. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature. 2002;418:313–316. doi: 10.1038/nature00828. PubMed DOI
Moore MS, et al. Energy conserving thermoregulatory patterns and lower disease severity in a bat resistant to the impacts of white-nose syndrome. J. Comp. Physiol. B. 2018;188:163–176. doi: 10.1007/s00360-017-1109-2. PubMed DOI
Cryan P, Meteyer C, Boyles J, Blehert D. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol. 2010;8:135. doi: 10.1186/1741-7007-8-135. PubMed DOI PMC
Blehert DS, et al. Bat white-nose syndrome: an emerging fungal pathogen? Science. 2009;323:227. doi: 10.1126/science.1163874. PubMed DOI
Gargas A, Trest MT, Christensen M, Volk TJ, Blehert DS. Geomyces destructans sp nov associated with bat white-nose syndrome. Mycotaxon. 2009;108:147–154. doi: 10.5248/108.147. DOI
Frick WF, et al. An emerging disease causes regional population collapse of a common North American bat species. Science. 2010;329:679–682. doi: 10.1126/science.1188594. PubMed DOI
Lorch JM, et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature. 2011;480:376–378. doi: 10.1038/nature10590. PubMed DOI
Coleman JTH, Reichard JD. Bat white-nose syndrome in 2014: A brief assessment seven years after discovery of a virulent fungal pathogen in North America. Outlooks on Pest Management. 2014;25:374–377. doi: 10.1564/v25_dec_08. DOI
Lorch JM, et al. First detection of bat white-nose syndrome in Western North America. mSphere. 2016;1:e00148–16. doi: 10.1128/mSphere.00148-16. PubMed DOI PMC
Martínková N, et al. Increasing incidence of Geomyces destructans fungus in bats from the Czech Republic and Slovakia. PLoS ONE. 2010;5:e13853. doi: 10.1371/journal.pone.0013853. PubMed DOI PMC
Pikula J, et al. Histopathology confirms white-nose syndrome in bats in Europe. J. Wildlife Dis. 2012;48:207–211. doi: 10.7589/0090-3558-48.1.207. PubMed DOI
Pikula J, et al. White-nose syndrome pathology grading in Nearctic and Palearctic bats. PLoS ONE. 2017;12:e0180435. doi: 10.1371/journal.pone.0180435. PubMed DOI PMC
Zukal J, et al. White-nose syndrome fungus: a generalist pathogen of hibernating bats. PLoS ONE. 2014;9:e97224. doi: 10.1371/journal.pone.0097224. PubMed DOI PMC
Zukal J, et al. White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci. Rep.-UK. 2016;6:19829. doi: 10.1038/srep19829. PubMed DOI PMC
Bandouchova H, et al. Pseudogymnoascus destructans: Evidence of virulent skin invasion for bats under natural conditions, Europe. Transbound. Emerg. Dis. 2015;62:1–5. doi: 10.1111/tbed.12282. PubMed DOI
Meteyer CU, et al. Histopathologic criteria to confirm white-nose syndrome in bats. J. Vet. Diagn. Invest. 2009;21:411–414. doi: 10.1177/104063870902100401. PubMed DOI
Field KA, et al. The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown myotis. PLoS Pathol. 2015;11:e1005168. doi: 10.1371/journal.ppat.1005168. PubMed DOI PMC
Mascuch SJ, et al. Direct detection of fungal siderophores on bats with white-nose syndrome via fluorescence microscopy-guided ambient ionization mass spectrometry. PLoS ONE. 2015;10:e0119668. doi: 10.1371/journal.pone.0119668. PubMed DOI PMC
O’Donoghue AJ, et al. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. P. Natl. Acad. Sci. 2015;112:7478–7483. doi: 10.1073/pnas.1507082112. PubMed DOI PMC
Flieger M, et al. Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection. Sci. Rep.-UK. 2016;6:33200. doi: 10.1038/srep33200. PubMed DOI PMC
Blehert DS. Fungal disease and the developing story of bat white-nose syndrome. PLoS Pathol. 2012;8:e1002779. doi: 10.1371/journal.ppat.1002779. PubMed DOI PMC
Verant ML, et al. White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. BMC Physiol. 2014;14:10. doi: 10.1186/s12899-014-0010-4. PubMed DOI PMC
Reeder DM, et al. Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome. PLoS ONE. 2012;7:e38920. doi: 10.1371/journal.pone.0038920. PubMed DOI PMC
Cryan PM, et al. Electrolyte depletion in white-nose syndrome bats. J. Wildlife Dis. 2013;49:398–402. doi: 10.7589/2012-04-121. PubMed DOI
Warnecke L, et al. Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality. Biol. Letters. 2013;9:20130177. doi: 10.1098/rsbl.2013.0177. PubMed DOI PMC
Warnecke L, et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. P. Natl. Acad. Sci. 2012;109:6999–7003. doi: 10.1073/pnas.1200374109. PubMed DOI PMC
Campana MG, et al. White-Nose Syndrome Fungus in a 1918 Bat Specimen from France. Emerg. Infect. Dis. 2017;23:1611–1612. doi: 10.3201/eid2309.170875. PubMed DOI PMC
Zahradníková, A. J. et al. Historic and geographic surveillance of Pseudogymnoascus destructans possible from collections of bat parasites. Transbound. Emerg. Dis. 65, 303-308 (2018). PubMed
Leopardi S, Blake D, Puechmaille SJ. White-Nose Syndrome fungus introduced from Europe to North America. Curr. Biol. 2015;25:R217–R219. doi: 10.1016/j.cub.2015.01.047. PubMed DOI
Drees KP, et al. Phylogenetics of a Fungal Invasion: Origins and Widespread Dispersal of White-Nose Syndrome. mBio. 2017;8:e01941–01917. doi: 10.1128/mBio.01941-17. PubMed DOI PMC
Schneider DS, Ayres JS. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat. Review Immunol. 2008;8:889–895. doi: 10.1038/nri2432. PubMed DOI PMC
Raberg L, Graham AL, Read AF. Decomposing health: tolerance and resistance to parasites in animals. Philos. T. Roy. Soc. B. 2009;364:37–49. doi: 10.1098/rstb.2008.0184. PubMed DOI PMC
Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science. 2012;335:936–941. doi: 10.1126/science.1214935. PubMed DOI PMC
Behnke JM, Barnard CJ, Wakelin D. Understanding chronic nematode infections: Evolutionary considerations, current hypotheses and the way forward. Int. J. Parasitol. 1992;22:861–907. doi: 10.1016/0020-7519(92)90046-N. PubMed DOI
Kutzer MAM, Armitage SAO. Maximising fitness in the face of parasites: a review of host tolerance. Zoology. 2016;119:281–289. doi: 10.1016/j.zool.2016.05.011. PubMed DOI
Urbanczyk, Z. Significance of the Nietoperek Reserve for Central European populations of Myotis myotis (Mammalia: Chiroptera) in Prague Studies in Mammalogy (eds. Horáček, I. & Vohralík, V.) 213–215 (Charles University Press, 1992).
Řehák Z, Gaisler. J. Long-term changes in the number of bats in the largest man-made hibernaculum of the Czech Republic. Acta Chiropterol. 1999;1:113–123.
Zukal J, Řehák Z, Kovařík M. Bats of the Sloupsko-šošůvské cave (Moravian Karst, Central Moravia) Lynx. 2003;34:205–220.
Kokurewicz T, Ogórek R, Pusz W, Matkowski K. Bats increase the number of cultivable airborne fungi in the “Nietoperek” bat reserve in western Poland. Microb. Ecol. 2016;72:36–48. doi: 10.1007/s00248-016-0763-3. PubMed DOI PMC
Řehák Z, Gaisler J. Bats wintering in the abandoned mines under the Jelení road near Malá Morávka in the Jeseníky Mts (Czech Republic) Vespertilio. 2001;5:265–270.
Hebelka, J. & Rožnovský, J. (eds). Stanovení závislosti jeskynního mikroklimatu na vnějších klimatických podmínkách ve zpřístupněných jeskyních České republiky [Determination of cave microclimate dependence on external climatic conditions in accessible caves of the Czech Republic]. Acta Speleologica3, (2011). (in Czech).
Brunet-Rossinni, A. K. & Wilkinson, G. S. Methods for age estimation and the study of senescence in bats in Ecological and Behavioral Methods for the Study of Bats (eds Kunz, T. H. & Parsons, S.) 315–325 (The Johns Hopkins University Press, 2009).
Kunz TH, Wrazen JA, Burnett CD. Changes in body mass and fat reserves in pre-hibernating little brown bats (Myotis lucifugus) Ecoscience. 1998;5:8–17. doi: 10.1080/11956860.1998.11682443. DOI
Pikula J, et al. Reproduction of rescued vespertilionid bats (Nyctalus noctula) in captivity: veterinary and physiologic aspects. Vet. Clin. N. Am.: Exotic Animal Practice. 2017;20:665–677. PubMed
Shuey MM, Drees KP, Lindner DL, Keim P, Foster JT. Highly sensitive quantitative PCR for the detection and differentiation of Pseudogymnoascus destructans and other Pseudogymnoascus species. Appl. Environ. Microb. 2014;80:1726–1731. doi: 10.1128/AEM.02897-13. PubMed DOI PMC
Lučan RK, et al. Ectoparasites may serve as vectors for the white-nose syndrome fungus. Parasites Vectors. 2016;9:16. doi: 10.1186/s13071-016-1302-2. PubMed DOI PMC
Turner GG, et al. Nonlethal screening of bat-wing skin with the use of ultraviolet fluorescence to detect lesions indicative of white-nose syndrome. J. Wildlife Dis. 2014;50:566–573. doi: 10.7589/2014-03-058. PubMed DOI
Puechmaille SJ, et al. Pan-european distribution of white-nose syndrome fungus (Geomyces destructans) not associated with mass mortality. PLoS ONE. 2011;6:e19167. doi: 10.1371/journal.pone.0019167. PubMed DOI PMC
Wibbelt G, et al. White-nose syndrome fungus (Geomyces destructans) in bats, Europe. Emerg. Infect. Dis. 2010;16:1237–1243. doi: 10.3201/eid1608.100002. PubMed DOI PMC
Zukal, J., Berková, H., Banďouchová, H., Kovacova, V. & Pikula, J. Bats and caves: activity and ecology of bats wintering in caves. In: Cave Investigation (eds Karabulut, S. & Cinku, M. C.), InTech, Rijeka, (2017).
Hoyt JR, et al. Widespread bat white-nose syndrome fungus, Northeastern China. Emerg. Infect. Dis. 2016;22:140. doi: 10.3201/eid2201.151314. PubMed DOI PMC
Hayman DTS, Pulliam JRC, Marshall JC, Cryan PM, Webb CT. Environment, host, and fungal traits predict continental-scale white-nose syndrome in bats. Science Advances. 2016;2:e1500831. doi: 10.1126/sciadv.1500831. PubMed DOI PMC
Lilley TM, et al. Immune responses in hibernating little brown myotis (Myotis lucifugus) with white-nose syndrome. Proc. R. Soc. B-Biol. Sci. 2017;284:8. doi: 10.1098/rspb.2016.2232. PubMed DOI PMC
Moore MS, et al. Hibernating Little Brown Myotis (Myotis lucifugus) Show Variable Immunological Responses to White-Nose Syndrome. PLoS One. 2013;8:e58976. doi: 10.1371/journal.pone.0058976. PubMed DOI PMC
Verant ML, Boyles JG, Waldrep W, Jr., Wibbelt G, Blehert DS. Temperature-Dependent Growth of Geomyces destructans, the Fungus That Causes Bat White-Nose Syndrome. PLoS One. 2012;7:e46280. doi: 10.1371/journal.pone.0046280. PubMed DOI PMC
Meteyer CU, et al. Recovery of little brown bats (Myotis lucifugus) from natural infection with Geomyces destructans, white-nose syndrome. J. Wildlife Dis. 2011;47:618–626. doi: 10.7589/0090-3558-47.3.618. PubMed DOI
Meteyer CU, Barber D, Mandl NJ. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome. Virulence. 2012;3:583–588. doi: 10.4161/viru.22330. PubMed DOI PMC
Reichard JD, Kunz TH. White-nose syndrome inflicts lasting injuries to the wings of little brown myotis (Myotis lucifugus) Acta Chiropterol. 2009;11:457–464. doi: 10.3161/150811009X485684. DOI
Fuller NW, et al. Free-ranging little brown myotis (Myotis lucifugus) heal from wing damage associated with white-nose syndrome. EcoHealth. 2011;8:154–162. doi: 10.1007/s10393-011-0705-y. PubMed DOI
Voigt CC. Bat flight with bad wings: Is flight metabolism affected by damaged wings? J. Exp. Biol. 2013;216:1516–1521. doi: 10.1242/jeb.079509. PubMed DOI
Speakman JR. The physiological costs of reproduction in small mammals. Philos. T. Roy. Soc. B. 2008;363:375–398. doi: 10.1098/rstb.2007.2145. PubMed DOI PMC
Jonasson KA, Willis CKR. Changes in body condition of hibernating bats support the thrifty female hypothesis and predict consequences for populations with white-nose syndrome. PLoS ONE. 2011;6:e21061. doi: 10.1371/journal.pone.0021061. PubMed DOI PMC
Davy CM, et al. Conservation implications of physiological carry-over effects in bats recovering from white-nose syndrome. Conserv. Biol. 2017;31:615–624. doi: 10.1111/cobi.12841. PubMed DOI
Francl KE, Ford WM, Sparks DW, Brack VJ. Capture and reproductive trends in summer bat communities in West Virginia: Assessing the impact of white-nose syndrome. J. Fish Wildl. Manag. 2012;3:33–42. doi: 10.3996/062011-JFWM-039. DOI
Bandouchova H, et al. Tularemia induces different biochemical responses in BALB/c mice and common voles. BMC Infect. Dis. 2009;9:101. doi: 10.1186/1471-2334-9-101. PubMed DOI PMC
Boyer B, Barnes B. Molecular and metabolic aspects of mammalian hibernation expression of the hibernation phenotype results from the coordinated regulation of multiple physiological and molecular events during preparation for and entry into torpor. BioScience. 1999;49:713–724. doi: 10.2307/1313595. DOI
McGuire LP, et al. White-nose syndrome disease severity and a comparison of diagnostic methods. EcoHealth. 2016;13:60–71. doi: 10.1007/s10393-016-1107-y. PubMed DOI
Simons CM, Stratton CW, Kim AS. Peripheral blood eosinophilia as a clue to the diagnosis of an occult Coccidioides infection. Hum. Pathol. 2011;42:449–453. doi: 10.1016/j.humpath.2010.09.005. PubMed DOI
Pikula J, et al. Heavy metals and metallothionein in vespertilionid bats foraging over aquatic habitats in the Czech Republic. Environ. Toxicol. Chem. 2010;29:501–506. doi: 10.1002/etc.80. PubMed DOI
Bayat S, Geiser F, Kristiansen P, Wilson SC. Organic contaminants in bats: trends and new issues. Environ. Int. 2014;63:40–52. doi: 10.1016/j.envint.2013.10.009. PubMed DOI
Secord AL, et al. Contaminants of emerging concern in bats from the northeastern United States. Arch. Environ. Con. Tox. 2015;69:411–421. doi: 10.1007/s00244-015-0196-x. PubMed DOI PMC
Zukal J, Pikula J, Bandouchova H. Bats as bioindicators of heavy metal pollution: history and prospect. Mamm. Biol. 2015;80:220–227. doi: 10.1016/j.mambio.2015.01.001. DOI
Holmstrup M, et al. Interactions between effects of environmental chemicals and natural stressors: a review. Sci. Total Environ. 2010;408:3746–3762. doi: 10.1016/j.scitotenv.2009.10.067. PubMed DOI
Speakman JR, Webb PI, Racey PA. Effects of disturbance on the energy expenditure of hibernating bats. J. Appl. Ecol. 1991;28:1087–1104. doi: 10.2307/2404227. DOI
Performance of bat-derived macrophages at different temperatures
Blood Parasites and Health Status of Hibernating and Non-Hibernating Noctule Bats (Nyctalus noctula)
Active surveillance for antibodies confirms circulation of lyssaviruses in Palearctic bats
Low seasonal variation in greater mouse-eared bat (Myotis myotis) blood parameters
Phagocyte activity reflects mammalian homeo- and hetero-thermic physiological states
White-nose syndrome detected in bats over an extensive area of Russia