Trans-Species Polymorphism in Immune Genes: General Pattern or MHC-Restricted Phenomenon?
Jazyk angličtina Země Egypt Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
26090501
PubMed Central
PMC4458282
DOI
10.1155/2015/838035
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- hlavní histokompatibilní komplex genetika imunologie MeSH
- interakce hostitele a patogenu genetika imunologie MeSH
- lidé MeSH
- molekulární evoluce MeSH
- polymorfismus genetický genetika imunologie MeSH
- přirozená imunita genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Immunity exhibits extraordinarily high levels of variation. Evolution of the immune system in response to host-pathogen interactions in particular ecological contexts appears to be frequently associated with diversifying selection increasing the genetic variability. Many studies have documented that immunologically relevant polymorphism observed today may be tens of millions years old and may predate the emergence of present species. This pattern can be explained by the concept of trans-species polymorphism (TSP) predicting the maintenance and sharing of favourable functionally important alleles of immune-related genes between species due to ongoing balancing selection. Despite the generality of this concept explaining the long-lasting adaptive variation inherited from ancestors, current research in TSP has vastly focused only on major histocompatibility complex (MHC). In this review we summarise the evidence available on TSP in human and animal immune genes to reveal that TSP is not a MHC-specific evolutionary pattern. Further research should clearly pay more attention to the investigation of TSP in innate immune genes and especially pattern recognition receptors which are promising candidates for this type of evolution. More effort should also be made to distinguish TSP from convergent evolution and adaptive introgression. Identification of balanced TSP variants may represent an accurate approach in evolutionary medicine to recognise disease-resistance alleles.
Zobrazit více v PubMed
de Craen A. J. M., Posthuma D., Remarque E. J., van den Biggelaar A. H. J., Westendorp R. G. J., Boomsma D. I. Heritability estimates of innate immunity: an extended twin study. Genes and Immunity. 2005;6(2):167–170. doi: 10.1038/sj.gene.6364162. PubMed DOI
Orrù V., Steri M., Sole G., et al. XGenetic variants regulating immune cell levels in health and disease. Cell. 2013;155(1):X242–X256. doi: 10.1016/j.cell.2013.08.041. PubMed DOI PMC
Sorci G., Møller A. P., Boulinier T. Genetics of host-parasite interactions. Trends in Ecology & Evolution. 1997;12(5):196–200. doi: 10.1016/s0169-5347(97)01056-2. PubMed DOI
Cooke G. S., Hill A. V. S. Genetics of susceptibility to human infectious disease. Nature Reviews Genetics. 2001;2(12):967–977. doi: 10.1038/35103577. PubMed DOI
Buhler S., Sanchez-Mazas A. HLA DNA sequence variation among human populations: molecular signatures of demographic and selective events. PLoS ONE. 2011;6(2):16. doi: 10.1371/journal.pone.0014643.e14643 PubMed DOI PMC
Reche P. A., Reinherz E. L. Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. Journal of Molecular Biology. 2003;331(3):623–641. doi: 10.1016/s0022-2836(03)00750-2. PubMed DOI
Sanchez-Mazas A., Meyer D. The relevance of HLA sequencing in population genetics studies. Journal of Immunology Research. 2014;2014:12. doi: 10.1155/2014/971818.971818 PubMed DOI PMC
Schmid-Hempel P. Evolutionary Parasitology: The Integrated Study of Infections, Immunology, Ecology, and Genetics. New York, NY, USA: Oxford University Press; 2011.
Woolhouse M. E. J., Webster J. P., Domingo E., Charlesworth B., Levin B. R. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nature Genetics. 2002;32(4):569–577. doi: 10.1038/ng1202-569. PubMed DOI
King R. C., Stansfield W. D., Mulligan P. K. A Dictionary of Genetics. 7th. Oxford, UK: Oxford University Press; 2006.
Takahata N. A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(7):2419–2423. doi: 10.1073/pnas.87.7.2419. PubMed DOI PMC
Hedrick P. W. Pathogen resistance and genetic variation at MHC loci. Evolution. 2002;56(10):1902–1908. doi: 10.1111/j.0014-3820.2002.tb00116.x. PubMed DOI
Key F. M., Teixeira J. C., de Filippo C., Andrés A. M. Advantageous diversity maintained by balancing selection in humans. Current Opinion in Genetics & Development. 2014;29:45–51. doi: 10.1016/j.gde.2014.08.001. PubMed DOI
Xu S. X., Ren W. H., Li S. Z., Wei F. W., Zhou K. Y., Yang G. Sequence polymorphism and evolution of three cetacean MHC genes. Journal of Molecular Evolution. 2009;69(3):260–275. doi: 10.1007/s00239-009-9272-z. PubMed DOI
Kupfermann H., Mayer W. E., O'hUigin C., Klein D., Klein J. Shared polymorphism between gorilla and human major histocompatibility complex DRB loci. Human Immunology. 1992;34(4):267–278. doi: 10.1016/0198-8859(92)90026-J. PubMed DOI
Otting N., De Groot N. G., Doxiadis G. G. M., Bontrop R. E. Extensive Mhc-DQB variation in humans and non-human primate species. Immunogenetics. 2002;54(4):230–239. doi: 10.1007/s00251-002-0461-9. PubMed DOI
Go Y., Satta Y., Kawamoto Y., et al. Mhc-DRB genes evolution in lemurs. Immunogenetics. 2002;54(6):403–417. doi: 10.1007/s00251-002-0480-6. PubMed DOI
Mayer W. E., Jonker M., Klein D., Ivanyi P., van Seventer G., Klein J. Nucleotide sequences of chimpanzee MHC class I alleles: evidence for trans-species mode of evolution. The EMBO Journal. 1988;7(9):2765–2774. PubMed PMC
Klein J., Sato A., Nagl S., O'Huigín C. Molecular trans-species polymorphism. Annual Review of Ecology and Systematics. 1998;29:1–21. doi: 10.1146/annurev.ecolsys.29.1.1. DOI
Klein J., Sato A., Nikolaidis N. MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics. Annual Review of Genetics. 2007;41:281–304. doi: 10.1146/annurev.genet.41.110306.130137. PubMed DOI
Klein J. Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Human Immunology. 1987;19(3):155–162. doi: 10.1016/0198-8859(87)90066-8. PubMed DOI
Nagl S., Tichy H., Mayer W. E., Takahata N., Klein J. Persistence of neutral polymorphisms in Lake Victoria cichlid fish. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(24):14238–14243. doi: 10.1073/pnas.95.24.14238. PubMed DOI PMC
Samonte I. E., Satta Y., Sato A., Tichy H., Takahata N., Klein J. Gene flow between species of Lake Victoria haplochromine fishes. Molecular Biology and Evolution. 2007;24(9):2069–2080. doi: 10.1093/molbev/msm138. PubMed DOI
Kamath P. L., Getz W. M. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus. BMC Evolutionary Biology. 2011;11(1, article 128) doi: 10.1186/1471-2148-11-128. PubMed DOI PMC
Aguilar A., Garza J. C. Patterns of historical balancing selection on the salmonid major histocompatibility complex class II β gene. Journal of Molecular Evolution. 2007;65(1):34–43. doi: 10.1007/s00239-006-0222-8. PubMed DOI
Li L., Zhou X. P., Chen X. L. Characterization and evolution of MHC class II B genes in ardeid birds. Journal of Molecular Evolution. 2011;72(5-6):474–483. doi: 10.1007/s00239-011-9446-3. PubMed DOI
Klein J. Generation of diversity at MHC loci: implications for T-cell receptor repertoires. In: Fougerau M., Dausset J., editors. Immunology 80. London, UK: Academic Press; 1980. pp. 239–253.
Arden B., Klein J. Biochemical comparison of major histocompatibility complex molecules from different subspecies of Mus musculus: evidence for trans-specific evolution of alleles. Proceedings of the National Academy of Sciences of the United States of America. 1982;79(7):2342–2346. doi: 10.1073/pnas.79.7.2342. PubMed DOI PMC
Hughes A. L., Yeager M. Natural selection at major histocompatibility complex loci of vertebrates. Annual Review of Genetics. 1998;32:415–435. doi: 10.1146/annurev.genet.32.1.415. PubMed DOI
Jeffery K. J. M., Bangham C. R. M. Do infectious diseases drive MHC diversity? Microbes and Infection. 2000;2(11):1335–1341. doi: 10.1016/S1286-4579(00)01287-9. PubMed DOI
Milinski M. The major histocompatibility complex, sexual selection, and mate choice. Annual Review of Ecology, Evolution, and Systematics. 2006;37:159–186. doi: 10.1146/annurev.ecolsys.37.091305.110242. DOI
Yeager M., Hughes A. L. Evolution of the mammalian MHC: natural selection, recombination, and convergent evolution. Immunological Reviews. 1999;167:45–58. doi: 10.1111/j.1600-065x.1999.tb01381.x. PubMed DOI
Meyer D., Thomson G. How selection shapes variation of the human major histocompatibility complex: a review. Annals of Human Genetics. 2001;65:1–26. PubMed
Spurgin L. G., Richardson D. S. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proceedings of the Royal Society B: Biological Sciences. 2010;277(1684):979–988. doi: 10.1098/rspb.2009.2084. PubMed DOI PMC
Wegner K. M., Kalbe M., Schaschl H., Reusch T. B. H. Parasites and individual major histocompatibility complex diversity—an optimal choice? Microbes and Infection. 2004;6(12):1110–1116. doi: 10.1016/j.micinf.2004.05.025. PubMed DOI
Sommer S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Frontiers in Zoology. 2005;2, article 16 doi: 10.1186/1742-9994-2-16. PubMed DOI PMC
Edwards S. V., Hedrick P. W. Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends in Ecology & Evolution. 1998;13(8):305–311. doi: 10.1016/s0169-5347(98)01416-5. PubMed DOI
Neefjes J., Jongsma M. L. M., Paul P., Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nature Reviews Immunology. 2011;11(12):823–836. doi: 10.1038/nri3084. PubMed DOI
Trowsdale J. The MHC, disease and selection. Immunology Letters. 2011;137(1-2):1–8. doi: 10.1016/j.imlet.2011.01.002. PubMed DOI
Wallny H.-J., Avila D., Hunt L. G., et al. Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(5):1434–1439. doi: 10.1073/pnas.0507386103. PubMed DOI PMC
Penn D. J., Potts W. K. The evolution of mating preferences and major histocompatibility complex genes. American Naturalist. 1999;153(2):145–164. doi: 10.1086/303166. PubMed DOI
Vyas J. M., van der Veen A. G., Ploegh H. L. The known unknowns of antigen processing and presentation. Nature Reviews Immunology. 2008;8(8):607–618. doi: 10.1038/nri2368. PubMed DOI PMC
Bernatchez L., Landry C. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? Journal of Evolutionary Biology. 2003;16(3):363–377. doi: 10.1046/j.1420-9101.2003.00531.x. PubMed DOI
Ottová E., Šimková A., Martin J.-F., et al. Evolution and trans-species polymorphism of MHC class IIβ genes in cyprinid fish. Fish & Shellfish Immunology. 2005;18(3):199–222. doi: 10.1016/j.fsi.2004.07.004. PubMed DOI
Bos D. H., Waldman B. Evolution by recombination and transspecies polymorphism in the MHC class I gene of Xenopus laevis . Molecular Biology and Evolution. 2006;23(1):137–143. doi: 10.1093/molbev/msj016. PubMed DOI
Glaberman S., Caccone A. Species-specific evolution of class I MHC genes in iguanas (Order: Squamata; Subfamily: Iguaninae) Immunogenetics. 2008;60(7):371–382. doi: 10.1007/s00251-008-0298-y. PubMed DOI
Ballingall K. T., Rocchi M. S., McKeever D. J., Wright F. Trans-species polymorphism and selection in the MHC class II DRA genes of domestic sheep. PLoS ONE. 2010;5(6) doi: 10.1371/journal.pone.0011402.e11402 PubMed DOI PMC
Janova E., Matiasovic J., Vahala J., Vodicka R., van Dyk E., Horin P. Polymorphism and selection in the major histocompatibility complex DRA and DQA genes in the family Equidae. Immunogenetics. 2009;61(7):513–527. doi: 10.1007/s00251-009-0380-0. PubMed DOI
Piontkivska H., Nei M. Birth-and-death evolution in primate MHC class I genes: divergence time estimates. Molecular Biology and Evolution. 2003;20(4):601–609. doi: 10.1093/molbev/msg064. PubMed DOI
Takahashi K., Rooney A. P., Nei M. Origins and divergence times of mammalian class II MHC gene clusters. Journal of Heredity. 2000;91(3):198–204. doi: 10.1093/jhered/91.3.198. PubMed DOI
Kriener K., O'hUigin C., Klein J. Independent origin of functional MHC class II genes in humans and New World monkeys. Human Immunology. 2001;62(1):1–14. doi: 10.1016/s0198-8859(00)00233-0. PubMed DOI
Kundu S., Faulkes C. G. A tangled history: patterns of major histocompatibility complex evolution in the African mole-rats (Family: Bathyergidae) Biological Journal of the Linnean Society. 2007;91(3):493–503. doi: 10.1111/j.1095-8312.2007.00814.x. DOI
Zhao M., Wang Y., Shen H., et al. Evolution by selection, recombination, and gene duplication in MHC class I genes of two Rhacophoridae species. BMC Evolutionary Biology. 2013;13(1, article 113) doi: 10.1186/1471-2148-13-113. PubMed DOI PMC
Jaratlerdsiri W., Isberg S. R., Higgins D. P., et al. Evolution of MHC class I in the order crocodylia. Immunogenetics. 2014;66(1):53–65. doi: 10.1007/s00251-013-0746-1. PubMed DOI
Jaratlerdsiri W., Isberg S. R., Higgins D. P., Miles L. G., Gongora J. Selection and trans-species polymorphism of major histocompatibility complex class II genes in the order crocodylia. PLoS ONE. 2014;9(2) doi: 10.1371/journal.pone.0087534.e87534 PubMed DOI PMC
Kiryu I., Dijkstra J. M., Sarder R. I., Fujiwara A., Yoshiura Y., Ototake M. New MHC class Ia domain lineages in rainbow trout (Oncorhynchus mykiss) which are shared with other fish species. Fish & Shellfish Immunology. 2005;18(3):243–254. doi: 10.1016/j.fsi.2004.07.007. PubMed DOI
Wang D., Zhong L., Wei Q., Gan X., He S. Evolution of MHC class I genes in two ancient fish, paddlefish (Polyodon spathula) and Chinese sturgeon (Acipenser sinensis) FEBS Letters. 2010;584(15):3331–3339. doi: 10.1016/j.febslet.2010.05.065. PubMed DOI
Horing W. J., Papagiannes E., Dray S., Rodkey L. S. Expression of cross-reacting determinants of the immunoglobulin heavy chain variable region a3 allotype in Oryctolagus and Lepus . Molecular Immunology. 1980;17(1):111–117. doi: 10.1016/0161-5890(80)90130-3. PubMed DOI
Pinheiro A., Lanning D., Alves P. C., et al. Molecular bases of genetic diversity and evolution of the immunoglobulin heavy chain variable region (IGHV) gene locus in leporids. Immunogenetics. 2011;63(7):397–408. doi: 10.1007/s00251-011-0533-9. PubMed DOI PMC
Su C., Nei M. Fifty-million-year-old polymorphism at an immunoglobulin variable region gene locus in the rabbit evolutionary lineage. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(17):9710–9715. doi: 10.1073/pnas.96.17.9710. PubMed DOI PMC
Esteves P. J., Lanning D., Ferrand N., Knight K. L., Zhai S. K., Van Der Loo W. The evolution of the immunoglobulin heavy chain variable region (IgV H) in Leporids: an unusual case of transspecies polymorphism. Immunogenetics. 2005;57(11):874–882. doi: 10.1007/s00251-005-0022-0. PubMed DOI
Sumiyama K., Kawamura S., Takenaka O., Ueda S. A high sequence variety in the immunoglobulin C-alpha hinge region among old world monkeys. Anthropological Science. 1998;106(1):31–39. doi: 10.1537/ase.106.31. DOI
Sumiyama K., Saitou N., Ueda S. Adaptive evolution of the IgA hinge region in primates. Molecular Biology and Evolution. 2002;19(7):1093–1099. doi: 10.1093/oxfordjournals.molbev.a004167. PubMed DOI
Kawamura S., Omoto K., Ueda S. Evolutionary hypervariability in the hinge region of the immunoglobulin alpha gene. Journal of Molecular Biology. 1990;215(2):201–206. doi: 10.1016/s0022-2836(05)80336-5. PubMed DOI
Male C. J. Immunoglobulin A1 protease production by Haemophilus influenzae and Streptococcus pneumoniae . Infection and Immunity. 1979;26(1):254–261. PubMed PMC
Fehling H. J., Swat W., Laplace C., et al. MHC class I expression in mice lacking the proteasome subunit LMP-7. Science. 1994;265(5176):1234–1237. doi: 10.1126/science.8066463. PubMed DOI
Tsukamoto K., Miura F., Fujito N. T., Yoshizaki G., Nonaka M. Long-lived dichotomous lineages of the proteasome subunit beta type 8 (PSMB8) gene surviving more than 500 million years as alleles or paralogs. Molecular Biology and Evolution. 2012;29(10):3071–3079. doi: 10.1093/molbev/mss113. PubMed DOI
Miura F., Tsukamoto K., Mehta R. B., Naruse K., Magtoon W., Nonaka M. Transspecies dimorphic allelic lineages of the proteasome subunit β-type 8 gene (PSMB8) in the teleost genus Oryzias . Proceedings of the National Academy of Sciences of the United States of America. 2010;107(50):21599–21604. doi: 10.1073/pnas.1012881107. PubMed DOI PMC
Nonaka M., Yamada-Namikawa C., Flajnik M. F., Du Pasquier L. Trans-species polymorphism of the major histocompatibility complex-encoded proteasome subunit LMP7 in an amphibian genus, Xenopus . Immunogenetics. 2000;51(3):186–192. doi: 10.1007/s002510050030. PubMed DOI
Noro M., Nonaka M. Evolution of dimorphisms of the proteasome subunit beta type 8 gene (PSMB8) in basal ray-finned fish. Immunogenetics. 2014;66(5):325–334. doi: 10.1007/s00251-014-0767-4. PubMed DOI
Ganz T. Defensins: antimicrobial peptides of innate immunity. Nature Reviews Immunology. 2003;3(9):710–720. doi: 10.1038/nri1180. PubMed DOI
Cuperus T., Coorens M., van Dijk A., Haagsman H. P. Avian host defense peptides. Developmental and Comparative Immunology. 2013;41(3):352–369. doi: 10.1016/j.dci.2013.04.019. PubMed DOI
Mansour S. C., Pena O. M., Hancock R. E. Host defense peptides: front-line immunomodulators. Trends in Immunology. 2014;35(9):443–450. doi: 10.1016/j.it.2014.07.004. PubMed DOI
Bowdish D. M. E., Davidson D. J., Hancock R. E. W. A re-evaluation of the role of host defence peptides in mammalian immunity. Current Protein & Peptide Science. 2005;6(1):35–51. doi: 10.2174/1389203053027494. PubMed DOI
Wang G. S., Li X., Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Research. 2009;37(1):D933–D937. doi: 10.1093/nar/gkn823. PubMed DOI PMC
Tennessen J. A., Blouin M. S. Balancing selection at a frog antimicrobial peptide locus: fluctuating immune effector alleles? Molecular Biology and Evolution. 2008;25(12):2669–2680. doi: 10.1093/molbev/msn208. PubMed DOI PMC
Hollox E. J., Armour J. A. L. Directional and balancing selection in human beta-defensins. BMC Evolutionary Biology. 2008;8, article 113 doi: 10.1186/1471-2148-8-113. PubMed DOI PMC
Hellgren O., Sheldon B. C. Locus-specific protocol for nine different innate immune genes (antimicrobial peptides: β-defensins) across passerine bird species reveals within-species coding variation and a case of trans-species polymorphisms. Molecular Ecology Resources. 2011;11(4):686–692. doi: 10.1111/j.1755-0998.2011.02995.x. PubMed DOI
Braida L., Boniotto M., Pontillo A., Tovo P. A., Amoroso A., Crovella S. A single-nucleotide polymorphism in the human beta-defensin 1 gene as associated with HIV-1 infection in Italian children. AIDS. 2004;18(11):1598–1600. doi: 10.1097/01.aids.0000131363.82951.fb. PubMed DOI
Johnson W. E., Sawyer S. L. Molecular evolution of the antiretroviral TRIM5 gene. Immunogenetics. 2009;61(3):163–176. doi: 10.1007/s00251-009-0358-y. PubMed DOI
Stremlau M., Owens C. M., Perron M. J., Kiessling M., Autissier P., Sodroski J. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature. 2004;427(6977):848–853. doi: 10.1038/nature02343. PubMed DOI
Newman R. M., Hall L., Connole M., et al. Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5α . Proceedings of the National Academy of Sciences of the United States of America. 2006;103(50):19134–19139. doi: 10.1073/pnas.0605838103. PubMed DOI PMC
Cagliani R., Fumagalli M., Biasin M., et al. Long-term balancing selection maintains trans-specific polymorphisms in the human TRIM5 gene. Human Genetics. 2010;128(6):577–588. doi: 10.1007/s00439-010-0884-6. PubMed DOI
Hovanessian A. G., Justesen J. The human 2′-5′ oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2′-5′ instead of 3′-5′ phosphodiester bond formation. Biochimie. 2007;89(6-7):779–788. doi: 10.1016/j.biochi.2007.02.003. PubMed DOI
Mashimo T., Lucas M., Simon-Chazottes D., et al. A nonsense mutation in the gene encoding 2′-5′-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(17):11311–11316. doi: 10.1073/pnas.172195399. PubMed DOI PMC
Perelygin A. A., Scherbik S. V., Zhulin I. B., Stockman B. M., Li Y., Brinton M. A. Positional cloning of the murine flavivirus resistance gene. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(14):9322–9327. doi: 10.1073/pnas.142287799. PubMed DOI PMC
Ferguson W., Dvora S., Gallo J., Orth A., Boissinot S. Long-term balancing selection at the West Nile virus resistance gene, Oas1b, maintains transspecific polymorphisms in the house mouse. Molecular Biology and Evolution. 2008;25(8):1609–1618. doi: 10.1093/molbev/msn106. PubMed DOI PMC
Ferguson W., Dvora S., Fikes R. W., Stone A. C., Boissinot S. Long-term balancing selection at the antiviral gene OAS1 in central African chimpanzees. Molecular Biology and Evolution. 2012;29(4):1093–1103. doi: 10.1093/molbev/msr247. PubMed DOI PMC
Ioerger T. R., Clark A. G., Kao T.-H. Polymorphism at the self-incompatibility locus in Solanaceae predates speciation. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(24):9732–9735. doi: 10.1073/pnas.87.24.9732. PubMed DOI PMC
Richman A. D., Uyenoyama M. K., Kohn J. R. Allelic diversity and gene genealogy at the self-incompatibility locus in the solanaceae. Science. 1996;273(5279):1212–1216. doi: 10.1126/science.273.5279.1212. PubMed DOI
Dwyer K. G., Balent M. A., Nasrallah J. B., Nasrallah M. E. DNA sequences of self-incompatibility genes from Brassica campestris and B. oleracea: polymorphism predating speciation. Plant Molecular Biology. 1991;16(3):481–486. doi: 10.1007/bf00024000. PubMed DOI
Lukens L., Yicun H., May G. Correlation of genetic and physical maps at the A mating-type locus of Coprinus cinereus. Genetics. 1996;144(4):1471–1477. PubMed PMC
Muirhead C. A., Louise Glass N., Slatkin M. Multilocus self-recognition systems in fungi as a cause of trans-species polymorphism. Genetics. 2002;161(2):633–641. PubMed PMC
van Diepen L. T. A., Olson A., Ihrmark K., Stenlid J., James T. Y. Extensive trans-specific polymorphism at the mating type locus of the root decay fungus heterobasidion. Molecular Biology and Evolution. 2013;30(10):2286–2301. doi: 10.1093/molbev/mst126. PubMed DOI
Kermarrec N., Roubinet F., Apoil P.-A., Blancher A. Comparison of allele O sequences of the human and non-human primate ABO system. Immunogenetics. 1999;49(6):517–526. doi: 10.1007/s002510050529. PubMed DOI
Martinko J. M., Vincek V., Klein D., Klein J. Primate ABO glycosyltransferases: evidence for trans-species evolution. Immunogenetics. 1993;37(4):274–278. PubMed
Ségurel L., Thompson E. E., Flutre T., et al. The ABO blood group is a trans-species polymorphism in primates. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(45):18493–18498. doi: 10.1073/pnas.1210603109. PubMed DOI PMC
Lechner S., Ferretti L., Schöning C., Kinuthia W., Willemsen D., Hasselmann M. Nucleotide variability at its limit? Insights into the number and evolutionary dynamics of the sex-determining specificities of the honey bee apis mellifera. Molecular Biology and Evolution. 2014;31(2):272–287. doi: 10.1093/molbev/mst207. PubMed DOI PMC
Heimpel G. E., de Boer J. G. Sex determination in the hymenoptera. Annual Review of Entomology. 2008;53:209–230. doi: 10.1146/annurev.ento.53.103106.093441. PubMed DOI
Leffler E. M., Gao Z., Pfeifer S., et al. Multiple instances of ancient balancing selection shared between humans and chimpanzees. Science. 2013;340(6127):1578–1582. doi: 10.1126/science.1234070. PubMed DOI PMC
Acevedo-Whitehouse K., Cunningham A. A. Is MHC enough for understanding wildlife immunogenetics? Trends in Ecology and Evolution. 2006;21(8):433–438. doi: 10.1016/j.tree.2006.05.010. PubMed DOI
Mogensen T. H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clinical Microbiology Reviews. 2009;22(2):240–273. doi: 10.1128/cmr.00046-08. PubMed DOI PMC
Lee M. S., Kim Y. J. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annual Review of Biochemistry. 2007;76:447–480. doi: 10.1146/annurev.biochem.76.060605.122847. PubMed DOI
Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–820. doi: 10.1016/j.cell.2010.01.022. PubMed DOI
Vinkler M., Bainová H., Bryja J. Protein evolution of Toll-like receptors 4, 5 and 7 within Galloanserae birds. Genetics Selection Evolution. 2014;46, article 72 doi: 10.1186/s12711-014-0072-6. PubMed DOI PMC
Fornuskova A., Bryja J., Vinkler M., Macholán M., Piálek J. Contrasting patterns of polymorphism and selection in bacterial-sensing toll-like receptor 4 in two house mouse subspecies. Ecology and Evolution. 2014;4(14):2931–2944. doi: 10.1002/ece3.1137. PubMed DOI PMC
Alcaide M., Edwards S. V. Molecular evolution of the toll-like receptor multigene family in birds. Molecular Biology and Evolution. 2011;28(5):1703–1715. doi: 10.1093/molbev/msq351. PubMed DOI
Ferwerda B., McCall M. B. B., Alonso S., et al. TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(42):16645–16650. doi: 10.1073/pnas.0704828104. PubMed DOI PMC
Vinkler M., Bainová H., Bryjová A., Tomášek O., Albrecht T., Bryja J. Characterisation of Toll-like receptors 4, 5 and 7 and their genetic variation in the grey partridge. Genetica. 2015;143(1):101–112. doi: 10.1007/s10709-015-9819-4. PubMed DOI
Ferrer-Admetlla A., Bosch E., Sikora M., et al. Balancing selection is the main force shaping the evolution of innate immunity genes. Journal of Immunology. 2008;181(2):1315–1322. doi: 10.4049/jimmunol.181.2.1315. PubMed DOI
Loisel D. A., Rockman M. V., Wray G. A., Altmann J., Alberts S. C. Ancient polymorphism and functional variation in the primate MHC-DQA1 5′ cis-regulatory region. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(44):16331–16336. doi: 10.1073/pnas.0607662103. PubMed DOI PMC
Hedrick P. W. Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Molecular Ecology. 2013;22(18):4606–4618. doi: 10.1111/mec.12415. PubMed DOI
Wegner K. M., Eizaguirre C. New(t)s and views from hybridizing MHC genes: introgression rather than trans-species polymorphism may shape allelic repertoires. Molecular Ecology. 2012;21(4):779–781. doi: 10.1111/j.1365-294x.2011.05401.x. PubMed DOI
Kriener K., O'hUigin C., Tichy H., Klein J. Convergent evolution of major histocompatibility complex molecules in humans and New World monkeys. Immunogenetics. 2000;51(3):169–178. doi: 10.1007/s002510050028. PubMed DOI
Vincek V., O'Huigin C., Satta Y., et al. How large was the founding population of Darwin's finches? Proceedings of the Royal Society B: Biological Sciences. 1997;264(1378):111–118. doi: 10.1098/rspb.1997.0017. DOI
Sato A., Tichy H., Grant P. R., Grant B. R., Sato T., O'Huigin C. Spectrum of MHC class II variability in Darwin's finches and their close relatives. Molecular Biology and Evolution. 2011;28(6):1943–1956. doi: 10.1093/molbev/msr015. PubMed DOI PMC
Grant P. R., Grant B. R. Hybridization of bird species. Science. 1992;256(5054):193–197. doi: 10.1126/science.256.5054.193. PubMed DOI
Grossen C., Keller L., Biebach I., Croll D., International Goat Genome Consortium Introgression from domestic goat generated variation at the major histocompatibility complex of alpine ibex. PLoS Genetics. 2014;10(6) doi: 10.1371/journal.pgen.1004438.e1004438 PubMed DOI PMC
Nadachowska-Brzyska K., Zieliński P., Radwan J., Babik W. Interspecific hybridization increases MHC class II diversity in two sister species of newts. Molecular Ecology. 2012;21(4):887–906. doi: 10.1111/j.1365-294x.2011.05347.x. PubMed DOI
Šimková A., Civáňová K., Gettová L., Gilles A. Genomic porosity between invasive Chondrostoma nasus and endangered endemic Parachondrostoma toxostoma (Cyprinidae): the evolution of MHC IIB genes. PLoS ONE. 2013;8(6) doi: 10.1371/journal.pone.0065883.e65883 PubMed DOI PMC
Van Oosterhout C. A new theory of MHC evolution: beyond selection on the immune genes. Proceedings of the Royal Society B: Biological Sciences. 2009;276(1657):657–665. doi: 10.1098/rspb.2008.1299. PubMed DOI PMC
Understanding the evolution of immune genes in jawed vertebrates