Low seasonal variation in greater mouse-eared bat (Myotis myotis) blood parameters

. 2020 ; 15 (7) : e0234784. [epub] 20200707

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32634149

The greater mouse-eared bat (Myotis myotis) is a flagship species for the protection of hibernation and summer maternity roosts in the Western Palearctic region. A range of pathogenic agents is known to put pressure on populations, including the white-nose syndrome fungus, for which the species shows the highest prevalence and infection intensity of all European bat species. Here, we perform analysis of blood parameters characteristic for the species during its natural annual life cycle in order to establish reference values. Despite sexual dimorphism and some univariate differences, the overall multivariate pattern suggests low seasonal variation with homeostatic mechanisms effectively regulating haematology and blood biochemistry ranges. Overall, the species displayed a high haematocrit and haemoglobin content and high concentration of urea, while blood glucose levels in swarming and hibernating bats ranged from hypo- to normoglycaemic. Unlike blood pH, concentrations of electrolytes were wide ranging. To conclude, baseline data for blood physiology are a useful tool for providing suitable medical care in rescue centres, for studying population health in bats adapting to environmental change, and for understanding bat responses to stressors of conservation and/or zoonotic importance.

Zobrazit více v PubMed

Coroiu I, Juste J, Paunović M. Myotis myotis. The IUCN Red List of Threatened Species. 2016; e.T14133A22051759 Available from: 10.2305/IUCN.UK.2016-2.RLTS.T14133A22051759.en. DOI

Hock RJ, The metabolic rates and body temperatures of bats. Biol. Bull.1951; 101: 289–299.

Webb PI, Speakman JR, Racey PA. How hot is a hibernaculum? A review of the temperatures at which bats hibernate. Can. J. Zool. 1996; 74: 761–765.

Perry RW. A review of factors affecting cave climates for hibernating bats in temperate North America. Environ. Rev. 2013; 21: 28–39.

Jonasson KA, Willis CKR. Hibernation energetics of free-ranging little brown bats. J. Exp. Biol. 2012; 215: 2141–2149. 10.1242/jeb.066514 PubMed DOI

Bartonicka T, Bandouchova H, Berkova H, Blazek J, Lucan R, Horacek I, et al. Deeply torpid bats can change position without elevation of body temperature. J. Therm. Biol. 2017; 63: 119–123. 10.1016/j.jtherbio.2016.12.005 PubMed DOI

Willis CKR. Trade-offs influencing the Physiological Ecology of Hibernation in Temperate-Zone Bats. Integr. Comp. Biol. 2017; 57: 1214–1224. 10.1093/icb/icx087 PubMed DOI

Carey HV, Andrews MT, Martin SL. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 2003; 83: 1153–1181. 10.1152/physrev.00008.2003 PubMed DOI

Andrews MT. Advances in molecular biology of hibernation in mammals. Bioessays. 2007; 29: 431–440. 10.1002/bies.20560 PubMed DOI

Xu Y, Shao C, Fedorov V, Goropashnaya A, Barnes B, Yan J. Molecular signatures of mammalian hibernation: comparisons with alternative phenotypes. BMC Genomics. 2013; 14: 567 10.1186/1471-2164-14-567 PubMed DOI PMC

Riedesel ML. Blood Physiology In: Wimsatt WA, editor. Biology of Bats. Volume III Academic Press, New York; 1977. pp. 485–517.

Hecht AM, Braun BC, Krause E, Voigt CC, Greenwood AD, Czirják GÁ. Plasma proteomic analysis of active and torpid greater mouse-eared bats (Myotis myotis). Sci. Rep. 2015; 5: 16604 10.1038/srep16604 PubMed DOI PMC

Pikula J, Bandouchova H, Kovacova V, Linhart P, Piacek V, Zukal J. Reproduction of rescued vespertilionid bats (Nyctalus noctula) in captivity: Veterinary and physiological aspects. Vet. Clin. North Am. Exot. Anim. Pract. 2017; 20: 665–677. 10.1016/j.cvex.2016.11.013 PubMed DOI

Bandouchova H, Sedlackova J, Pohanka M, Novotny L, Hubalek M, Treml F, et al. Tularemia induces different biochemical responses in BALB/c mice and common voles. BMC Infect. Dis. 2009; 9: 9 10.1186/1471-2334-9-9 PubMed DOI PMC

Bandouchova H, Bartonička T, Berkova H, Brichta J, Kokurewicz T, Kovacova V, et al. Alterations in the health of hibernating bats under pathogen pressure. Sci. Rep. 2018; 8: 6067 10.1038/s41598-018-24461-5 PubMed DOI PMC

Pikula J, Adam V, Bandouchova H, Beklova M, Horakova J, Horakova H, et al. Blood coagulation times in the European brown hare. Vet. Clin. Pathol. 2007; 36: 361–363. 10.1111/j.1939-165x.2007.tb00442.x PubMed DOI

Bandouchova H, Bartonicka T, Berkova H, Brichta J, Cerny J, Kovacova V, et al. Pseudogymnoascus destructans: Evidence of virulent skin invasion for bats under natural conditions, Europe. Transbound. Emerg. Dis. 2015; 62: 1–5. 10.1111/tbed.12282 PubMed DOI

Pikula J, Bandouchova H, Novotný L, Meteyer CU, Zukal J, Irwin NR, et al. Histopathology confirms white-nose syndrome in bats in Europe. J. Wildl. Dis. 2012; 48: 207–211. 10.7589/0090-3558-48.1.207 PubMed DOI

Pikula J, Amelon SK, Bandouchova H, Bartonička T, Berkova H, Brichta J. et al. White-nose syndrome pathology grading in Nearctic and Palearctic bats. PLoS ONE. 2017; 12: e0180435 10.1371/journal.pone.0180435 PubMed DOI PMC

Zukal J, Bandouchova H, Bartonicka T, Berkova H, Brack V, Brichta J, et al. White-nose syndrome fungus: A generalist pathogen of hibernating bats. PLoS ONE. 2014; 9: e97224 10.1371/journal.pone.0097224 PubMed DOI PMC

Zukal J, Bandouchova H, Brichta J, Cmokova A, Jaron KS, Kolarik M, et al. White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci. Rep. 2016; 6: 19829 10.1038/srep19829 PubMed DOI PMC

Kovacova V, Zukal J, Bandouchova H, Botvinkin AD, Harazim M, Martínková N, et al. White-nose syndrome detected in bats over an extensive area of Russia. BMC Vet. Res. 2018; 14: 192 10.1186/s12917-018-1521-1 PubMed DOI PMC

McMichael L, Edson D, McLaughlin A, Mayer D, Kopp S, Meers J, et al. Haematology and plasma biochemistry of wild black flying-foxes, (Pteropus alecto) in Queensland, Australia. PLoS ONE. 2015; 10: e0125741 10.1371/journal.pone.0125741 PubMed DOI PMC

Brunet-Rossinni AK, Wilkinson GS. Methods for age estimation and the study of senescence in bats In: Kunz TH, Parsons S, editors. Ecological and Behavioral Methods for the Study of Bats. The Johns Hopkins University Press; 2009. pp. 315–325.

Kunz TH, Wrazen JA, Burnett CD. Changes in body mass and fat reserves in pre-hibernating little brown bats (Myotis lucifugus). Ecoscience. 1998; 5: 8–17.

Dietz C, Helversen O, Nill D. Bats of Britain, Europe & Northwest Africa. 1st ed London: A & C Black Publishers Ltd; 2009.

Le S, Josse J, Husson F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008; 25: 1–18.

Kassambara A, Mundt F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.5. 2017; https://CRAN.R-project.org/package=factoextra.

Huang Z., Whelan C.V., Foley N.M., Jebb D., Touzalin F. Petit E.J. et al. Longitudinal comparative transcriptomics reveals unique mechanisms underlying extended healthspan in bats. Nature Ecol. & Evol. 2019; 3: 1110–1120. PubMed

Lei M., Dong D., Mu S., Pan Y.-H., Zhang S. Comparison of brain transcriptome of the greater horseshoe bats (Rhinolophus ferrumequinum) in active and torpid episodes. PLoS ONE. 2014; 9: e107746 10.1371/journal.pone.0107746 PubMed DOI PMC

Xiao Y., Wu Y., Sun K., Wang H., Zhang B., Song S., et al. Differential Expression of Hepatic Genes of the Greater Horseshoe Bat (Rhinolophus ferrumequinum) between the Summer Active and Winter Torpid States. PLoS ONE. 2015; 10: e0145702 10.1371/journal.pone.0145702 PubMed DOI PMC

Woods HA, Wilson JK. An information hypothesis for the evolution of homeostasis. Trends Ecol. Evol. 2013; 28: 283–289. 10.1016/j.tree.2012.10.021 PubMed DOI

Teeling EC, Springer MS, Madsen O, Bates P, Brien SJ, Murphy WJ. A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record. Science. 2005; 307: 580–584. 10.1126/science.1105113 PubMed DOI

Shen Y-Y, Liang L, Zhu Z-H, Zhou W-P, Irwin DM, Zhang Y-P. Adaptive evolution of energy metabolism genes and the origin of flight in bats. PNAS. 2010; 107: 8666–8671. 10.1073/pnas.0912613107 PubMed DOI PMC

Arevalo F., Perez-Suarez G., Lopez-Luna P. Seasonal changes in blood parameters in the bat species Rhinolophus ferrumequinum and Miniopterus schreibersi. Arch. Int. Physiol. Biochim. Biophys. 1992; 100: 385–387. 10.3109/13813459209000730 PubMed DOI

Kovalchuk L, Mishchenko V, Chernaya L, Snitko V, Mikshevich N. Blood system of the pond bat (Myotis dasycneme Boie, 1825 Chiroptera: Vespertilionidae) in the Ural Mountains. Zool. Ecol. 2017; 27: 168–175.

Hayman DTS, Pulliam JRC, Marshall JC, Cryan PM, Webb CT. Environment, host, and fungal traits predict continental-scale white-nose syndrome in bats. Sci. Adv. 2016; 2: e1500831 10.1126/sciadv.1500831 PubMed DOI PMC

Lindstedt SL, Schaeffer PJ. Use of allometry in predicting anatomical and physiological parameters of mammals. Lab. Anim. 2002; 36: 1–19. 10.1258/0023677021911731 PubMed DOI

Geffré A, Friedrichs K, Harr K, Concordet D, Trumel C, Braun J-P. Reference values: a review. Vet. Clin. Pathol. 2009; 38: 288–298. 10.1111/j.1939-165X.2009.00179.x PubMed DOI

Hajkova P, Pikula J. Veterinary treatment of evening bats (Vespertilionidae) in the Czech Republic. Vet. Rec. 2007; 161: 139–140. 10.1136/vr.161.4.139 PubMed DOI

Becker DJ, Albery GF, Kessler MK, Lunn TJ, Falvo CA, Czirják GÁ, et al. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J. Anim. Ecol. 2020; 89: 972–995. 10.1111/1365-2656.13166 PubMed DOI PMC

Kokurewicz T, Apoznanski G, Gyselings R, Kirkpatrick L, de Bruyn L, Haddow J, et al. 45 years of bat study and conservation in Nietoperek bat reserve (Western Poland). Nyctalus. 2019; 3: 252–269.

Heard DJ, Huft VJ. The effects of short-term physical restraint and isoflurane anesthesia on hematology and plasma biochemistry in the island flying fox (Pteropus hypomelanus). J. Zoo Wildl. Med. 1998; 29: 14–17. PubMed

Strobel S, Becker NI, Encarnação JA. No short-term effect of handling and capture stress on immune responses of bats assessed by bacterial killing assay. Mamm. Biol. 2015; 80: 312–315. 10.1016/j.mambio.2015.02.005 PubMed DOI PMC

Studier EH, Viele DP, Sevick SH. Nutritional implications for nitrogen and mineral budgets from analysis of guano of the big brown bat Eptesicus fuscus (Chiroptera: Vespertilionidae). Comp. Biochem. Physiol. A Physiol. 1991; 100: 1035–1039. PubMed

Ben-Hamo M, Muñoz-Garcia A, Pinshow B. Physiological Responses to Fasting in Bats In: McCue MD, editor. Comparative Physiology of Fasting, Starvation, and Food Limitation. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. pp. 257–275.

Bassett JE. Role of urea in the postprandial urine concentration cycle of the insectivorous bat Antrozous pallidus. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 2004; 137: 271–284. 10.1016/j.cbpb.2003.10.002 PubMed DOI

Meng F, Zhu L, Huang W, Irwin DM, Zhang S. Bats: Body mass index, forearm mass index, blood glucose levels and SLC2A2 genes for diabetes. Sci. Rep. 2016; 6: 29960 10.1038/srep29960 PubMed DOI PMC

Maina JN, King AS. Correlations between structure and function in the design of the bat lung: a morphometric study. J. Exp. Biol. 1984; 111: 43–61. PubMed

Musacchia X, Volkert W. Blood gases in hibernating and active ground squirrels: HbO2 affinity at 6 and 38 C. Am. J. Physiol. 1971; 221: 128–130. 10.1152/ajplegacy.1971.221.1.128 PubMed DOI

Rodríguez-Durán A, Padilla-Rodríguez E. Blood characteristics, heart mass, and wing morphology of Antillean bats. Caribb. J. Sci. 2008; 44: 375–379.

Wolk E, Bogdanowicz W. Hematology of the hibernating bat: Myotis daubentonii. Comp. Biochem. Physiol. A Physiol. 1987; 88: 637–639. PubMed

Cryan PM, Meteyer CU, Blehert DS, Lorch JM, Reeder DM, Turner GG, et al. Electrolyte depletion in white-nose syndrome bats. J. Wildlife Dis. 2013; 49: 398–402. PubMed

Warnecke L, Turner JM, Bollinger TK, Misra V, Cryan PM, Blehert DS, et al. Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality. Biol. Letters. 2013; 9: 20130177. PubMed PMC

Davy CM, Mastromonaco GF, Riley JL, Baxter-Gilbert JH, Mayberry H, Willis CKR. Conservation implications of physiological carry-over effects in bats recovering from white-nose syndrome. Conserv. Biol. 2017; 31: 615–624. 10.1111/cobi.12841 PubMed DOI

Francl KE, Ford WM, Sparks DW, Brack VJ. Capture and reproductive trends in summer bat communities in West Virginia: Assessing the impact of white-nose syndrome. J. Fish Wildl. Manag. 2012; 3: 33–42.

Fuller NW, Reichard JD, Nabhan ML, Fellows SR, Pepin LC, Kunz TH. Free-ranging little brown myotis (Myotis lucifugus) heal from wing damage associated with white-nose syndrome. EcoHealth. 2011; 8, 154–162. 10.1007/s10393-011-0705-y PubMed DOI

Meteyer CU, Valent M, Kashmer J, Buckles EL, Lorch JM, Blehert DS, et al. Recovery of little brown bats (Myotis lucifugus) from natural infection with Geomyces destructans, white-nose syndrome. J. Wildl. Dis. 2011; 47: 618–626. 10.7589/0090-3558-47.3.618 PubMed DOI

Meteyer CU, Barber D, Mandl NJ. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome. Virulence. 2012; 3: 583–588. 10.4161/viru.22330 PubMed DOI PMC

Reichard JD, Kunz TH. White-nose syndrome inflicts lasting injuries to the wings of little brown myotis (Myotis lucifugus). Acta Chiropt. 2009; 11: 457–464.

Voigt CC. Bat flight with bad wings: Is flight metabolism affected by damaged wings? J. Exp. Biol. 2013; 216: 1516–1521. 10.1242/jeb.079509 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...