Mycoplasma gallisepticum infection in the grey partridge Perdix perdix: outbreak description, histopathology, biochemistry and antioxidant parameters

. 2011 Jul 08 ; 7 () : 34. [epub] 20110708

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21740554

BACKGROUND: The grey partridge is an important game bird in Europe that has declined considerably over the last decades. The production and release of farm-bred birds can be threatened by infectious agents. The objective of this study was to describe the outbreak, pathology, and blood and tissue biochemical responses in a flock of grey partridges naturally infected with Mycoplasma gallisepticum. RESULTS: Morbidity and mortality rates were 100% and 60%, respectively. Necropsy revealed an accumulation of caseous exudate within the infraorbital sinuses, tracheitis, pneumonia and airsacculitis. There were significant increases in activities of lactate dehydrogenase, creatine kinase and amylase, and levels of total protein and glucose in Mycoplasma-infected birds when compared to control. Catalase showed significantly lower activity in the heart, lungs, liver and gonads of Mycoplasma-infected birds. Glutathione-S-transferase activity was elevated in the eye and the associated infraorbital sinus and kidneys, and decreased in the liver. Decreased levels of reduced glutathione were found in the heart, kidneys, liver and gonads. The activity of glutathione reductase was lower only in the lungs. Compared to healthy birds, mycoplasmosis in the grey partridge caused significant differences in the level of lipid peroxidation in lungs and plasma (p < 0.05), while the ferric reducing antioxidant power was lower in the heart and kidneys (p < 0.01). Significant correlations among responses of the antioxidant parameters were found namely in the heart, lungs, spleen, liver and plasma. There were also numerous significant inter-tissue correlations of all the studied antioxidant parameters. CONCLUSIONS: The present study demonstrates the high susceptibility of grey partridges to natural infection by M. gallisepticum, the severity of the disease based on histopathology, and the modulation of blood chemical profiles and oxidative stress-associated parameters in the avian hosts, thus enhancing the understanding of the pathogenesis of mycoplasmosis in birds. Moreover, the reported reference values can be useful for the evaluation of the state of health in grey partridges.

Zobrazit více v PubMed

BirdLife International (2011) Species factsheet: Perdix perdix. http://www.birdlife.org

Kuijper DPJ, Oosterveld E, Wymenga E. Decline and potential recovery of the European grey partridge (Perdix perdix) population - a review. Eur J Wildl Res. 2009;55(5):455–463. doi: 10.1007/s10344-009-0311-2. DOI

Rantanen EM, Buner F, Riordan P, Sotherton N, Macdonald DW. Habitat preferences and survival in wildlife reintroductions: an ecological trap in reintroduced grey partridges. J Appl Ecol. 2010;47(6):1357–1364. doi: 10.1111/j.1365-2664.2010.01867.x. DOI

Wiberg S, Gunnarsson S. In: Sustainable Animal Production - the Challenges and Potential Developments for Professional Farming. Aland A, Madec F, editor. Wageningen: Wageningen Academic Publishers; 2009. Health and welfare in Swedish game bird rearing; pp. 395–407.

Meriggi A, Brangi A, Cuccus P, Della Stella RM. High mortality rate in a re-introduced grey partridge population in central Italy. Ital J Zool. 2002;69(1):19–24. doi: 10.1080/11250000209356433. DOI

Gortazar C, Acevedo P, Ruiz-Fons F, Vicente J. Disease risks and overabundance of game species. Eur J Wildl Res. 2006;52(2):81–87. doi: 10.1007/s10344-005-0022-2. DOI

Liukkonen T. Finnish native grey partridge (Perdix perdix) population differs clearly in mitochondrial DNA from the farm stock used for releases. Ann Zool Fenn. 2006;43(3):271–279.

Millan J, Gortazar C, Villafuerte R. A comparison of the helminth faunas of wild and farm-reared red-legged partridge. J Wildl Manage. 2004;68(3):701–707. doi: 10.2193/0022-541X(2004)068[0701:ACOTHF]2.0.CO;2. DOI

Villanua D, Perez-Rodriguez L, Casas F, Alzaga V, Acevedo P, Vinuela J, Gortazar C. Sanitary risks of red-legged partridge releases: introduction of parasites. Eur J Wildl Res. 2008;54(2):199–204. doi: 10.1007/s10344-007-0130-2. DOI

Bradbury JM. Poultry mycoplasmas: sophisticated pathogens in simple guise. Br Poult Sci. 2005;46(2):125–136. doi: 10.1080/00071660500066282. PubMed DOI

Levisohn S, Kleven SH. Avian mycoplasmosis (Mycoplasma gallisepticum) Rev Sci Tech Off Int Epizoot. 2000;19(2):425–442. PubMed

Bencina D, Mrzel I, Rojs OZ, Bidovec A, Dovc A. Characterisation of Mycoplasma gallisepticum strains involved in respiratory disease in pheasants and peafowl. Vet Rec. 2003;152(8):230–234. doi: 10.1136/vr.152.8.230. PubMed DOI

Bradbury JM, Yavari CA, Dare CM. Mycoplasmas and respiratory disease in pheasants and partridges. Avian Pathol. 2001;30(4):391–396. doi: 10.1080/03079450120066395. PubMed DOI

Ganapathy K, Bradbury JM. Pathogenicity of Mycoplasma gallisepticum and Mycoplasma imitans in red-legged partridges (Alectoris rufa) Avian Pathol. 1998;27(5):455–463. doi: 10.1080/03079459808419369. PubMed DOI

Welchman DD, Bradbury JM, Cavanagh D, Aebischer NJ. Infectious agents associated with respiratory disease in pheasants. Vet Rec. 2002;150(21):658–664. doi: 10.1136/vr.150.21.658. PubMed DOI

Benskin CMH, Wilson K, Jones K, Hartley IR. Bacterial pathogens in wild birds: a review of the frequency and effects of infection. Biol Rev. 2009;84(3):349–373. doi: 10.1111/j.1469-185X.2008.00076.x. PubMed DOI

Williams ES, Yuill T, Artois M, Fischer J, Haigh SA. Emerging infectious diseases in wildlife. Rev Sci Tech Off Int Epizoot. 2002;21(1):139–157. PubMed

Almagor M, Yatziv S, Kahane I. Inhibition of host-cell catalase by Mycoplasma pneumoniae - a possible mechanism for cell injury. Infect Immun. 1983;41(1):251–256. PubMed PMC

Almagor M, Kahane I, Yatziv S. Role of superoxide anion in host-cell injury induced by Mycoplasma pneumoniae infection - a study in normal and trisomy 21 cells. J Clin Invest. 1984;73(3):842–847. doi: 10.1172/JCI111279. PubMed DOI PMC

Almagor M, Kahane I, Gilon C, Yatziv S. Protective effects of the glutathione redox cycle and vitamin E on cultured fibroblasts infected by Mycoplasma pneumoniae. Infect Immun. 1986;52(1):240–244. PubMed PMC

Jenkins C, Samudrala R, Geary SJ, Djordjevic SP. Structural and functional characterization of an organic hydroperoxide resistance protein from Mycoplasma gallisepticum. J Bacteriol. 2008;190(6):2206–2216. doi: 10.1128/JB.01685-07. PubMed DOI PMC

Nunoya T, Tajima M, Yagihashi T. Decrease in catalase activity of cultured cells by Mycoplasma gallisepticum infection. Vet Microbiol. 1987;13(4):343–351. doi: 10.1016/0378-1135(87)90065-4. PubMed DOI

Kariya C, Chu HW, Huang J, Leitner H, Martin RJ, Day BJ. Mycoplasma pneumoniae infection and environmental tobacco smoke inhibit lung glutathione adaptive responses and increase oxidative stress. Infect Immun. 2008;76(10):4455–4462. doi: 10.1128/IAI.00136-08. PubMed DOI PMC

Sun GP, Xu XF, Wang YS, Shen XY, Chen ZM, Yang J. Mycoplasma pneumoniae infection induces reactive oxygen species and DNA damage in A549 human lung carcinoma cells. Infect Immun. 2008;76(10):4405–4413. doi: 10.1128/IAI.00575-08. PubMed DOI PMC

Kizil O, Ozdemir H, Karahan M, Kizil M. Oxidative stress and alterations of antioxidant status in goats naturally infected with Mycoplasma agalactiae. Rev Med Vet. 2007;158(6):326–330.

Bradbury JB. In: Methods in Molecular Biology. Miles RJ, Nicholas RAJ, editor. Vol. 104. New Jersey: Humana Press Inc; 1998. Recovery of Mycoplasmas from birds; pp. 45–51. PubMed

Edward DG. A selective medium for pleuropneumonia-like organisms. J Gen Microbiol. 1947;1:238–243. PubMed

Bradbury JM. Rapid biochemical tests for characterization of the Mycoplasmatales. J Clin Microbiol. 1977;5:531–534. PubMed PMC

Paskova V, Adamovsky O, Pikula J, Skocovska B, Band'ouchova H, Horakova J, Babica P, Marsalek B, Hilcherova K. Detoxification and oxidative stress responses along with microcystins accumulation in Japanese quail exposed to cyanobacterial biomass. Sci Total Environ. 2008;398(1-3):34–47. doi: 10.1016/j.scitotenv.2008.03.001. PubMed DOI

Aebi H. Catalase in vitro. Method Enzymol. 1984;105:121–126. PubMed

Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ''antioxidant power'': the FRAP assay. Anal Biochem. 1996;239(1):70–76. doi: 10.1006/abio.1996.0292. PubMed DOI

Nunoya T, Yagihashi T, Tajima M, Nagasawa Y. Occurrence of keratoconjunctivitis apparently caused by Mycoplasma gallisepticum in layer chickens. Vet Pathol. 1995;32(1):11–18. doi: 10.1177/030098589503200102. PubMed DOI

Pikula J, Bandouchova H, Hilscherova K, Paskova V, Sedlackova J, Adamovsky O, Knotkova Z, Lany P, Machat J, Marsalek B, Novotny L, Pohanka M, Vitula F. Combined exposure to cyanobacterial biomass, lead and the Newcastle virus enhances avian toxicity. Sci Total Environ. 2010;408(21):4984–4992. doi: 10.1016/j.scitotenv.2010.07.050. PubMed DOI

Cucco M, Guasco B, Malacarne G, Ottonelli R. Effects of beta-carotene on adult immune condition and antibacterial activity in the eggs of the Grey Partridge, Perdix perdix. Comp Biochem Physiol A Mol Integr Physiol. 2007;147(4):1038–1046. doi: 10.1016/j.cbpa.2007.03.014. PubMed DOI

Domermut CH, Gross WB, Dubose RT. Mycoplasmal salpingitis of chickens and turkeys. Avian Dis. 1967;11(3):393–398. doi: 10.2307/1588185. PubMed DOI

Fudge AM. In: Avian Medicine and Surgery. 1. Altman RB, Clubb SL, Dorrestein GM, Quesenberry K, editor. Philadelphia: W.B. Saunders Company; 1997. Avian clinical pathology - hematology and chemistry; pp. 142–157.

Mondal D, Pramanik AK, Basak DK. Clinico-haematology and pathology of caprine mycoplasmal pneumonia in rain fed tropics of West Bengal. Small Ruminant Res. 2004;51(3):285–295. doi: 10.1016/S0921-4488(02)00177-3. DOI

Place AR. Birds and lipids: living off the fat of the earth. Poult Avian Biol Rev. 1996;7(2-3):127–141.

Costantini D, Moller AP. Does immune response cause oxidative stress in birds? A meta-analysis. Comp Biochem Physiol A Mol Integr Physiol. 2009;153(3):339–344. doi: 10.1016/j.cbpa.2009.03.010. PubMed DOI

Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford: Oxford University Press; 1999.

Waites KB, Talkington DF. Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev. 2004;17(4):697–728. doi: 10.1128/CMR.17.4.697-728.2004. PubMed DOI PMC

Bandouchova H, Sedlackova J, Pohanka M, Novotny L, Hubalek M, Treml F, Vitula F, Pikula J. Tularemia induces different biochemical responses in BALB/c mice and common voles. BMC Infect Dis. 2009;9:9. doi: 10.1186/1471-2334-9-9. PubMed DOI PMC

Pohanka M, Bandouchova H, Vlckova K, Zdarova Karasova J, Kuca K, Damkova V, Peckova L, Vitula F, Pikula J. Square wave voltammetry on screen printed electrodes: comparison to ferric reducing antioxidant power in plasma from model laboratory animal (Grey Partridge) and comparison to standard antioxidants. J Appl Biomed. 2011;9:103–109. doi: 10.2478/v10136-009-0032-6. DOI

Blount JD. Carotenoids and life-history evolution in animals. Arch Biochem Biophys. 2004;430(1):10–15. doi: 10.1016/j.abb.2004.03.039. PubMed DOI

Hill GE, Farmer KL, Beck ML. The effect of mycoplasmosis on carotenoid plumage coloration in male house finches. J Exp Biol. 2004;207(12):2095–2099. doi: 10.1242/jeb.00998. PubMed DOI

Winner F, Rosengarten R, Citti C. In vitro cell invasion of Mycoplasma gallisepticum. Infect Immun. 2000;68:4238–4244. doi: 10.1128/IAI.68.7.4238-4244.2000. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...