Characterisation of Toll-like receptors 4, 5 and 7 and their genetic variation in the grey partridge
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- exprese genu MeSH
- fylogeneze MeSH
- Galliformes klasifikace genetika MeSH
- genetická variace * MeSH
- konformace proteinů MeSH
- molekulární evoluce MeSH
- molekulární modely MeSH
- orgánová specificita MeSH
- toll-like receptor 4 chemie genetika MeSH
- toll-like receptor 5 chemie genetika MeSH
- toll-like receptor 7 chemie genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- toll-like receptor 4 MeSH
- toll-like receptor 5 MeSH
- toll-like receptor 7 MeSH
Toll-like receptors (TLRs) are a cornerstone of vertebrate innate immunity. In this study, we identified orthologues of TLR4, TLR5 and TLR7 (representing both bacterial- and viral-sensing TLRs) in the grey partridge (Perdix perdix), a European Galliform game bird species. The phylogeny of all three TLR genes follows the known phylogeny of Galloanserae birds, placing grey partridge TLRs (PePeTLRs) in close proximity to their turkey and pheasant orthologues. The predicted proteins encoded by the PePeTLR genes were 843, 862-863 and 1,047 amino acids long, respectively, and clearly showed all TLR structural features. To verify functionality in these genes we mapped their tissue-expression profiles, revealing generally high PePeTLR4 and PePeTLR5 expression in the thymus and absence of PePeTLR4 and PePeTLR7 expression in the brain. Using 454 next-generation sequencing, we then assessed genetic variation within these genes for a wild grey partridge population in the Czech Republic, EU. We identified 11 nucleotide substitutions in PePeTLR4, eight in PePeTLR5 and six in PePeTLR7, resulting in four, four and three amino acid replacements, respectively. Given their locations and chemical features, most of these non-synonymous substitutions probably have a minor functional impact. As the intraspecific genetic variation of the three TLR genes was low, we assume that either negative selection or a bottleneck may have reduced TLR population variability in this species.
Zobrazit více v PubMed
Mol Biol Evol. 2011 May;28(5):1703-15 PubMed
J Immunol. 2008 Sep 15;181(6):4354-62 PubMed
Poult Sci. 2012 Oct;91(10):2512-6 PubMed
Immunology. 2005 Apr;114(4):507-21 PubMed
Mol Phylogenet Evol. 2010 Aug;56(2):536-42 PubMed
J Biol Chem. 2009 May 29;284(22):15052-60 PubMed
BMC Evol Biol. 2010 May 06;10:132 PubMed
BMC Bioinformatics. 2008 Jan 23;9:40 PubMed
Mol Immunol. 2008 Apr;45(7):2055-61 PubMed
Avian Dis. 2011 Sep;55(3):480-5 PubMed
Mol Biol Rep. 2012 Apr;39(4):3419-26 PubMed
BMC Evol Biol. 2011 May 28;11:149 PubMed
PLoS Biol. 2010 Sep 07;8(9):null PubMed
Hum Mutat. 2012 Jan;33(1):281-9 PubMed
Nature. 2008 Dec 4;456(7222):658-62 PubMed
Comp Biochem Physiol A Mol Integr Physiol. 2007 Aug;147(4):1038-46 PubMed
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W557-9 PubMed
Protein Sci. 2009 Aug;18(8):1684-91 PubMed
Bioinformatics. 2004 Jan 1;20(1):136-7 PubMed
Vet Immunol Immunopathol. 2003 Jun 20;93(3-4):177-84 PubMed
Nature. 2010 Apr 1;464(7289):757-62 PubMed
Avian Pathol. 2000 Dec;29(6):563-9 PubMed
Genet Sel Evol. 2014 Nov 12;46:72 PubMed
Science. 2008 Jun 27;320(5884):1763-8 PubMed
Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9577-82 PubMed
Mol Immunol. 2012 Oct;52(3-4):117-24 PubMed
Nat Methods. 2011 Sep 29;8(10):785-6 PubMed
Mol Phylogenet Evol. 2010 Aug;56(2):840-7 PubMed
Nature. 2012 Nov 15;491(7424):444-8 PubMed
Nucleic Acids Res. 2012 Jan;40(Database issue):D302-5 PubMed
J Biol Chem. 2001 Dec 14;276(50):47143-9 PubMed
Dev Comp Immunol. 2013 Nov;41(3):316-23 PubMed
J Immunol. 2010 Jun 15;184(12):6993-7000 PubMed
BMC Vet Res. 2011 Jul 08;7:34 PubMed
PLoS One. 2014 Mar 03;9(3):e89632 PubMed
Mol Immunol. 2009 Sep;46(15):3163-70 PubMed
Mol Biol Evol. 2006 Oct;23(10):1891-901 PubMed
Nat Protoc. 2010 Apr;5(4):725-38 PubMed
Cell. 2006 Feb 24;124(4):783-801 PubMed
Trends Immunol. 2003 Oct;24(10):528-33 PubMed
Int J Mol Sci. 2013 Sep 10;14(9):18615-28 PubMed
Science. 2012 Feb 17;335(6070):859-64 PubMed
BMC Genomics. 2008 Feb 01;9:62 PubMed
Cell Tissue Res. 2011 Jan;343(1):121-30 PubMed
Br Poult Sci. 2012;53(2):190-7 PubMed
Dev Comp Immunol. 2010 Oct;34(10):1035-41 PubMed
Mol Immunol. 2008 Mar;45(5):1298-307 PubMed
Dev Comp Immunol. 2009 Sep;33(9):967-73 PubMed
Bioinformatics. 2009 Jun 1;25(11):1451-2 PubMed
Dev Comp Immunol. 2014 Jul;45(1):151-5 PubMed
Nature. 2009 Apr 30;458(7242):1191-5 PubMed
Mol Ecol. 2011 Nov;20(21):4408-20 PubMed
J Exp Med. 2007 Feb 19;204(2):393-403 PubMed
Mol Biol Rep. 2012 Aug;39(8):8539-49 PubMed
Infect Immun. 2003 Mar;71(3):1116-24 PubMed
Mol Biol Evol. 2009 Apr;26(4):937-49 PubMed
Res Vet Sci. 2014 Aug;97(1):43-5 PubMed
J Immunol. 2008 Jul 15;181(2):1245-54 PubMed
Cell. 2007 Sep 7;130(5):906-17 PubMed
Proc Natl Acad Sci U S A. 2012 May 8;109(19):7421-6 PubMed
Vet Immunol Immunopathol. 2005 Mar 10;104(1-2):117-27 PubMed
J Appl Genet. 2013 Nov;54(4):489-92 PubMed
PLoS One. 2012;7(9):e45011 PubMed
Biochem Soc Trans. 2007 Dec;35(Pt 6):1437-44 PubMed
Bioinformatics. 2008 Feb 15;24(4):586-7 PubMed
Immunogenetics. 2005 Jan;56(10):743-53 PubMed
Poult Sci. 2012 Oct;91(10):2496-501 PubMed
BMC Evol Biol. 2007 Nov 08;7:214 PubMed
Immunogenetics. 2004 May;56(2):122-33 PubMed
Science. 2010 Jan 15;327(5963):291-5 PubMed
Tissue Antigens. 2009 Jul;74(1):32-41 PubMed
Selection Balancing at Innate Immune Genes: Adaptive Polymorphism Maintenance in Toll-Like Receptors
Trans-Species Polymorphism in Immune Genes: General Pattern or MHC-Restricted Phenomenon?