Natural mercury exposure of European insectivorous bats may exceed a recognized toxicity threshold

. 2024 Oct ; 33 (8) : 948-958. [epub] 20240719

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39028383

Grantová podpora
2022ITA21 ITA VETUNI

Odkazy

PubMed 39028383
PubMed Central PMC11399212
DOI 10.1007/s10646-024-02785-5
PII: 10.1007/s10646-024-02785-5
Knihovny.cz E-zdroje

Heavy metals are an important group of toxic substances harmful for many organisms. Of these, mercury is one of the most monitored in the environment. Several matrices are used for the monitoring of environmental load, including a range of organisms; bats, however, have only been examined rarely. Insectivorous bats are apex predators threatened by several human interventions in their natural environment, including heavy metal pollution. The aim of this study was to analyze the content of total mercury in the fur, flight membrane, and pectoral muscle of greater mouse-eared bats (Myotis myotis). Total mercury concentrations were also measured in carabid beetles from the catch locality Zastávka u Brna. Samples were obtained from 43 bat carcasses at two different localities in the Czech Republic (Zastávka u Brna, Malá Morávka). Total mercury content varied between 1.76-72.20 µg/g in fur, 0.04-0.14 µg/g in skin, and 0.05-0.20 µg/g in muscle. Total mercury values in the fur of some individuals from Malá Morávka exceeded the recognized toxicity limit. Furthermore, there was a significant difference (p < 0.001) in content of total mercury in fur between localities, and there was a clear effect of age on concentrations in fur, skin, and muscle, the concentrations being significantly correlated (fur and skin rs = 0.783; fur and muscle rs = 0.716; skin and muscle rs = 0.884). These findings confirm the usefulness of fur samples from living bats for biomonitoring mercury burden in the environment.

Zobrazit více v PubMed

Abdelsalam EEE, Banďouchová H, Heger T, Kaňová M, Kobelková K, Němcová M, Piaček V, Sedláčková J, Seidlová V, Vitula F, Pikula J (2021) Reproductive toxicity of heavy metals in fallow deer in vitro. Acta Vet Brno 90(3):277–286. 10.2754/avb20219003027710.2754/avb202190030277 DOI

Ageeva E, Poddubnaya N, Shchukina M (2023) Total mercury in small mammals from forest ecosystems (nearby Cherepovets, Vologda region). E3S Web Conf 407:04002. 10.1051/e3sconf/20234070400210.1051/e3sconf/202340704002 DOI

Ahmad W, Alharthy RD, Zubair M, Ahmed M, Hameed A, Rafique S (2021) Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci Rep. 11(1):17006. 10.1038/s41598-021-94616-4 10.1038/s41598-021-94616-4 PubMed DOI PMC

Åkerblom S, de Jong J (2017) Mercury in fur of Daubenton’s bat (Myotis daubentonii) in Southern Sweden and Comparison to Ecotoxicological Thresholds. Bull Environ Contamin Toxicol 99:561–566. 10.1007/s00128-017-2206-310.1007/s00128-017-2206-3 PubMed DOI PMC

Ameixa O, Kindlmann P (2008) Agricultural policy-induced landscape changes: Effects on carabid abundance and their biocontrol potential. Eur J Entomol 105:467–476. 10.14411/eje.2008.06010.14411/eje.2008.060 DOI

Arlettaz R, Perrin N, Hausser J (1997) Trophic resource partitioning and competition between the two sibling bat species Myotis myotis and Myotis blythii. J Anim Ecol 66:897–91110.2307/6005 DOI

Jota Baptista C, Seixas F, Gonzalo-Orden JM, Oliveira PA (2022) Biomonitoring metals and metalloids in wild mammals: invasive versus non-invasive sampling. Environ Sci Pollut R 29(13):18398–18407. 10.1007/s11356-022-18658-510.1007/s11356-022-18658-5 PubMed DOI

Becker DJ, Chumchal MM, Broders HG, Korstian JM, Clare EL, Rainwater TR, Platt SG, Simmons NB, Fenton MB (2018) Mercury bioaccumulation in bats reflects dietary connectivity to aquatic food webs. Environ Pollut 233:1076–1085. 10.1016/j.envpol.2017.10.010 10.1016/j.envpol.2017.10.010 PubMed DOI

Becker DJ, Speer KA, Korstian JM, Volokhov DV, Droke HF, Brown AM, Baijnauth CL, Padgett-Stewart T, Broders HG, Plowright RK, Rainwater TR, Fenton MB, Simmons NB, Chumchal MM (2021) Disentangling interactions among mercury, immunity and infection in a Neotropical bat community. J Appl Ecol 58(4):879–889. 10.1111/1365-2664.13809 10.1111/1365-2664.13809 PubMed DOI PMC

Bocharova N, Treu G, Czirják GÁ, Krone O, Stefanski V, Wibbelt G et al. (2013) Correlates between feeding ecology and mercury levels in historical and modern Arctic Foxes (Vulpes lagopus). PLoS ONE 8(5):e60879. 10.1371/journal.pone.0060879 10.1371/journal.pone.0060879 PubMed DOI PMC

Boeing DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351. 10.1016/S0045-6535(99)00283-0 10.1016/S0045-6535(99)00283-0 PubMed DOI

Burton GV, Alley RJ, Rasmussen GL, Orton P, Cox V, Jones P, GraffD (1977) Mercury and behavior in wild mouse populations. Environ Res 14:30–34 10.1016/0013-9351(77)90063-9 PubMed DOI

Cariccio VL, Samà A, Bramanti P, Mazzon E (2019) Mercury involvement in neuronal damage and in neurodegenerative diseases. Biol Trace Elem Res 187:341–356. 10.1007/s12011-018-1380-4 10.1007/s12011-018-1380-4 PubMed DOI

Clarkson TW, Vyas JB, Ballatori N (2007) Mechanisms of mercury disposition in the body. Am J Ind Med 50(10):757–764. 10.1002/ajim.20476 10.1002/ajim.20476 PubMed DOI

Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983. 10.1021/es305071v 10.1021/es305071v PubMed DOI PMC

Else GR (1993) The distribution and habitat requirements of the tiger beetle Cicindela germanica Linnaeus (Coleoptera: Carabidae) in southern Britain. Br J Entomol Nat Hist 6:17–21

Fawki S, Bak S, Toft S (2003) Food preferences and food value for the carabid beetles Pterostichus melanarius, P. versicolor and Carabus nemoralis. European Carabidology. Proc 11th Eur Carabidol Meet Aarhus Den 114:99–109

Ferrante M, Spena MT, Hernout BV, Grasso A, Messina A, Grasso R, Agnelli P, Brundo MV, Copat C (2018) Trace elements bioaccumulation in liver and fur of Myotis myotis from two caves of the eastern side of Sicily (Italy): A comparison between a control and a polluted area. Environ Pollut 240:273–285. 10.1016/j.envpol.2018.04.133 10.1016/j.envpol.2018.04.133 PubMed DOI

Fraser EE, Longstaffe FJ, Fenton MB (2013) Moulting matters: the importance of understanding moulting cycles in bats when using fur for endogenous marker analysis. Can J Zool 91(8):533–544. 10.1139/cjz-2013-007210.1139/cjz-2013-0072 DOI

Gaisler J, Hanák V, Hanzal V, Jarský V (2003) Results of bat banding in the Czech and Slovak Republics, 1948–2000. Vespertilio 7:3–61

Graclik A, Wasielewski O (2012) Diet composition of Myotis myotis (Chiroptera, Vespertilionidae) in western Poland: results of fecal analyses. Turk J Zool 36(2):209–213. 10.3906/zoo-1007-3510.3906/zoo-1007-35 DOI

Grottoli AD, Swanson HK, Broders HG (2023) Mercury concentrations decline with age in the fur of females of an insectivorous terrestrial mammal (Myotis lucifugus). Sci Total Environ 885:163763. 10.1016/j.scitotenv.2023.163763 10.1016/j.scitotenv.2023.163763 PubMed DOI

Hazarika HN, Kalita J (2018) A preliminary study on different feeding habits of Beetles (Coleoptera). Int J Adv Sci Res Manag 3:99–102

Hernout BV, McClean CJ, Arnold KE, Walls M, Baxter M, Boxall AB (2016) Fur: A non-invasive approach to monitor metal exposure in bats. Chemosphere 147:376–381. 10.1016/j.chemosphere.2015.12.104 10.1016/j.chemosphere.2015.12.104 PubMed DOI

Hůrka K (1996) Carabidae of the Czech and Slovak Republics. Zlín:Kabourek 565 pp

Jackson AK, Evers DC, Adams EM, Cristol DA, Eagles-Smith C, Edmonds ST, Gray CE, Hoskins B, Lane OP, Sauer A, Tear T (2015) Songbirds as sentinels of mercury in terrestrial habitats of eastern North America. Ecotoxicology 24:453–467. 10.1007/s10646-014-1394-4 10.1007/s10646-014-1394-4 PubMed DOI

Jaskuła R, Hejduk J (2005) Carabidae (Coleoptera) in the diet of a greater mouse-eared bat Myotis myotis (Chiroptera, Vespertilionidae). In: Skłodowski J, Huruk S, Barševskis A, Tarasiuk S (eds.) Protection of Coleoptera in the Baltic Sea Region, Warsaw Agricultural University Press pp. 197–204.

Šerić Jelaska L, Jurasović J, Brown DS, Vaughan IP, Symondson WOC (2014) Molecular field analysis of trophic relationships in soil-dwelling invertebrates to identify mercury, lead and cadmium transmission through forest ecosystems. Mol Ecol 23:3755–3766. 10.1111/mec.12566 10.1111/mec.12566 PubMed DOI

Jones G, Jacobs DS, Kunz TH, Willig MR, Racey PA (2009) Carpe Noctem: the importance of bats as bioindicators. Endanger Species Res 8:93–115. 10.3354/esr0018210.3354/esr00182 DOI

Kieffer L, Sørås R, Ciesielski T, Stawski C (2023) Species and reproductive status influence element concentrations in bat fur Species and reproductive status influence element concentrations in bat fur. Environ Pollut 333:122092. 10.1016/j.envpol.2023.122092 10.1016/j.envpol.2023.122092 PubMed DOI

Knopf B, König H (2010) Biomethylation of Heavy Metals in Soil and Terrestrial Invertebrates. In: Sherameti I, Varma A (eds.) Soil Heavy Metals, Springer Berlin pp. 315–328. 10.1007/978-3-642-02436-8

Korstian JM, Chumchal MM, Bennett VJ, Hale AM (2018) Mercury contamination in bats from the central United States. Environ Toxicol Chem 37(1):160–165. 10.1002/etc.3940 10.1002/etc.3940 PubMed DOI

Lavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM (2013) Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ Sci Technol 47(23):13385–13394. 10.1021/es403103t 10.1021/es403103t PubMed DOI

Little ME, Burgess NM, Broders HG, Campbell LM (2015) Distribution of mercury in archived fur from little brown bats across Atlantic Canada. Environ Pollut 207:52–58. 10.1016/j.envpol.2015.07.049 10.1016/j.envpol.2015.07.049 PubMed DOI

Lisón F, Espín S, Aroca B, Calvo JF, García-Fernández AJ (2017) Assessment of mercury exposure and maternal-foetal transfer in Miniopterus schreibersii (Chiroptera: Miniopteridae) from the southeastern Iberian Peninsula. Environ Sci Pollut Res Int. 2017 24(6):5497–5508. PubMed

Massányi P, Massányi M, Madeddu R, Stawarz R, Lukáč N (2020) Effects of cadmium, lead, and mercury on the structure and function of reproductive organs. Toxics 8(4):94. 10.3390/toxics8040094 10.3390/toxics8040094 PubMed DOI PMC

Mazak V (1965) Changes in pelage of Myotis myotis Borkhausen, 1797 (Mammalia, Chiroptera). Vestn Cesk Spol Zool 29:368–376

Mierle G, Addison EM, MacDonald KS, Joachim DG (2000) Mercury levels in tissues of otters from Ontario, Canada: Variation with age, sex, and location. Environ Toxicol Chem 19:3044–3051. 10.1002/etc.562019122610.1002/etc.5620191226 DOI

Mina R, Alves J, da Silva AA, Natal-da-Luz T, Cabral JA, Barros P, Topping CJ, Sousa JP (2019) Wing membrane and fur samples as reliable biological matrices to measure bioaccumulation of metals and metalloids in bats. Environ Pollut 253:199–206. 10.1016/j.envpol.2019.06.123 10.1016/j.envpol.2019.06.123 PubMed DOI

Mobarak Y (2008) Review of the developmental toxicity and teratogenicity of three environmental contaminants (cadmium, lead and mercury). Catrina 3(1):31–43. https://journals.ekb.eg/article_18512_c9f7eab6bbd856cd27f12d9eef7aaf98.pdf

Morais S, Garcia Costa F, Pereira MdeL (2012) Heavy metals and human health. Environ health–Emerg issues Pract 10(1):227–245

Morcillo MA, Santamaria J (1993) Separation and characterization of rat kidney isometallothioneins induced by exposure to inorganic mercury. J Chromatogr A 655(1):77–83. 10.1016/0021-9673(93)87013-C10.1016/0021-9673(93)87013-C PubMed DOI

Moreno-Brush M, Portillo A, Brändel SD et al. (2018) Mercury concentrations in bats (Chiroptera) from a gold mining area in the Peruvian Amazon. Ecotoxicology 27:45–54. 10.1007/s10646-017-1869-1 10.1007/s10646-017-1869-1 PubMed DOI

Nam DH, Yates D, Ardapple P, Evers DC, Schmerfeld J, Basu N (2012) Elevated mercury exposure and neurochemical alterations in little brown bats (Myotis lucifugus) from a site with historical mercury contamination. Ecotoxicology 21:1094–1101. 10.1007/s10646-012-0864-9 10.1007/s10646-012-0864-9 PubMed DOI

Nielsen JB, Andersen O (1991) Methyl mercuric chloride toxicokinetics in mice. II: Sexual differences in whole-body retention and deposition in blood, hair, skin, muscles and fat. Pharmacol Toxicol 68:208–211. 10.1111/j.1600-0773.1991.tb01224.x 10.1111/j.1600-0773.1991.tb01224.x PubMed DOI

Nielsen JB, Andersen O (1996) Elimination of recently absorbed methyl mercury depends on age and gender. Pharm Toxicol 79(2):60–64. 10.1111/j.1600-0773.1996.tb00243.x10.1111/j.1600-0773.1996.tb00243.x PubMed DOI

Parizek J, Ostadalova I (1967) The protective effect of small amounts of selenite in sublimate intoxication. Experientia 23:142–143. 10.1007/BF02135970 10.1007/BF02135970 PubMed DOI

Peterson MG, Peterson SH, Debier C, Covaci A, Dirtu AC, Malarvannan G, Crocker DE, Costa DP (2016) Serum POP concentrations are highly predictive of inner blubber concentrations at two extremes of body condition in northern elephant seals. Environ Pollut 218:651–663. 10.1016/j.envpol.2016.07.052 10.1016/j.envpol.2016.07.052 PubMed DOI

Pereira MJR, Rebelo H, Rainho A, Palmeirim JM (2002) Prey selection by Myotis myotis (Vespertilionidae) in a Mediterranean Region. Acta Chiropterollogica 4:183–193. 10.3161/001.004.020710.3161/001.004.0207 DOI

Pikula J, Zukal J, Adam V, Bandouchova H, Beklova M, Hajkova P, Horakova J, Kizek R, Valentikova L (2010) Heavy metals and metallothionein in vespertilionid bats foraging over aquatic habitats in the Czech Republic. Environ Toxicol Chem 29(3):501–506. 10.1002/etc.80 10.1002/etc.80 PubMed DOI

Pikula J, Hajkova P, Bandouchova H, Bednarova I, Adam V, Beklova M, Kral J, Ondracek K, Osickova J, Pohanka M, Sedlackova J, Skochova H, Sobotka J, Treml F, Kizek R (2013) Lead toxicosis of captive vultures: case description and responses to chelation therapy. BMC Vet Res 9:11. 10.1186/1746-6148-9-11 10.1186/1746-6148-9-11 PubMed DOI PMC

Powolny T, Scheifler R, Raoul F, Coeurdassier M, Fritsch C (2023) Effects of chronic exposure to toxic metals on haematological parameters in free-ranging small mammals. Environ Pollut 317:120675. 10.1016/j.envpol.2022.120675 10.1016/j.envpol.2022.120675 PubMed DOI

R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

Ramírez-Fráncel LA, García-Herrera LV, Losada-Prado S, Reinoso-Flórez G, Sánchez-Hernández A, Estrada-Villegas S, Lim BK, Guevara G (2022) Bats and their vital ecosystem services: a global review. Integr Zool 17(1):2–23. 10.1111/1749-4877.12552. 10.1111/1749-4877.12552 PubMed DOI

Rand M, Conrad K, Marvin E, Harvey K, Henderson D, Tawil R, Sobolewski M, Cory-Slechta D (2020) Developmental exposure to methylmercury and resultant muscle mercury accumulation and adult motor deficits in mice. Neurotoxicology 81:1–10. 10.1016/j.neuro.2020.07.007 10.1016/j.neuro.2020.07.007 PubMed DOI PMC

Rice KM, Walker JrEM, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med public health 47(2):74. 10.3961/jpmph.2014.47.2.74 10.3961/jpmph.2014.47.2.74 PubMed DOI PMC

Romero MB, Polizzi P, Chiodi L, Das K, Gerpe M (2016) The role of metallothioneins, selenium and transfer to offspring in mercury detoxification in Franciscana dolphins (Pontoporia blainvillei). Mar Pollut Bull 109(1):650–654. 10.1016/j.marpolbul.2016.05.012 10.1016/j.marpolbul.2016.05.012 PubMed DOI

Saska P, Honek A (2004) Development of the beetle parasitoids, Brachinus explodens and B. crepitans (Coleoptera: Carabidae). J Zool 262:29–36. 10.1017/S095283690300441210.1017/S0952836903004412 DOI

Schick P, Łupicki D, Cichocki J, Telatyński S (2003) Age estimation in Myotis myotis (Borkhausen, 1797) by observing dental wear. Nietoperze 4:93–100

Selin NE, Wu S, Nam KM, Reilly JM, Paltsev S, Prinn RG, Webster MD (2009) Global health and economic impacts of future ozone pollution. Environ Res Lett 4:910.1088/1748-9326/4/4/044014 DOI

Siemers BM, Dietz C, Nill D, Schnitzler H (2001) Myotis daubentonii is able to catch small fish. Acta Chiropterol 3:71–75

Talarico F, Giglio A, Pizzolotto R, Brandmayr P (2016) A synthesis of feeding habits and reproduction rhythm in Italian seed-feeding ground beetles (Coleoptera: Carabidae). Eur J Entomol 113:325–336. 10.14411/eje.2016.04210.14411/eje.2016.042 DOI

Thomas DJ, Fisher HL, Sumler MR, Marcus AH, Mushak P, Hall LL (1986) Sexual differences in the distribution and retention of organic and inorganic mercury in methyl mercury-treated rats. Environ Res 41:219–234. 10.1016/S0013-9351(86)80184-0 10.1016/S0013-9351(86)80184-0 PubMed DOI

Timofieieva O, Świergosz-Kowalewska R, Laskowski R, Vlaschenko A (2021) Wing membrane and Fur as indicators of metal exposure and contamination of internal tissues in bats. Environ Pollut 276:116703. 10.1016/j.envpol.2021.116703 10.1016/j.envpol.2021.116703 PubMed DOI

Tovar-Sánchez E, Hernández-Plata I, Martinez MS, Valencia-Cuevas L, Galante PM (2018) Heavy metal pollution as a biodiversity threat. Heavy Metals, 383

Wojtaszyn G, Rutkowski T, Stephan W, Buřič Z, Bartonička T (2014) Migration of Myotis myotis from Poland to the Czech Republic. Vespertilio 17:221–222

Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160. 10.1002/etc.562017020310.1002/etc.5620170203 DOI

Wren CD (1986) A review of metal accumulation and toxicity in wild mammals. I. Mercury. Environ Res 40:210–244. 10.1016/s0013-9351(86)80098-6 10.1016/s0013-9351(86)80098-6 PubMed DOI

Yates DE, Adams EM, Angelo SE, Evers DC, Schmerfeld J, Moore MS, Kunz TH, Divoll T, Edmonds ST, Perkins C, Taylor R, O’Driscoll NJ (2014) Mercury in bats from the northeastern United States. Ecotoxicology 23(1):45–55. 10.1007/s10646-013-1150-1 10.1007/s10646-013-1150-1 PubMed DOI PMC

Zhang F, Xu Z, Xu X, Liang L, Chen Z, Dong X, Luo K, Dinis F, Qiu G (2022) Terrestrial mercury and methylmercury bioaccumulation and trophic transfer in subtropical urban forest food webs. Chemosphere 299:134424. 10.1016/j.chemosphere.2022.134424 10.1016/j.chemosphere.2022.134424 PubMed DOI

Zukal J, Pikula J, Bandouchova H (2015) Bats as bioindicators of heavy metal pollution: history and prospect. Mamm Biol Z Saugertierkd 80:220–227. 10.1016/j.mambio.2015.01.00110.1016/j.mambio.2015.01.001 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...