Ferric reducing antioxidant power and square wave voltammetry for assay of low molecular weight antioxidants in blood plasma: performance and comparison of methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
22291555
PubMed Central
PMC3260632
DOI
10.3390/s91109094
PII: s91109094
Knihovny.cz E-zdroje
- Klíčová slova
- Cinereous vultures, analytical methods, ascorbate, glutathione, lead intoxication, uric acid,
- Publikační typ
- časopisecké články MeSH
The purpose of the present study was to employ two methods-square wave voltammetry (SWV) performed on screen printed sensors and ferric reducing antioxidant power (FRAP)-as suitable tools for the assay of low-molecular-weight antioxidants (LMWAs). LMWAs were assayed by both methods and the resulting data were statistically compared. Plasma samples from five Cinereous vultures accidentally intoxicated with lead were used to represent real biological matrices with different levels of LMWAs. Blood was collected from the birds prior to and one month after treatment with Ca-EDTA. SWV resulted in two peaks. The first peak, with the potential value of 466 ± 15 mV, was recognized as ascorbic and uric acids, while the second one (743 ± 30 mV) represented glutathione, tocopherol, ascorbic acid and in a minor effect by uric acid, too. Contribution of individual antioxidants was recognized by separate assays of LMWA standards. Correlation between peaks 1 and 2 as well as the sum of the two peaks and FRAP was analysed. While peak 1 and the sum of peaks were in close correlation to FRAP results (correlation coefficient of 0.97), the relation between peak 2 and FRAP may be expressed using a correlation coefficient of 0.64. The determination of thiols by the Ellman assay confirmed the accuracy of SWV. Levels of glutathione and other similar structures were stable in the chosen model and it may be concluded that SWV is appropriate for assay of LMWAs in plasma samples. The methods employed in the study were advantageous in minimal sample volume consumption and fast acquisition of results.
Zobrazit více v PubMed
Chaudiere J., Ferrari-Illiou R. Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem. Toxicol. 1999;37:949–962. PubMed
Galecka E., Jacewicz R., Mrowicka M., Florkowski A., Galecki P. Antioxidative enzymes—structure, properties, functions. Pol. Merkur. Lekarski. 2008;25:266–268. PubMed
Seifried H.E., Anderson D.E., Fisher E.I., Milner J.A. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem. 2007;18:567–579. PubMed
Paskova V., Adamovsky O., Pikula J., Skocovska B., Bandouchova H., Horakova J., Babica P., Marsalek B., Hilscherova K. Detoxification and oxidative stress responses along with microcystins accumulation in Japanese quail exposed to cyanobacterial biomass. Sci. Total Environ. 2008;398:34–47. PubMed
Vermeir S., Nicolai B.M., Verboven P., van Gerwen P., Baeten B., Hoflack L., Vulsteke V., Lammertyn J. Microplate differential calorimetric biosensor for ascorbic acid analysis in food and pharmaceuticals. Anal. Chem. 2007;79:6119–6127. PubMed
Chen W., Zhao Y., Seefeldt T., Guan X. Determination of thiols and disulfides via HPLC quantification of 5-thio-2-nitrobenzoic acid. J. Pharm. Biomed. Anal. 2008;48:1375–1380. PubMed PMC
Lyssa R.A., Warren D.J., Sylte I., Aarbakke J. Effect of the glutathione/glutathione disulfide redox couple on thiopurine methyltransferase. Biochem. Pharmacol. 2001;61:707–714. PubMed
Rahman I., Kode A., Biwas S.K. Assay of quantitative determination of glutathione disulfide levels using enzymatic recycling methods. Nat. Protoc. 2006;1:3159–3165. PubMed
Wu X., Beecher G.R., Holden J.M., Haytowitz D.B., Gebhardt S.E., Prior R.L. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem. 2004;52:4026–4037. PubMed
Huang D., Ou B., Prior R. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005;53:1841–1856. PubMed
Magalhaes L.M., Segundo M.A., Reis S., Lima J.L. Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta. 2008;613:1–19. PubMed
Kowalski M., Bielekca-Kowalska A., Bielecka-Roszkiewicz K., Dziankowska-Zaborszczyk E., de Graft-Johnson J., Szemraj J., Zwolinska A., Nowak D. Ferric reducing ability of tears in healthy subjects-diurnal variation and dependence on defined demographic data. Curr. Eye Res. 2009;34:333–339. PubMed
Szydlowska-Czerniak A., Dianoczki C., Recseg K., Karlovits G., Szlyk E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta. 2008;76:899–905. PubMed
Chevion S., Roberts M.A., Chevion M. The use of cyclic voltammetry for the evaluation of antioxidant capacity. Free Radic. Biol. Med. 2000;28:860–870. PubMed
Supalkova V., Huska D., Diopan V., Hanustiak P., Zitka O., Stejskal K., Baloun J., Pikula J., Havel L., Zehnalek J., Adam V., Trnkova L., Beklova M., Kizek R. Electroanalysis of plant thiols. Sensors. 2007;7:932–959.
Pohanka M., Stetina R. Shift of oxidants and antioxidants levels in rats as a reaction to exposure to sulfur mustard. J. Appl. Toxicol. 2009 doi: 10.1002/jat.1451. PubMed DOI
Psotova J., Zahalkova J., Hrbac J., Simanek V., Bartek J. Determination of total antioxidant capacity in plasma by cyclic voltammetry. Two case reports. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Rep. 2001;145:81–83. PubMed
Bandouchova H., Sedlackova J., Pohanka M., Novotny L., Hubalek M., Treml F., Vitula F., Pikula J. Tularemia induces different biochemical responses in BALB/c mice and common voles. BMC Infect. Dis. 2009;9:101. PubMed PMC
Bandouchova H., Sedlackova J., Hubalek M., Pohanka M., Peckova L., Treml F., Vitula F., Pikula J. Susceptibility of selected murine and microtine species to infection by a wild strain of Francisella tularensis subsp. Holarctica. Vet. Med. 2009;54:64–74.
Adam V., Mikelova R., Hubalek J., Hanustiak P., Beklova M., Hodek P., Horna A., Trnkova L., Stiborova M., Zeman L., Kizek R. Utilizing of square wave voltammetry to detect flavonoids in the presence of human urine. Sensors. 2007;7:2402–2418. PubMed PMC
Vacek J., Petrek J., Kizek R., Havel L., Klejdus B., Trnkova L., Jelen F. Electrochemical determination of lead and glutathione in a plant cell culture. Bioelectrochemistry. 2004;63:347–351. PubMed
Shohami E., Beit-Yannai E., Horowitz M., Kohen R. Oxidative stress in closed-head injury: brain antioxidant capacity as an indicator of functional outcome. J. Cereb. Blood Flow Metab. 1997;17:1007–1019. PubMed
Chevion S., Chevion M. Antioxidant status and human health. Use of cyclic voltammetry for the evaluation of the antioxidant capacity of plasma and of edible plants. Ann. NY Acad. Sci. 2000;899:308–325. PubMed
Huang T., Gao P., Hageman M.J. Rapid screening of antioxidants in pharmaceutical formulation developing using cyclic voltammetry—potential and limitations. Curr. Drug Discov. Technol. 2004;1:173–179. PubMed
Salawu E.O., Adeeyo O.A., Falokun O.P., Yusuf U.A., Oyerinde A., Adeleke A.A. Tomato (Lycopersicon esculentum) prevents lead-induced testicular toxicity. J. Hum. Reprod. Sci. 2009;2:30–34. PubMed PMC
Salnikow K., Kasprzak K.S. Ascorbate depletion: a critical step in nickel carcinogenesis? Environ. Health Perspect. 2005;113:577–584. PubMed PMC
Katalinic V., Salamunic I., Pazanin S., Mulic R., Milisic M., Ropac D. The antioxidant power and level of lipid peroxidation products in the sera of apparently healthy adult males. Coll. Antropol. 2007;1:165–171. PubMed
Zielinska D., Szawara-Nowak D., Zielinksi H. Comparison of spectrophotometric and electrochemical methods for the evaluation of the antioxidant capacity of buckwheat products after hydrothermal treatment. J. Agric Food Chem. 2007;55:6124–6131. PubMed
Navarova J., Schmidtova M., Ujhazy E., Dubovicky M., Mach M. Selected biochemical variables in a model of neonatal anoxia in rats. Neuroendocrinol. Lett. 2006;2:78–81. PubMed
Skibska B., Jozefowicz-Okonkwo G., Goraca A. Protective effects of early administration of alpha-lipoic acid against lipopolysaccharide-induced plasma lipid peroxidation. Pharmacol. Rep. 2006;58:399–404. PubMed
Pohanka M., Skladal P. Electrochemical biosensors—principles and aplications. J. Appl. Biomed. 2008;6:57–64.
Pohanka M., Hubalek M., Neubauerova V., Macela A., Faldyna M., Bandouchova H., Pikula J. Current and emerging assays for Francisella tularensis detection. Vet. Med. 2008;53:589–594.
Chen C., Arjomandi M., Balmes J., Tager I., Holland N. Effects of chronic and acute ozone exposure on lipid peroxidation and antioxidant capacity in healthy young adults. Environ. Health Perspect. 2007;115:1732–1737. PubMed PMC