Reproductive toxicity of fluoroquinolones in birds
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
232/2017/FVHE
Veterinární a Farmaceutická Univerzita Brno
PubMed
31226987
PubMed Central
PMC6588855
DOI
10.1186/s12917-019-1957-y
PII: 10.1186/s12917-019-1957-y
Knihovny.cz E-zdroje
- Klíčová slova
- Antibiotics, Avian embryonic heart rate, Enrofloxacin, Hatchability, Marbofloxacin, Pre-term hatching, Reproduction,
- MeSH
- antiinfekční látky toxicita MeSH
- enrofloxacin toxicita MeSH
- fluorochinolony toxicita MeSH
- hypoproteinemie chemicky indukované veterinární MeSH
- kur domácí * krev MeSH
- kuřecí embryo účinky léků MeSH
- nemoci drůbeže chemicky indukované MeSH
- rozmnožování účinky léků MeSH
- srdeční frekvence účinky léků MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo účinky léků MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiinfekční látky MeSH
- enrofloxacin MeSH
- fluorochinolony MeSH
- marbofloxacin MeSH Prohlížeč
BACKGROUND: While commercial poultry and captive birds are exposed to antimicrobials through direct medication, environmental pollution may result in contamination of wild birds. Fluoroquinolones are commonly used medications to treat severe avian bacterial infections; however, their adverse effects on birds remain understudied. Here, we examine toxicity of enrofloxacin and marbofloxacin during the egg incubation period using the chicken (Gallus Gallus domesticus) as a model avian species. Laboratory tests were based on eggs injected with 1, 10 and 100 μg of fluoroquinolones per 1 g of egg weight prior to the start of incubation and monitoring of chick blood biochemistry, reproductive parameters and heart rate during incubation. RESULTS: Eggs treated with fluoroquinolones displayed reduced hatchability due to embryonic mortality, particularly on day 13 of incubation. Total hatching success showed a similar pattern, with a significantly reduced hatchability in low and high exposure groups treated with both enrofloxacin and marbofloxacin. From 15 to 67% of chicks hatching in these groups exhibited joint deformities. Hatching one-day pre-term occurred with a prevalence of 31 to 70% in all groups treated with fluoroquinolones. Embryonic heart rate, measured on days 13 and 19 of incubation, increased in all enrofloxacin-treated groups and medium and high dose groups of marbofloxacin-treated eggs. Blood biochemistry of chicks sampled at hatch from medium dose groups showed hypoproteinaemia, decreased uric acid and increased triglycerides. Chicks from the enrofloxacin-treated group displayed mild hyperglycaemia and a two-fold rise in the blood urea nitrogen to uric acid ratio. Principal components analysis based on blood biochemistry clearly separated the control bird cluster from both enrofloxacin- and marbofloxacin-treated birds. CONCLUSIONS: Fluoroquinolones induce complex adverse effects on avian embryonic development, considerably reducing the performance of incubated eggs and hatching chicks. Cardiotoxicity, which quickens embryonic heart rate, meant that the total number of heart beats required for embryogenesis was achieved earlier than in the standard incubation period, resulting in pre-term hatching. Our data suggest that enrofloxacin has a higher potential for adverse effects than marbofloxacin. To conclude, care should be taken to prevent exposure of reproducing birds and their eggs to fluoroquinolones.
Zobrazit více v PubMed
Havelkova B, Beklova M, Kovacova V, Hlavkova D, Pikula J. Ecotoxicity of selected antibiotics for organisms of aquatic and terrestrial ecosystems. Neuroendocrinol Lett. 2016;37(Suppl 1):38–44. PubMed
Sarmah AK, Meyer MT, Boxall AB. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere. 2006;65:725–759. doi: 10.1016/j.chemosphere.2006.03.026. PubMed DOI
Sukul P, Spiteller M. Fluoroquinolone antibiotics in the environment. Rev Environ Contam Toxicol. 2007;191:131–162. PubMed
Van Bambeke F, Michot JM, Van Eldere J, Tulkens PM. Quinolones in 2005: an update. Clin Microbiol Infec. 2005;11:256–280. doi: 10.1111/j.1469-0691.2005.01131.x. PubMed DOI
Brown SA. Fluoroquinolones in animal health. J Vet Pharmacol Ther. 1996;19:1–12. doi: 10.1111/j.1365-2885.1996.tb00001.x. PubMed DOI
Brügger M. Limiting the availability of veterinary pharmaceuticals for food animals due to residual drugs in meat. Schweiz Arch Tierheilk. 2007;149:485–487. PubMed
Sun J, Hu J, Peng H, Shi J, Dong Z. Molecular and physiological characterization of fluoroquinolone resistance in relation to uropathogenicity among Escherichia coli isolates isolated from Wenyu River, China. Chemosphere. 2012;87:37–42. doi: 10.1016/j.chemosphere.2011.11.050. PubMed DOI
Prescott JF, Baggot JD, Walker RD. Antimicrobial therapy in veterinary medicine. 3. Ames: Iowa State University Press; 2000.
Perez MAC, Diaz HG, Teruel CF, Pla-Delfina JM, Sanz MB. A novel approach to determining physicochemical and absorption properties of 6-fluoroquinolone derivatives: experimental assessment. Eur J Pharm Biopharm. 2002;53:317–325. doi: 10.1016/S0939-6411(02)00013-9. PubMed DOI
Fry DM. Reproductive effects in birds exposed to pesticides and industrial chemicals. Environ Health Persp. 1995;103:165–171. PubMed PMC
Fry DM, Toone CK. DDT-induced feminization of gull embryos. Science. 1981;213:922–924. doi: 10.1126/science.7256288. PubMed DOI
Dauwe T, Jaspers VLB, Covaci A, Eens M. Accumulation of organochlorines and brominated flame retardants in the eggs and nestlings of great tits, Parus major. Environ Sci Technol. 2006;40:5297–5303. doi: 10.1021/es060747a. PubMed DOI
Pikula J, Hajkova P, Bandouchova H, Bednarova I, Adam V, Beklova M, Kral J, Ondracek K, Osickova J, Pohanka M, Sedlackova J, Skochova H, Sobotka J, Treml F, Kizek R. Lead toxicosis of captive vultures: case description and responses to chelation therapy. BMC Vet Res. 2013;9:11. doi: 10.1186/1746-6148-9-11. PubMed DOI PMC
Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Persp. 1993;101:378–384. doi: 10.1289/ehp.93101378. PubMed DOI PMC
Elliott JE, Wilson LK, Wakeford B. Polybrominated diphenyl ether trends in eggs of marine and freshwater birds from British Columbia, Canada, 1979-2002. Environ Sci Technol. 2005;39:5584–5591. doi: 10.1021/es050496q. PubMed DOI
Norstrom RJ, Simon M, Moisey J, Wakeford B, Weseloh DVC. Geographical distribution (2000) and temporal trends (1981-2000) of brominated diphenyl ethers in Great Lakes herring gull eggs. Environ Sci Technol. 2002;36:4783–4789. doi: 10.1021/es025831e. PubMed DOI
Van den Steen E, Jaspers Veerle LB, Covaci A, Dauwe T, Pinxten R, Neels H, Eens M. Variation, levels and profiles of organochlorines and brominated flame retardants in great tit (Parus major) eggs from different types of sampling locations in Flanders (Belgium) Environ Int. 2008;34:155–161. doi: 10.1016/j.envint.2007.07.014. PubMed DOI
Van den Steen E, Pinxten R, Covaci A, Carere C, Eeva T, Heeb P, Kempenaers B, Lifjeld JT, Massa B, Norte AC, Orell M, Sanz JJ, Senar JC, Sorace A, Eens M. The use of blue tit eggs as a biomonitoring tool for organohalogenated pollutants in the European environment. Sci Total Environ. 2010;408:1451–1457. doi: 10.1016/j.scitotenv.2009.12.028. PubMed DOI
Winter V, Elliott JE, Letcher RJ, Williams TD. Validation of an egg-injection method for embryotoxicity studies in a small, model songbird, the zebra finch (Taeniopygia guttata) Chemosphere. 2013;90:125–131. doi: 10.1016/j.chemosphere.2012.08.017. PubMed DOI
Burger J. Heavy metals in avian eggshells: another excretion method. J Toxicol Environ Health. 1994;41:207–220. doi: 10.1080/15287399409531837. PubMed DOI
Lemus JA, Blanco G, Arroyo B, Martínez F, Grande J. Fatal embryo chondral damage associated with fluoroquinolones in eggs of threatened avian scavengers. Environ Pollut. 2009;157:2421–2427. doi: 10.1016/j.envpol.2009.03.013. PubMed DOI
Powell DC, Aulerich RJ, Meadows JC, Tillitt DE, Stromborg KL, Kubiak TJ, Giesy JP, Bursian SJ. Organochlorine contaminants in double-crested cormorants from Green Bay, Wisconsin: II. Effects of an extract derived from cormorant eggs on the chicken embryo. Arch Environ Contam Toxicol. 1997;32:316–322. doi: 10.1007/s002449900191. PubMed DOI
Pfister K, Mazur D, Vormann J, Stahlmann R. Diminished ciprofloxacin-induced chondrotoxicity by supplementation with magnesium and vitamin E in immature rats. Antimicrob Agents Ch. 2007;51:1022–1027. doi: 10.1128/AAC.01175-06. PubMed DOI PMC
Falagas ME, Rafailidis PI, Rosmarakis ES. Arrhythmias associated with fluoroquinolone therapy. Int J of Antimicrob Ag. 2007;29:374–379. doi: 10.1016/j.ijantimicag.2006.11.011. PubMed DOI
Du WG, Radder RS, Sun B, Shine R. Determinants of incubation period: do reptilian embryos hatch after a fixed total number of heart beats? J Exp Biol. 2009;212:1302–1306. doi: 10.1242/jeb.027425. PubMed DOI
Tazawa H, Pearson JT, Komoro T, Ar A. Allometric relationships between embryonic heart rate and fresh egg mass in birds. J Exp Biol. 2001;204:165–174. PubMed
Vitula F, Peckova L, Bandouchova H, Pohanka M, Novotny L, Jira D, Kral J, Ondracek K, Osickova J, Zendulkova D, Rosenbergova K, Treml F, Pikula J. Mycoplasma gallisepticum infection in the grey partridge (Perdix perdix): outbreak description, histopathology, biochemistry and antioxidant parameters. BMC Vet Res. 2011;7:34. doi: 10.1186/1746-6148-7-34. PubMed DOI PMC
Bandouchova H, Sedlackova J, Pohanka M, Novotny L, Hubalek M, Treml F, Vitula F, Pikula J. Tularemia induces different biochemical responses in BALB/c mice and common voles. BMC Infect Dis. 2009;9:101. doi: 10.1186/1471-2334-9-101. PubMed DOI PMC
Lumeij JT. A contribution to clinical investigative methods for birds, with special reference to the racing pigeon (Columba livia domestica). PhD thesis. Utrecht: Universiteit Utrecht; 1987.
Donoghue DJ. Antibiotic residues in poultry tissues and eggs: human health concerns? Poultry Sci. 2003;82:618–621. doi: 10.1093/ps/82.4.618. PubMed DOI
Ortiz A, Froyman R, Kleven SH. Evaluation of enrofloxacin against egg transmission of Mycoplasma gallisepticum. Avian Dis. 1995;39:830–836. doi: 10.2307/1592420. PubMed DOI
Blanco G, Junza A, Segarra D, Barbosa J, Barrón D. Wildlife contamination with fluoroquinolones from livestock: widespread occurrence of enrofloxacin and marbofloxacin in vultures. Chemosphere. 2016;144:1536–1543. doi: 10.1016/j.chemosphere.2015.10.045. PubMed DOI
Blanco G, Junza A, Barrón D. Occurrence of veterinary pharmaceuticals in golden eagle nestlings: unnoticed scavenging on livestock carcasses and other potential exposure routes. Sci Total Environ. 2017;586:355–361. doi: 10.1016/j.scitotenv.2017.02.023. PubMed DOI
Casas-Díaz E, Cristòfol C, Cuenca R, Agustí S, Carneiro M, et al. Determination of fluoroquinolone antibiotic residues in the plasma of Eurasian griffon vultures (Gyps fulvus) in Spain. Sci Total Environ. 2016;557(558):620–626. doi: 10.1016/j.scitotenv.2016.03.083. PubMed DOI
Blanco G, Junza A, Barrón D. Food safety in scavenger conservation: diet-associated exposure to livestock pharmaceuticals and opportunist mycoses in threatened cinereous and Egyptian vultures. Ecotox Environ Safe. 2017;135:292–301. doi: 10.1016/j.ecoenv.2016.10.009. PubMed DOI
Dalhoff A, Shalit I. Immunomodulatory effects of quinolones. Lancet Infect Dis. 2003;3:359–371. doi: 10.1016/S1473-3099(03)00658-3. PubMed DOI
Mattson MP. Hormesis defined. Ageing Res Rev. 2008;7:1–7. doi: 10.1016/j.arr.2007.08.007. PubMed DOI PMC
Scanes CG, McNabb FMA. Avian models for research in toxicology and endocrine disruption. Avian Poult Biol Rev. 2003;14:21–52. doi: 10.3184/147020603783727021. DOI
Damkova V, Sedlackova J, Bandouchova H, Peckova L, Vitula F, Hilscherova K, Paskova V, Kohoutek J, Pohanka M, Pikula J. Effects of cyanobacterial biomass on avian reproduction: a Japanese quail model. Neuroendocrinol Lett. 2009;30:205–210. PubMed
Bandouchova H, Pohanka M, Kral J, Ondracek K, Osickova J, Damkova V, Vitula F, Treml F, Pikula J. Effects of sublethal exposure of European brown hares to paraoxon on the course of tularemia. Neuroendocrinol Lett. 2011;32:77–83. PubMed
Peckova L, Bandouchova H, Hilscherova K, Damkova V, Sedlackova J, Vitula F, Paskova V, Pohanka M, Kohoutek J, Pikula J. Biochemical responses of juvenile and adult Japanese quails to cyanobacterial biomass. Neuroendocrinol Lett. 2009;30:199–204. PubMed
Diclofenac-induced cytotoxicity in cultured carp leukocytes