Tularemia induces different biochemical responses in BALB/c mice and common voles
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
19558687
PubMed Central
PMC2711074
DOI
10.1186/1471-2334-9-101
PII: 1471-2334-9-101
Knihovny.cz E-zdroje
- MeSH
- antioxidancia metabolismus MeSH
- Arvicolinae mikrobiologie MeSH
- cholesterol metabolismus MeSH
- metabolismus lipidů MeSH
- myši inbrední BALB C mikrobiologie MeSH
- myši MeSH
- nemoci hlodavců metabolismus mikrobiologie MeSH
- triglyceridy metabolismus MeSH
- tularemie metabolismus mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- antioxidancia MeSH
- cholesterol MeSH
- triglyceridy MeSH
BACKGROUND: Both BALB/c mice and common voles (Microtus arvalis) are considered highly susceptible to tularemia. However, the common vole is reported to harbour Francisella tularensis in European habitats as well as to survive longer with chronic shedding of the bacterium. The purpose of the present study was to compare the response of these two rodents to a wild Francisella tularensis subsp. holarctica strain infection. METHODS: Rodents were evaluated for differences in the total antioxidant capacity derived from low-molecular-weight antioxidants, biochemistry including lipid metabolism, tissue bacterial burdens and histopathology following experimental intraperitoneal infection with 160 colony forming units (CFU) pro toto. RESULTS: Bacterial burdens in common voles started to develop later post-exposure and amounted to lower levels than in BALB/c mice. Elevation of liver function enzymes was more pronounced in mice than common voles and there were marked differences in lipid metabolism in the course of tularemia in these two species. Hypertriglyceridemia and hypercholesterolemia developed in mice, while physiologically higher levels of triglycerides and cholesterol showed a decreasing tendency in common voles. On the other hand, the total plasma antioxidant capacity gradually dropped to 81.5% in mice on day 5 post-infection, while it increased to 130% on day 6 post-infection in common voles. Significant correlations between tissue bacterial burdens and several biochemical parameters were found. CONCLUSION: As differences in lipid metabolism and the total antioxidant capacity of highly susceptible rodent species were demonstrated, the role of triglycerides, cholesterol and antioxidants in tularemic sepsis should be further investigated.
Zobrazit více v PubMed
Kaysser P, Seibold E, Mätz-Rensing K, Pfeffer M, Essbauer S, Splettstoesser WD. Re-emergence of tularemia in Germany: Presence of Francisella tularensis in different rodent species in endemic areas. BMC Infect Dis. 2008;8:157. doi: 10.1186/1471-2334-8-157. PubMed DOI PMC
Petersen JM, Schriefer ME. Tularemia: emergence/re-emergence. Vet Res. 2005;36:455–467. doi: 10.1051/vetres:2005006. PubMed DOI
Pikula J, Treml F, Beklova M, Holesovska Z, Pikulova J. Ecological conditions of natural foci of tularaemia in the Czech Republic. Eur J Epidemiol. 2003;18:1091–1095. doi: 10.1023/A:1026141619810. PubMed DOI
Ellis J, Oyston PCF, Green M, Titball RW. Tularemia. Clin Microbiol Rev. 2002;15:631–646. doi: 10.1128/CMR.15.4.631-646.2002. PubMed DOI PMC
Treml F, Pikula J, Bandouchova H, Horakova J. European brown hare as a potential source of zoonotic agents. Veterinarni Medicina. 2007;52(10):451–456.
Pullen RL, Stuart BM. Tularaemia: analysis of 225 cases. J Am Med Assoc. 1945;129:495–500.
Mares CA, Ojeda SS, Morris EG, Li Q, Teale JM. Initial delay in the immune response to Francisella is followed by hypercytokinemia characteristic of severe sepsis and correlating with upregulation and release of damage-associated molecular patterns. Infect Immun. 2008;76(7):3001–3010. doi: 10.1128/IAI.00215-08. PubMed DOI PMC
Conlan JW, Chen WX, Shen H, Webb A, KuoLee R. Experimental tularemia in mice challenged by aerosol or intradermally with virulent strains of Francisella tularensis: bacteriologic and histopathologic studies. Microb Pathogenesis. 2003;34:239–248. doi: 10.1016/S0882-4010(03)00046-9. PubMed DOI
Chen WX, KuoLee R, Shen H, Conlan JW. Susceptibility of immunodeficient mice to aerosol and systemic infection with virulent strains of Francisella tularensis. Microb Pathogenesis. 2004;36:311–318. doi: 10.1016/j.micpath.2004.02.003. PubMed DOI
Emanuel PA, Bell R, Dang JL, McClanahan R, David JC, Burgess RJ, Thompson J, Collins L, Hadfield T. Detection of Francisella tularensis within infected mouse tissues by using a hand-held PCR thermocycler. J Clin Microbiol. 2003;41(2):689–693. doi: 10.1128/JCM.41.2.689-693.2003. PubMed DOI PMC
Van Amersfoort ES, Van Berkel TJC, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev. 2003;16:379–414. doi: 10.1128/CMR.16.3.379-414.2003. PubMed DOI PMC
Tripp RJ, Tabares A, Wang H, Lanza-Jacoby S. Altered hepatic production of apolipoproteins B and E in the fasted septic rat: factors in the development of hypertriglyceridemia. J Surg Res. 1993;55:465–472. doi: 10.1006/jsre.1993.1170. PubMed DOI
Lindgren H, Stenmark S, Chen WX, Tarnvik A, Sjostedt A. Distinct roles of reactive nitrogen and oxygen species to control infection with the facultative intracellular bacterium Francisella tularensis. Infect Immun. 2004;72:7172–7182. doi: 10.1128/IAI.72.12.7172-7182.2004. PubMed DOI PMC
Lindgren H, Shen H, Zingmark C, Golovliov I, Conlan W, Sjostedt A. Resistance of Francisella tularensis strains against reactive nitrogen and oxygen species with special reference to the role of KatG. Infect Immun. 2007;75:1303–1309. doi: 10.1128/IAI.01717-06. PubMed DOI PMC
Guina T, Radulovic D, Bahrami AJ, Bolton DL, Rohmer L, Jones-Isaac KA, Chen J, Gallagher LA, Gallis B, Ryu S, Taylor GK, Brittnacher MJ, Manoil C, Goodlett DR. MglA regulates Francisella tularensis subsp novicida (Francisella novicida) response to starvation and oxidative stress. J Bacteriol. 2007;189:6580–6586. doi: 10.1128/JB.00809-07. PubMed DOI PMC
Andersson H, Hartmanova B, Ryden P, Noppa L, Naslund L, Sjostedt A. A microarray analysis of the murine macrophage response to infection with Francisella tularensis LVS. J Med Microbiol. 2006;55:1023–1033. doi: 10.1099/jmm.0.46553-0. PubMed DOI
Chevion S, Roberts MA, Chevion M. The use of cyclic voltammetry for the evaluation of antioxidant capacity. Free Radic Biol Med. 2000;28:860–870. doi: 10.1016/S0891-5849(00)00178-7. PubMed DOI
Psotova J, Zahalkova J, Hrbac J, Simanek V, Bartek J. Determination of total antioxidant capacity in plasma by cyclic voltammetry. Two case reports. Biomed Papers. 2001;145:81–83. PubMed
Dunaeva TN, Olsufyev NG. The possibility of a latent or chronic course of tularemia in water voles and other animal species highly susceptible to that infection. Zool Zhurnal. 1958;37:430–440.
Bell JF, Stewart SJ. Chronic shedding tularemia nephritis in rodents: possible relation to occurrence of Francisella tularensis in lotic waters. J Wildlife Dis. 1975;11:421–430. PubMed
Petersen JM, Schriefer ME, Carter LG, Zhou Y, Sealy T, Bawiec D, Yockey B, Urich S, Zeidner NS, Avashia S, Kool JL, Buck J, Lindley C, Celeda L, Monteneiri JA, Gage KL, Chu MC. Laboratory analysis of tularemia in wild-trapped, commercially traded prairie dogs, Texas, 2002. Emerg Infect Dis. 2004;10:419–425. PubMed PMC
Shlygina KN, Baranovsky PM, Ananova EV, Olsufyev NG. On the possibility of the atypical course of tularemia (persistence) in common voles (Microtus arvalis Pall) Zh Mikrobiol Epidemiol Immunobiol. 1987;3:26–29. PubMed
Shlygina KN, Ananova EV, Olsufyev NG. To the problem of some mechanisms of the formation of chronic tularemia in highly sensitive species of animals (Microtus rossiae-meridionalis) Zh Mikrobiol Epidemiol Immunobiol. 1989;4:17–21. PubMed
Gurycova D, Vyrostekova V, Khanakah G, Kocianova E, Stanek G. Importance of surveillance of tularemia natural foci in the known endemic area of Central Europe, 1991–1997. Wien Klin Wochenschr. 2001;113:433–438. PubMed
Vyrostekova V, Khanakah G, Kocianova E, Gurycova D, Stanek G. Prevalence of coinfection with Francisella tularensis in reservoir animals of Borrelia burgdorferi sensu lato. Wien Klin Wochenschr. 2002;114:482–488. PubMed
Hernychova L, Stulik J, Halada P, Macela A, Kroca M, Johansson T, Malina M. Construction of a Francisella tularensis two-dimensional electrophoresis protein database. Proteomics. 2001;1:508–515. doi: 10.1002/1615-9861(200104)1:4<508::AID-PROT508>3.0.CO;2-K. PubMed DOI
Hubalek M, Hernychova L, Brychta M, Lenco J, Zechovska J, Stulik J. Comparative proteome analysis of cellular proteins extracted from highly virulent Francisella tularensis ssp tularensis and less virulent F. tularensis ssp holarctica and F. tularensis ssp mediaasiatica. Proteomics. 2004;4:3048–3060. doi: 10.1002/pmic.200400939. PubMed DOI
Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH. Manual of Clinical Microbiology. 8. Washington: ASM Press; 2003.
Zielinska D, Frias J, Piskula MK, Kozlowska H, Zielinski H. Evaluation of the antioxidant capacity of lupin sprouts germinated in the presence of selenium. Eur Food Res Technol. 2008;227:711–720. doi: 10.1007/s00217-008-0898-7. DOI
Bandouchova H, Sedlackova J, Hubalek M, Pohanka M, Peckova L, Treml F, Vitula F, Pikula J. Susceptibility of selected murine and microtine species to infection by a wild-strain Francisella tularensis subsp. holarctica. Veterinarni Medicina. 2009;54(2):64–74.
Ding WX, Ong CN. Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity. FEMS Microbiol Lett. 2003;220(1):1–7. doi: 10.1016/S0378-1097(03)00100-9. PubMed DOI
Rasmussen JW, Cello J, Gil H, Forestal CA, Furie MB, Thanassi DG, Benach JL. Mac-1(+) cells are the predominant subset in the early hepatic lesions of mice infected with Francisella tularensis. Infect Immun. 2006;74:6590–6598. doi: 10.1128/IAI.00868-06. PubMed DOI PMC
Harris HW, Gosnell JE, Kumwenda ZL. The lipemia of sepsis: triglyceride-rich lipoproteins as agents of innate immunity. J Endotoxin Res. 2000;6:421–430. PubMed
Lanzajacoby S, Tabares A. Triglyceride kinetics, tissue lipoprotein-lipase, and liver lipogenesis in septic rats. Am J Physiol. 1990;258:E678–E685. PubMed
Wendel M, Paul R, Heller AR. Lipoproteins in inflammation and sepsis. II. Clinical aspects. Intens Care Med. 2007;33:25–35. doi: 10.1007/s00134-006-0433-x. PubMed DOI
Feingold KR, Funk JL, Moser AH, Shigenaga JK, Rapp JH, Grunfeld C. Role for circulating lipoproteins in protection from endotoxin toxicity. Infect Immun. 1995;63:2041–2046. PubMed PMC
Andersson H, Hartmanova B, Ryden P, Noppa L, Naslund L, Sjostedt A. A microarray analysis of the murine macrophage response to infection with Francisella tularensis LVS. J Med Microbiol. 2006;55:1023–1033. doi: 10.1099/jmm.0.46553-0. PubMed DOI
Alkhuder K, Meibom KL, Dubail I, Dupuis M, Charbit A. Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis. PLoS Pathog. 2009;5(1):e1000284. doi: 10.1371/journal.ppat.1000284. PubMed DOI PMC
Mantovani G, Maccio A, Madeddu C, Mura L, Gramignano G, Lusso MR, Mulas C, Mudu M, Murgia V, Camboni P, Massa E, Ferreli L, Contu P, Rinaldi A, Sanjust E, Atzei D, Elsener B. Quantitative evaluation of oxidative stress, chronic inflammatory indices and leptin in cancer patients: correlation with stage and performance status. Int J Cancer. 2002;98:84–91. doi: 10.1002/ijc.10143. PubMed DOI
Chevion S, Or R, Berry EM. The antioxidant status of patients subjected to total body irradiation. Biochem Mol Biol Int. 1999;47:1019–1027. PubMed
Webb C, Lehman T, McCord K, Avery P, Dow S. Oxidative stress during acute FIV infection in cats. Vet Immunol Immunopathol. 2008;122:16–24. doi: 10.1016/j.vetimm.2007.11.004. PubMed DOI
Salvi A, Bruhlmann C, Migliavacca E, Carrupt PA, Hostettmann K, Testa B. Protein protection by antioxidants: development of a convenient assay and structure-activity relationships of natural polyphenols. Helv Chim Acta. 2002;85:867–881. doi: 10.1002/1522-2675(200203)85:3<867::AID-HLCA867>3.0.CO;2-Z. DOI
Kohen R, Vellaichamy E, Hrbac J, Gati I, Tirosh O. Quantification of the overall reactive oxygen species scavenging capacity of biological fluids and tissues. Free Radic Biol Med. 2000;28:871–879. doi: 10.1016/S0891-5849(00)00191-X. PubMed DOI
Low seasonal variation in greater mouse-eared bat (Myotis myotis) blood parameters
Reproductive toxicity of fluoroquinolones in birds
Alterations in the health of hibernating bats under pathogen pressure
Role of oxidative stress in infectious diseases. A review
Galantamine effect on tularemia pathogenesis in a BALB/c mouse model