Lead toxicosis of captive vultures: case description and responses to chelation therapy
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
PubMed
23324224
PubMed Central
PMC3566908
DOI
10.1186/1746-6148-9-11
PII: 1746-6148-9-11
Knihovny.cz E-zdroje
- MeSH
- chelátová terapie metody veterinární MeSH
- EDTA terapeutické užití MeSH
- Falconiformes * krev MeSH
- nemoci ptáků chemicky indukované farmakoterapie MeSH
- olovo krev MeSH
- otrava olovem farmakoterapie veterinární MeSH
- zvířata v ZOO MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- EDTA MeSH
- olovo MeSH
BACKGROUND: Lead, a serious threat for raptors, can hamper the success of their conservation. This study reports on experience with accidental lead intoxication and responses to chelation therapy in captive Cinereous (Aegypius monachus) and Egyptian (Neophron percnopterus) Vultures. RESULTS: Soil contamination by lead-based paint sanded off the steel aviary resulted in poisoning of eight Cinereous and two Egyptian Vultures. A male Egyptian Vulture developed signs of apathy, polydipsia, polyuria, regurgitation, and stupor, and died on the next day. Liver, kidney and blood lead concentrations were 12.2, 8.16 and 2.66 μg/g, respectively. Laboratory analyses confirmed severe liver and kidney damage and anaemia. Blood Pb levels of Pb-exposed Cinereous Vultures were 1.571 ± 0.510 μg/g shortly after intoxication, decreased to 0.530 ± 0.165 μg/g without any therapy in a month and to 0.254 ± 0.097 μg/g one month after CaNa(2)EDTA administration. Eight months later, blood lead levels decreased to close to the background of the control group. Blood parameters of healthy Pb-non-exposed Cinereous Vultures were compared with those of the exposed group prior to and after chelation therapy. Iron levels in the lead-exposed pre-treatment birds significantly decreased after chelation. Haematocrit levels in Pb-exposed birds were significantly lower than those of the controls and improved one month after chelation. Creatine kinase was higher in pre-treatment birds than in the controls but normalised after therapy. Alkaline phosphatase increased after chelation. A marked increase in the level of lipid peroxidation measured as thiobarbituric acid reactive species was demonstrated in birds both prior to and after chelation. The ferric reducing antioxidant power was significantly lower in pre-treatment vultures and returned to normal following chelation therapy. Blood metallothionein levels in lead-exposed birds were higher than in controls. Reduced glutathione dropped after CaNa(2)EDTA therapy, while oxidised glutathione was significantly lower in both pre- and post-treatment birds. A chick in an egg produced by a Cinereous Vulture female two months after lead toxicosis died on day 40 of artificial incubation. Lead concentrations in foetal tissues were consistent with levels causing avian mortality. CONCLUSIONS: The reported blood parameters and reproduction impairment in captive birds may have implications for professionals dealing with lead exposure in wild birds.
Zobrazit více v PubMed
Samour J. In: Avian Medicine. 2nd. Samour J, editor. Edinburgh: Mosby Elsevier; 2008. Toxicology; pp. 269–281.
Fisher IJ, Pain DJ, Thomas VG. A review of lead poisoning from ammunition sources in terrestrial birds. Biol Conserv. 2006;131(3):421–432. doi: 10.1016/j.biocon.2006.02.018. DOI
Mateo R, Taggart MA, Green AJ, Cristofol C, Ramis A, Lefranc H, Figuerola J, Meharg AA. Altered porphyrin excretion and histopathology of greylag geese (Anser anser) exposed to soil contaminated with lead and arsenic in the Guadalquivir Marshes, southwestern Spain. Environ Toxicol Chem. 2006;25(1):203–212. doi: 10.1897/04-460R.1. PubMed DOI
Blus LJ. A review of lead poisoning in swans. Comp Biochem Physiol. 1994;108:259–267.
Degernes L, Heilman S, Trogdon M, Jordan M, Davison M, Kraege D. et al.Epidemiologic investigation of lead poisoning in trumpeter and tundra swans in Washington state, USA, 2000–2002. J Wildlife Dis. 2006;42:345–358. PubMed
Meharg AA, Osborn D, Pain DJ, Sánchez A, Naveso MA. Contamination of Donana food-chains after the Aznacóllar mine disaster. Environ Pollut. 1999;105(3):387–390. doi: 10.1016/S0269-7491(99)00033-0. DOI
Mateo R, Cadenas R, Mánez M, Guitart R. Lead shot ingestion in two raptor species from Donana, Spain. Ecotox Environ Safe. 2001;48(1):6–10. doi: 10.1006/eesa.2000.1996. PubMed DOI
Pain DJ, Carter I, Sainsbury AW, Shore RF, Eden P, Taggart MA, Konstantinos S, Walker LA, Meharg AA, Raab A. Lead contamination and associated disease in captive and reintroduced red kites (Milvus milvus) in England. Sci Total Environ. 2007;376(1–3):116–127. PubMed
Gangoso L, Alvarez-Lloret P, Rodriguez-Navarro AAB, Mateo R, Hiraldo F, Donazar JA. Long-term effects of lead poisoning on bone mineralisation in vultures exposed to ammunition sources. Environ Pollut. 2009;157(2):569–574. doi: 10.1016/j.envpol.2008.09.015. PubMed DOI
Helander B, Axelsson J, Borg H, Holm K, Bignert A. Ingestion of lead from ammunition and lead concentrations in white-tailed sea eagles (Haliaeetus albicilla) in Sweden. Sci Total Environ. 2009;407(21):5555–5563. doi: 10.1016/j.scitotenv.2009.07.027. PubMed DOI
Hernandez M, Margalida A. Assessing the risk of lead exposure for the conservation of the endangered Pyrenean bearded vulture (Gypaetus barbatus) population. Environ Res. 2009;109(7):837–842. doi: 10.1016/j.envres.2009.05.001. PubMed DOI
Kramer JL, Redig PT. Sixteen years of lead poisoning in eagles, 1980-95: an epizootiologic view. J Raptor Res. 1997;31(4):327–332.
Muller K, Altenkamp R, Brunnberg L. Morbidity of free-ranging white-tailed sea eagles (Haliaeetus albicilla) in Germany. J Avian Med Surg. 2007;21(4):265–274. doi: 10.1647/2007-001R.1. PubMed DOI
Nam D-H, Lee D-P. Abnormal lead exposure in globally threatened Cinereous vultures (Aegypius monachus) wintering in South Korea. Ecotoxicology. 2009;18(2):225–229. doi: 10.1007/s10646-008-0275-0. PubMed DOI
Dauwe T, Janssens E, Kempenaers B, Eens M. The effect of heavy metal exposure on egg size, eggshell thickness and the number of spermatozoa in blue tit (Parus caeruleus) eggs. Environ Pollut. 2004;129(1):125–129. doi: 10.1016/j.envpol.2003.09.028. PubMed DOI
Nam D-H, Lee D-P. Reproductive effects of heavy metal accumulation on breeding feral pigeons (Columba livia) Sci Total Environ. 2006;366(2–3):682–687. PubMed
Finkelstein ME, George D, Scherbinski S, Gwiazda R, Johnson M, Burnett J, Brandt J, Lawrey S, Pessier AP, Clark M. et al.Feather lead concentrations and Pb-207/Pb-206 ratios reveal lead exposure history of California condors (Gymnogyps californianus) Environ Sci Technol. 2010;44(7):2639–2647. doi: 10.1021/es903176w. PubMed DOI
Burger J. Heavy metals in avian eggshells: Another excretion method. J Toxicol Environ Health. 1994;41(2):207–220. doi: 10.1080/15287399409531837. PubMed DOI
Skocovska B, Hilscherova K, Babica P, Adamovsky O, Bandouchova H, Horakova J, Knotkova Z, Marsalek B, Paskova V, Pikula J. Effects of cyanobacterial biomass on the Japanese quail. Toxicon. 2007;49(6):793–803. doi: 10.1016/j.toxicon.2006.11.032. PubMed DOI
Pikula J, Bandouchova H, Hilscherova K, Paskova V, Sedlackova J, Adamovsky O, Knotkova Z, Lany P, Machat J, Marsalek B, Novotny L, Pohanka M, Vitula F. Combined exposure to cyanobacterial biomass, lead and the Newcastle virus enhances avian toxicity. Sci Total Environ. 2010;408(21):4984–4992. doi: 10.1016/j.scitotenv.2010.07.050. PubMed DOI
Paskova V, Adamovsky O, Pikula J, Skocovska B, Band’ouchova H, Horakova J, Babica P, Marsalek B, Hilcherova K. Detoxification and oxidative stress responses along with microcystins accumulation in Japanese quail exposed to cyanobacterial biomass. Sci Total Environ. 2008;398(1-3):34–47. doi: 10.1016/j.scitotenv.2008.03.001. PubMed DOI
Paskova V, Paskerova H, Pikula J, Bandouchova H, Sedlackova J, Hilscherova K. Combined exposure of Japanese quails to cyanotoxins, Newcastle virus and lead: Oxidative stress responses. Ecotox Environ Safe. 2011;74(7):2082–2090. doi: 10.1016/j.ecoenv.2011.07.014. PubMed DOI
Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem. 1996;239(1):70–76. doi: 10.1006/abio.1996.0292. PubMed DOI
Pohanka M, Bandouchova H, Sobotka J, Sedlackova J, Soukupova I, Pikula J. Ferric reducing antioxidant power and square wave voltammetry for assay of low molecular weight antioxidants in blood plasma: Performance and comparison of methods. Sensors. 2009;9(11):9094–9103. doi: 10.3390/s91109094. PubMed DOI PMC
Vitula F, Peckova L, Bandouchova H, Pohanka M, Novotny L, Jira D, Kral J, Ondracek K, Osickova J, Zendulkova D, Rosenbergova K, Treml F, Pikula J. Mycoplasma gallisepticum infection in the grey partridge (Perdix perdix): outbreak description, histopathology, biochemistry and antioxidant parameters. BMC Vet Res. 2011;7(1):34. doi: 10.1186/1746-6148-7-34. PubMed DOI PMC
Hynek D, Prasek J, Pikula J, Adam V, Hajkova P, Krejcova L, Trnkova L, Sochor J, Pohanka M, Hubalek J, Beklova M, Vrba R, Kizek R. Electrochemical analysis of lead toxicosis in vultures. Int J Electrochem Sc. 2011;6:5980–6010.
Hynek D, Krejcova L, Krizkova S, Ruttkay-Nedecky B, Pikula J, Adam V, Hajkova P, Trnkova L, Sochor J, Pohanka M, Hubalek J, Beklova M, Vrba R, Kizek R. Metallomics study of lead-protein interactions in albumen by electrochemical and electrophoretic methods. Int J Electrochem Sc. 2012;7:943–964.
Potesil D, Petrlova J, Adam V, Vacek J, Klejdus B, Zehnalek J, Trnkova L, Havel L, Kizek R. Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection. J Chromatogr A. 2005;1084:134–144. doi: 10.1016/j.chroma.2005.06.019. PubMed DOI
Masarik M, Gumulec J, Hlavna M, Sztalmachova M, Babula P, Raudenska M, Pavkova-Goldbergova M, Cernei N, Sochor J, Zitka O, Ruttkay-Nedecky B, Krizkova S, Adam V, Kizek R. Monitoring of the prostate tumour cells redox state and real-time proliferation by novel biophysical techniques and fluorescent staining. Integr Biol. 2012;4(6):672–684. doi: 10.1039/c2ib00157h. PubMed DOI
Thompson LJ. In: Veterinary toxicology. Basic and clinical principles. 1st. Gupta RC, editor. New York: Academic; 2007. Lead; pp. 438–441.
Villegas A, Sanchez JM, Costillo E, Corbacho C. Blood chemistry and haematocrit of the black vulture (Aegypius monachus) Comp Biochem Physiol A-Mol Integr Physiol. 2002;132(2):489–497. doi: 10.1016/S1095-6433(02)00097-1. PubMed DOI
Bailey TA, Samour JH, Naldo J, Howlett JC. Lead toxicosis in captive houbara bustards (Chlamydotis undulata macqueenii) Vet Rec. 1995;137:193–194. PubMed
Martinez-Haro M, Green AJ, Mateo R. Effects of lead exposure on oxidative stress biomarkers and plasma biochemistry in waterbirds in the field. Environ Res. 2011;111(4):530–538. doi: 10.1016/j.envres.2011.02.012. PubMed DOI
Buekers J, Redeker ES, Smolders E. Lead toxicity to wildlife: Derivation of a critical blood concentration for wildlife monitoring based on literature data. Sci Total Environ. 2009;407(11):3431–3438. doi: 10.1016/j.scitotenv.2009.01.044. PubMed DOI
Wernery R, Wernery U, Kinne J, Samour J. Colour Atlas of Falcon Medicine. Hannover: Schlütersche Verlagsgesellschaft mbH & Co. KG; 2004.
Chvapil M, Aronson AL, Peng YM. Relation between zinc and iron and peroxidation of lipids in liver homogenate in Ca-EDTA-treated rats. Exp Mol Pathol. 1974;20(2):216–227. doi: 10.1016/0014-4800(74)90056-2. PubMed DOI
Kwong WT, Friello P, Semba RD. Interactions between iron deficiency and lead poisoning: epidemiology and pathogenesis. Sci Total Environ. 2004;330(1–3):21–37. PubMed
Braide VB. Calcium EDTA toxicity: Renal excretion of endogenous trace metals and the effect of repletion on collagen degradation in the rat. Gen Pharmacol. 1984;15(1):37–41. doi: 10.1016/0306-3623(84)90077-6. PubMed DOI
Fair JM, Ricklefs RE. Physiological, growth, and immune responses of Japanese quail chicks to the multiple stressors of immunological challenge and lead shot. Arch Environ Contam Toxicol. 2002;42(1):77–87. doi: 10.1007/s002440010294. PubMed DOI
Mateo R, Beyer WN, Spann J, Hoffman D, Ramis A. Relationship between oxidative stress, pathology, and behavioural signs of lead poisoning in mallards. J Toxicol Env Heal A. 2003;66(14):1371–1389. PubMed
Fudge AM. In: Avian medicine and surgery. 1st. Altman RB, Clubb SL, Dorrestein GM, Quesenberry K, editor. Philadelphia: W.B. Saunders Company; 1997. Avian clinical pathology - haematology and chemistry; pp. 142–157.
Pikula J, Zukal J, Adam V, Bandouchova H, Beklova M, Hajkova P, Horakova J, Kizek R, Valentikova L. Heavy metals and metallothionein in vespertilionid bats foraging over aquatic habitats in the Czech Republic. Environ Toxicol Chem. 2010;29(3):501–506. doi: 10.1002/etc.80. PubMed DOI
Fernandes D, Bebianno MJ, Porte C. Hepatic levels of metal and metallothioneins in two commercial fish species of the Northern Iberian shelf. Sci Total Environ. 2008;391:159–167. doi: 10.1016/j.scitotenv.2007.10.057. PubMed DOI
Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS. Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers. Aquat Toxicol. 2006;76:160–202. doi: 10.1016/j.aquatox.2005.08.015. PubMed DOI
Vanparys C, Dauwe T, Van Campenhout K, Bervoets L, De Coen W, Blust R, Eens M. Metallothioneins (MTs) and d-aminolevulinic acid dehydratase (ALAd) as biomarkers of metal pollution in great tits (Parus major) along a pollution gradient. Sci Total Environ. 2008;401:184–193. doi: 10.1016/j.scitotenv.2008.04.009. PubMed DOI
Trust KA, Miller MW, Ringelman JK, Orme IM. Effects of ingested lead on antibody production in mallards (Anas platyrhynchos) J Wildlife Dis. 1990;26:316–322. PubMed
Grasman KA. Assessing immunological function in toxicological studies of avian wildlife. Integr Comp Biol. 2002;42:34–42. doi: 10.1093/icb/42.1.34. PubMed DOI
Sebastian MM. In: Veterinary toxicology. Basic and clinical principles. 1st. Gupta RC, editor. New York: Academic; 2007. Role of pathology in diagnosis; pp. 1100–1136.
Goyer RA, Mahaffey KR. Susceptibility to lead toxicity. Environ Health Perspect. 1972;2:73–80. PubMed PMC
Ding WX, Ong CN. Role of oxidative stress and mitochondrial changes in cyanobacteria induced apoptosis and hepatotoxicity. FEMS Microbiol Lett. 2003;220:1–7. doi: 10.1016/S0378-1097(03)00100-9. PubMed DOI
Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radical Bio Med. 1995;18:321–336. doi: 10.1016/0891-5849(94)00159-H. PubMed DOI
Costantini D, Moller AP. Does immune response cause oxidative stress in birds? A meta-analysis. Comp Biochem Physiol A-Mol Integr Physiol. 2009;153(3):339–344. doi: 10.1016/j.cbpa.2009.03.010. PubMed DOI
Finkelstein ME, Doak DF, George D, Burnett J, Brandt J, Church M, Grantham J, Smith DR. Lead poisoning and the deceptive recovery of the critically endangered California condor. P Natl Acad Sci USA. 2012;109(28):11449–11454. doi: 10.1073/pnas.1203141109. PubMed DOI PMC
Flora SJS, Pachauri V. Chelation in metal intoxication. Int J Environ Res Public Health. 2010;7:2745–2788. doi: 10.3390/ijerph7072745. PubMed DOI PMC
Samour JH, Naldo J. Diagnosis and therapeutic management of lead toxicosis in falcons in Saudi Arabia. J Avian Med Surg. 2002;16(1):16–20. doi: 10.1647/1082-6742(2002)016[0016:DATMOL]2.0.CO;2. DOI
Bauck L, LaBonde J. In: Avian medicine and surgery. 1st. Altman RB, Clubb SL, Dorrestein GM, Quesenberry K, editor. Philadelphia: W.B. Saunders Company; 1997. Toxic diseases; pp. 604–613.
Domingo JL. Developmental toxicity of metal chelating agents. Reprod Toxicol. 1998;12(5):499–510. doi: 10.1016/S0890-6238(98)00036-7. PubMed DOI
Cox CR, Goldsmith VI, Engelhardt HR. Pair Formation in California Condors. Amer Zool. 1993;33(2):126–138.
Kowalczyk DF. Clinical management of lead poisoning. J Am Vet Med Assoc. 1984;184(7):858–860. PubMed
Centers for Disease Control and Prevention. Managing Elevated Blood Lead Levels Among Young Children: Recommendations from the Advisory Committee on Childhood Lead Poisoning Prevention. Atlanta: CDC; 2002.
Fry DM. Reproductive effects in birds exposed to pesticides and industrial chemicals. Environ Health Perspect. 1995;103:165–171. PubMed PMC
Damkova V, Sedlackova J, Bandouchova H, Peckova L, Vitula F, Hilscherova K, Paskova V, Kohoutek J, Pohanka M, Pikula J. Effects of cyanobacterial biomass on avian reproduction: a Japanese quail model. Neuroendocrinol Lett. 2009;30:205–210. PubMed
Damkova V, Paskova V, Sedlackova J, Bandouchova H, Hilscherova K, Novotny L, Peckova L, Vitula F, Pohanka M, Pikula J. Testicular toxicity of cyanobacterial biomass in Japanese quails. Harmful Algae. 2011;10(6):612–618. doi: 10.1016/j.hal.2011.04.013. DOI
Hargreaves AL, Whiteside DP, Gilchrist G. Concentrations of 17 elements, including mercury, and their relationship to fitness measures in arctic shorebirds and their eggs. Sci Total Environ. 2010;408(16):3153–3161. doi: 10.1016/j.scitotenv.2010.03.027. PubMed DOI
Makatsch W. Die Eier der Vőgel Europas. Radebeul: Neumann Verlag; 1974. (In German)
BirdLife International IUCN Red List for birds. 2012. http://www.birdlife.org.
Pattee OH, Carpenter JW, Fritts SH, Rattner BA, Wiemeyer SN, Royle JA, Smith MR. Lead poisoning in captive Andean condors (Vultur gryphus) J Wildlife Dis. 2006;42:772–779. PubMed
Natural mercury exposure of European insectivorous bats may exceed a recognized toxicity threshold
Reproductive toxicity of fluoroquinolones in birds