Lead toxicosis of captive vultures: case description and responses to chelation therapy

. 2013 Jan 16 ; 9 () : 11. [epub] 20130116

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23324224

BACKGROUND: Lead, a serious threat for raptors, can hamper the success of their conservation. This study reports on experience with accidental lead intoxication and responses to chelation therapy in captive Cinereous (Aegypius monachus) and Egyptian (Neophron percnopterus) Vultures. RESULTS: Soil contamination by lead-based paint sanded off the steel aviary resulted in poisoning of eight Cinereous and two Egyptian Vultures. A male Egyptian Vulture developed signs of apathy, polydipsia, polyuria, regurgitation, and stupor, and died on the next day. Liver, kidney and blood lead concentrations were 12.2, 8.16 and 2.66 μg/g, respectively. Laboratory analyses confirmed severe liver and kidney damage and anaemia. Blood Pb levels of Pb-exposed Cinereous Vultures were 1.571 ± 0.510 μg/g shortly after intoxication, decreased to 0.530 ± 0.165 μg/g without any therapy in a month and to 0.254 ± 0.097 μg/g one month after CaNa(2)EDTA administration. Eight months later, blood lead levels decreased to close to the background of the control group. Blood parameters of healthy Pb-non-exposed Cinereous Vultures were compared with those of the exposed group prior to and after chelation therapy. Iron levels in the lead-exposed pre-treatment birds significantly decreased after chelation. Haematocrit levels in Pb-exposed birds were significantly lower than those of the controls and improved one month after chelation. Creatine kinase was higher in pre-treatment birds than in the controls but normalised after therapy. Alkaline phosphatase increased after chelation. A marked increase in the level of lipid peroxidation measured as thiobarbituric acid reactive species was demonstrated in birds both prior to and after chelation. The ferric reducing antioxidant power was significantly lower in pre-treatment vultures and returned to normal following chelation therapy. Blood metallothionein levels in lead-exposed birds were higher than in controls. Reduced glutathione dropped after CaNa(2)EDTA therapy, while oxidised glutathione was significantly lower in both pre- and post-treatment birds. A chick in an egg produced by a Cinereous Vulture female two months after lead toxicosis died on day 40 of artificial incubation. Lead concentrations in foetal tissues were consistent with levels causing avian mortality. CONCLUSIONS: The reported blood parameters and reproduction impairment in captive birds may have implications for professionals dealing with lead exposure in wild birds.

Zobrazit více v PubMed

Samour J. In: Avian Medicine. 2nd. Samour J, editor. Edinburgh: Mosby Elsevier; 2008. Toxicology; pp. 269–281.

Fisher IJ, Pain DJ, Thomas VG. A review of lead poisoning from ammunition sources in terrestrial birds. Biol Conserv. 2006;131(3):421–432. doi: 10.1016/j.biocon.2006.02.018. DOI

Mateo R, Taggart MA, Green AJ, Cristofol C, Ramis A, Lefranc H, Figuerola J, Meharg AA. Altered porphyrin excretion and histopathology of greylag geese (Anser anser) exposed to soil contaminated with lead and arsenic in the Guadalquivir Marshes, southwestern Spain. Environ Toxicol Chem. 2006;25(1):203–212. doi: 10.1897/04-460R.1. PubMed DOI

Blus LJ. A review of lead poisoning in swans. Comp Biochem Physiol. 1994;108:259–267.

Degernes L, Heilman S, Trogdon M, Jordan M, Davison M, Kraege D. et al.Epidemiologic investigation of lead poisoning in trumpeter and tundra swans in Washington state, USA, 2000–2002. J Wildlife Dis. 2006;42:345–358. PubMed

Meharg AA, Osborn D, Pain DJ, Sánchez A, Naveso MA. Contamination of Donana food-chains after the Aznacóllar mine disaster. Environ Pollut. 1999;105(3):387–390. doi: 10.1016/S0269-7491(99)00033-0. DOI

Mateo R, Cadenas R, Mánez M, Guitart R. Lead shot ingestion in two raptor species from Donana, Spain. Ecotox Environ Safe. 2001;48(1):6–10. doi: 10.1006/eesa.2000.1996. PubMed DOI

Pain DJ, Carter I, Sainsbury AW, Shore RF, Eden P, Taggart MA, Konstantinos S, Walker LA, Meharg AA, Raab A. Lead contamination and associated disease in captive and reintroduced red kites (Milvus milvus) in England. Sci Total Environ. 2007;376(1–3):116–127. PubMed

Gangoso L, Alvarez-Lloret P, Rodriguez-Navarro AAB, Mateo R, Hiraldo F, Donazar JA. Long-term effects of lead poisoning on bone mineralisation in vultures exposed to ammunition sources. Environ Pollut. 2009;157(2):569–574. doi: 10.1016/j.envpol.2008.09.015. PubMed DOI

Helander B, Axelsson J, Borg H, Holm K, Bignert A. Ingestion of lead from ammunition and lead concentrations in white-tailed sea eagles (Haliaeetus albicilla) in Sweden. Sci Total Environ. 2009;407(21):5555–5563. doi: 10.1016/j.scitotenv.2009.07.027. PubMed DOI

Hernandez M, Margalida A. Assessing the risk of lead exposure for the conservation of the endangered Pyrenean bearded vulture (Gypaetus barbatus) population. Environ Res. 2009;109(7):837–842. doi: 10.1016/j.envres.2009.05.001. PubMed DOI

Kramer JL, Redig PT. Sixteen years of lead poisoning in eagles, 1980-95: an epizootiologic view. J Raptor Res. 1997;31(4):327–332.

Muller K, Altenkamp R, Brunnberg L. Morbidity of free-ranging white-tailed sea eagles (Haliaeetus albicilla) in Germany. J Avian Med Surg. 2007;21(4):265–274. doi: 10.1647/2007-001R.1. PubMed DOI

Nam D-H, Lee D-P. Abnormal lead exposure in globally threatened Cinereous vultures (Aegypius monachus) wintering in South Korea. Ecotoxicology. 2009;18(2):225–229. doi: 10.1007/s10646-008-0275-0. PubMed DOI

Dauwe T, Janssens E, Kempenaers B, Eens M. The effect of heavy metal exposure on egg size, eggshell thickness and the number of spermatozoa in blue tit (Parus caeruleus) eggs. Environ Pollut. 2004;129(1):125–129. doi: 10.1016/j.envpol.2003.09.028. PubMed DOI

Nam D-H, Lee D-P. Reproductive effects of heavy metal accumulation on breeding feral pigeons (Columba livia) Sci Total Environ. 2006;366(2–3):682–687. PubMed

Finkelstein ME, George D, Scherbinski S, Gwiazda R, Johnson M, Burnett J, Brandt J, Lawrey S, Pessier AP, Clark M. et al.Feather lead concentrations and Pb-207/Pb-206 ratios reveal lead exposure history of California condors (Gymnogyps californianus) Environ Sci Technol. 2010;44(7):2639–2647. doi: 10.1021/es903176w. PubMed DOI

Burger J. Heavy metals in avian eggshells: Another excretion method. J Toxicol Environ Health. 1994;41(2):207–220. doi: 10.1080/15287399409531837. PubMed DOI

Skocovska B, Hilscherova K, Babica P, Adamovsky O, Bandouchova H, Horakova J, Knotkova Z, Marsalek B, Paskova V, Pikula J. Effects of cyanobacterial biomass on the Japanese quail. Toxicon. 2007;49(6):793–803. doi: 10.1016/j.toxicon.2006.11.032. PubMed DOI

Pikula J, Bandouchova H, Hilscherova K, Paskova V, Sedlackova J, Adamovsky O, Knotkova Z, Lany P, Machat J, Marsalek B, Novotny L, Pohanka M, Vitula F. Combined exposure to cyanobacterial biomass, lead and the Newcastle virus enhances avian toxicity. Sci Total Environ. 2010;408(21):4984–4992. doi: 10.1016/j.scitotenv.2010.07.050. PubMed DOI

Paskova V, Adamovsky O, Pikula J, Skocovska B, Band’ouchova H, Horakova J, Babica P, Marsalek B, Hilcherova K. Detoxification and oxidative stress responses along with microcystins accumulation in Japanese quail exposed to cyanobacterial biomass. Sci Total Environ. 2008;398(1-3):34–47. doi: 10.1016/j.scitotenv.2008.03.001. PubMed DOI

Paskova V, Paskerova H, Pikula J, Bandouchova H, Sedlackova J, Hilscherova K. Combined exposure of Japanese quails to cyanotoxins, Newcastle virus and lead: Oxidative stress responses. Ecotox Environ Safe. 2011;74(7):2082–2090. doi: 10.1016/j.ecoenv.2011.07.014. PubMed DOI

Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem. 1996;239(1):70–76. doi: 10.1006/abio.1996.0292. PubMed DOI

Pohanka M, Bandouchova H, Sobotka J, Sedlackova J, Soukupova I, Pikula J. Ferric reducing antioxidant power and square wave voltammetry for assay of low molecular weight antioxidants in blood plasma: Performance and comparison of methods. Sensors. 2009;9(11):9094–9103. doi: 10.3390/s91109094. PubMed DOI PMC

Vitula F, Peckova L, Bandouchova H, Pohanka M, Novotny L, Jira D, Kral J, Ondracek K, Osickova J, Zendulkova D, Rosenbergova K, Treml F, Pikula J. Mycoplasma gallisepticum infection in the grey partridge (Perdix perdix): outbreak description, histopathology, biochemistry and antioxidant parameters. BMC Vet Res. 2011;7(1):34. doi: 10.1186/1746-6148-7-34. PubMed DOI PMC

Hynek D, Prasek J, Pikula J, Adam V, Hajkova P, Krejcova L, Trnkova L, Sochor J, Pohanka M, Hubalek J, Beklova M, Vrba R, Kizek R. Electrochemical analysis of lead toxicosis in vultures. Int J Electrochem Sc. 2011;6:5980–6010.

Hynek D, Krejcova L, Krizkova S, Ruttkay-Nedecky B, Pikula J, Adam V, Hajkova P, Trnkova L, Sochor J, Pohanka M, Hubalek J, Beklova M, Vrba R, Kizek R. Metallomics study of lead-protein interactions in albumen by electrochemical and electrophoretic methods. Int J Electrochem Sc. 2012;7:943–964.

Potesil D, Petrlova J, Adam V, Vacek J, Klejdus B, Zehnalek J, Trnkova L, Havel L, Kizek R. Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection. J Chromatogr A. 2005;1084:134–144. doi: 10.1016/j.chroma.2005.06.019. PubMed DOI

Masarik M, Gumulec J, Hlavna M, Sztalmachova M, Babula P, Raudenska M, Pavkova-Goldbergova M, Cernei N, Sochor J, Zitka O, Ruttkay-Nedecky B, Krizkova S, Adam V, Kizek R. Monitoring of the prostate tumour cells redox state and real-time proliferation by novel biophysical techniques and fluorescent staining. Integr Biol. 2012;4(6):672–684. doi: 10.1039/c2ib00157h. PubMed DOI

Thompson LJ. In: Veterinary toxicology. Basic and clinical principles. 1st. Gupta RC, editor. New York: Academic; 2007. Lead; pp. 438–441.

Villegas A, Sanchez JM, Costillo E, Corbacho C. Blood chemistry and haematocrit of the black vulture (Aegypius monachus) Comp Biochem Physiol A-Mol Integr Physiol. 2002;132(2):489–497. doi: 10.1016/S1095-6433(02)00097-1. PubMed DOI

Bailey TA, Samour JH, Naldo J, Howlett JC. Lead toxicosis in captive houbara bustards (Chlamydotis undulata macqueenii) Vet Rec. 1995;137:193–194. PubMed

Martinez-Haro M, Green AJ, Mateo R. Effects of lead exposure on oxidative stress biomarkers and plasma biochemistry in waterbirds in the field. Environ Res. 2011;111(4):530–538. doi: 10.1016/j.envres.2011.02.012. PubMed DOI

Buekers J, Redeker ES, Smolders E. Lead toxicity to wildlife: Derivation of a critical blood concentration for wildlife monitoring based on literature data. Sci Total Environ. 2009;407(11):3431–3438. doi: 10.1016/j.scitotenv.2009.01.044. PubMed DOI

Wernery R, Wernery U, Kinne J, Samour J. Colour Atlas of Falcon Medicine. Hannover: Schlütersche Verlagsgesellschaft mbH & Co. KG; 2004.

Chvapil M, Aronson AL, Peng YM. Relation between zinc and iron and peroxidation of lipids in liver homogenate in Ca-EDTA-treated rats. Exp Mol Pathol. 1974;20(2):216–227. doi: 10.1016/0014-4800(74)90056-2. PubMed DOI

Kwong WT, Friello P, Semba RD. Interactions between iron deficiency and lead poisoning: epidemiology and pathogenesis. Sci Total Environ. 2004;330(1–3):21–37. PubMed

Braide VB. Calcium EDTA toxicity: Renal excretion of endogenous trace metals and the effect of repletion on collagen degradation in the rat. Gen Pharmacol. 1984;15(1):37–41. doi: 10.1016/0306-3623(84)90077-6. PubMed DOI

Fair JM, Ricklefs RE. Physiological, growth, and immune responses of Japanese quail chicks to the multiple stressors of immunological challenge and lead shot. Arch Environ Contam Toxicol. 2002;42(1):77–87. doi: 10.1007/s002440010294. PubMed DOI

Mateo R, Beyer WN, Spann J, Hoffman D, Ramis A. Relationship between oxidative stress, pathology, and behavioural signs of lead poisoning in mallards. J Toxicol Env Heal A. 2003;66(14):1371–1389. PubMed

Fudge AM. In: Avian medicine and surgery. 1st. Altman RB, Clubb SL, Dorrestein GM, Quesenberry K, editor. Philadelphia: W.B. Saunders Company; 1997. Avian clinical pathology - haematology and chemistry; pp. 142–157.

Pikula J, Zukal J, Adam V, Bandouchova H, Beklova M, Hajkova P, Horakova J, Kizek R, Valentikova L. Heavy metals and metallothionein in vespertilionid bats foraging over aquatic habitats in the Czech Republic. Environ Toxicol Chem. 2010;29(3):501–506. doi: 10.1002/etc.80. PubMed DOI

Fernandes D, Bebianno MJ, Porte C. Hepatic levels of metal and metallothioneins in two commercial fish species of the Northern Iberian shelf. Sci Total Environ. 2008;391:159–167. doi: 10.1016/j.scitotenv.2007.10.057. PubMed DOI

Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS. Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers. Aquat Toxicol. 2006;76:160–202. doi: 10.1016/j.aquatox.2005.08.015. PubMed DOI

Vanparys C, Dauwe T, Van Campenhout K, Bervoets L, De Coen W, Blust R, Eens M. Metallothioneins (MTs) and d-aminolevulinic acid dehydratase (ALAd) as biomarkers of metal pollution in great tits (Parus major) along a pollution gradient. Sci Total Environ. 2008;401:184–193. doi: 10.1016/j.scitotenv.2008.04.009. PubMed DOI

Trust KA, Miller MW, Ringelman JK, Orme IM. Effects of ingested lead on antibody production in mallards (Anas platyrhynchos) J Wildlife Dis. 1990;26:316–322. PubMed

Grasman KA. Assessing immunological function in toxicological studies of avian wildlife. Integr Comp Biol. 2002;42:34–42. doi: 10.1093/icb/42.1.34. PubMed DOI

Sebastian MM. In: Veterinary toxicology. Basic and clinical principles. 1st. Gupta RC, editor. New York: Academic; 2007. Role of pathology in diagnosis; pp. 1100–1136.

Goyer RA, Mahaffey KR. Susceptibility to lead toxicity. Environ Health Perspect. 1972;2:73–80. PubMed PMC

Ding WX, Ong CN. Role of oxidative stress and mitochondrial changes in cyanobacteria induced apoptosis and hepatotoxicity. FEMS Microbiol Lett. 2003;220:1–7. doi: 10.1016/S0378-1097(03)00100-9. PubMed DOI

Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radical Bio Med. 1995;18:321–336. doi: 10.1016/0891-5849(94)00159-H. PubMed DOI

Costantini D, Moller AP. Does immune response cause oxidative stress in birds? A meta-analysis. Comp Biochem Physiol A-Mol Integr Physiol. 2009;153(3):339–344. doi: 10.1016/j.cbpa.2009.03.010. PubMed DOI

Finkelstein ME, Doak DF, George D, Burnett J, Brandt J, Church M, Grantham J, Smith DR. Lead poisoning and the deceptive recovery of the critically endangered California condor. P Natl Acad Sci USA. 2012;109(28):11449–11454. doi: 10.1073/pnas.1203141109. PubMed DOI PMC

Flora SJS, Pachauri V. Chelation in metal intoxication. Int J Environ Res Public Health. 2010;7:2745–2788. doi: 10.3390/ijerph7072745. PubMed DOI PMC

Samour JH, Naldo J. Diagnosis and therapeutic management of lead toxicosis in falcons in Saudi Arabia. J Avian Med Surg. 2002;16(1):16–20. doi: 10.1647/1082-6742(2002)016[0016:DATMOL]2.0.CO;2. DOI

Bauck L, LaBonde J. In: Avian medicine and surgery. 1st. Altman RB, Clubb SL, Dorrestein GM, Quesenberry K, editor. Philadelphia: W.B. Saunders Company; 1997. Toxic diseases; pp. 604–613.

Domingo JL. Developmental toxicity of metal chelating agents. Reprod Toxicol. 1998;12(5):499–510. doi: 10.1016/S0890-6238(98)00036-7. PubMed DOI

Cox CR, Goldsmith VI, Engelhardt HR. Pair Formation in California Condors. Amer Zool. 1993;33(2):126–138.

Kowalczyk DF. Clinical management of lead poisoning. J Am Vet Med Assoc. 1984;184(7):858–860. PubMed

Centers for Disease Control and Prevention. Managing Elevated Blood Lead Levels Among Young Children: Recommendations from the Advisory Committee on Childhood Lead Poisoning Prevention. Atlanta: CDC; 2002.

Fry DM. Reproductive effects in birds exposed to pesticides and industrial chemicals. Environ Health Perspect. 1995;103:165–171. PubMed PMC

Damkova V, Sedlackova J, Bandouchova H, Peckova L, Vitula F, Hilscherova K, Paskova V, Kohoutek J, Pohanka M, Pikula J. Effects of cyanobacterial biomass on avian reproduction: a Japanese quail model. Neuroendocrinol Lett. 2009;30:205–210. PubMed

Damkova V, Paskova V, Sedlackova J, Bandouchova H, Hilscherova K, Novotny L, Peckova L, Vitula F, Pohanka M, Pikula J. Testicular toxicity of cyanobacterial biomass in Japanese quails. Harmful Algae. 2011;10(6):612–618. doi: 10.1016/j.hal.2011.04.013. DOI

Hargreaves AL, Whiteside DP, Gilchrist G. Concentrations of 17 elements, including mercury, and their relationship to fitness measures in arctic shorebirds and their eggs. Sci Total Environ. 2010;408(16):3153–3161. doi: 10.1016/j.scitotenv.2010.03.027. PubMed DOI

Makatsch W. Die Eier der Vőgel Europas. Radebeul: Neumann Verlag; 1974. (In German)

BirdLife International IUCN Red List for birds. 2012. http://www.birdlife.org.

Pattee OH, Carpenter JW, Fritts SH, Rattner BA, Wiemeyer SN, Royle JA, Smith MR. Lead poisoning in captive Andean condors (Vultur gryphus) J Wildlife Dis. 2006;42:772–779. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...