Contrasting patterns of polymorphism and selection in bacterial-sensing toll-like receptor 4 in two house mouse subspecies

. 2014 Jul ; 4 (14) : 2931-44. [epub] 20140620

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25165529

Detailed investigation of variation in genes involved in pathogen recognition is crucial for understanding co-evolutionary processes between parasites and their hosts. Triggering immediate innate response to invading microbes, Toll-like receptors (TLRs) belong presently among the best-studied receptors of vertebrate immunity. TLRs exhibit remarkable interspecific variation and also intraspecific polymorphism is well documented. In humans and laboratory mice, several studies have recently shown that single amino acid substitution may significantly alter receptor function. Unfortunately, data concerning polymorphism in free-living species are still surprisingly scarce. In this study, we analyzed the polymorphism of Toll-like receptor 4 (Tlr4) over the Palearctic range of house mouse (Mus musculus). Our results reveal contrasting evolutionary patterns between the two recently (0.5 million years ago) diverged house mouse subspecies: M. m. domesticus (Mmd) and M. m. musculus (Mmm). Comparison with cytochrome b indicates strong directional selection in Mmd Tlr4. Throughout the whole Mmd western Palaearctic region, a single variant of the ligand-binding region is spread, encoded mainly by one dominant haplotype (71% of Mmd). In contrast, Tlr4 in Mmm is much more polymorphic with several haplotypes at intermediate frequencies. Moreover, we also found clear signals of recombination between two principal haplogroups in Mmm, and we identified eight sites under positive selection in our dataset. Our results suggest that observed differences in Tlr4 diversity may be attributed to contrasting parasite-mediated selection acting in the two subspecies.

Zobrazit více v PubMed

Abolins SR, Pocock MJO, Hafalla JCR, Riley EM, Viney ME. Measures of immune function of wild mice, Mus musculus. Mol. Ecol. 2011;20:881–892. PubMed

Acevedo-Whitehouse K, Cunningham AA. Is MHC enough for understanding wildlife immunogenetics? Trends Ecol. Evol. 2006;21:433–438. PubMed

Achyut BR, Ghoshal UC, Moorchung N, Mittal B. Association of Toll-like receptor-4 (Asp299Gly and Thr399Ileu) gene polymorphisms with gastritis and precancerous lesions. Hum. Immunol. 2007;68:901–907. PubMed

Agrawal AF, Lively CM. Infection genetics: gene-for-gene versus matching-alleles models and all points in between. Evol. Ecol. Res. 2002;4:79–90.

Agrawal AF, Lively CM. Modelling infection as a two-step process combining gene-for-gene and matching-allele genetics. Proc. Biol. Sci. 2003;270:323–334. PubMed PMC

Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2001;2:675–680. PubMed

Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801. PubMed

Areal H, Abrantes J, Esteves PJ. Signatures of positive selection in Toll-like receptor (TLR) genes in mammals. BMC Evol. Biol. 2011;11:368. PubMed PMC

Babayan SA, Allen JE, Bradley JE, Geuking MB, Graham AL, Grencis RK, et al. Wild immunology: converging on the real world. Ann. N. Y. Acad. Sci. 2011;1236:17–29. PubMed

Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999;16:37–48. PubMed

Bergman I-M, Edman K, Ekdahl KN, Rosengren KJ, Edfors I. Extensive polymorphism in the porcine Toll-like receptor 10 gene. Int. J. Immunogenet. 2012;39:68–76. PubMed

Bonhomme F, Orth A, Cucchi T, Rajabi-Maham H, Catalan J, Boursot P, et al. Genetic differentiation of the house mouse around the Mediterranean basin: matrilineal footprints of early and late colonization. Proc. Biol. Sci. 2011;278:1034–1043. PubMed PMC

Botos I, Segal DM, Davies DR. The structural biology of Toll-like receptors. Structure. 2011;1993:447–459. PubMed PMC

Boursot P, Auffray JC, Britton-Davidian J, Bonhomme F. The evolution of house mice. Annu. Rev. Ecol. Syst. 1993;24:119–152.

Božíková E, Munclinger P, Teeter KC, Tucker PK, Macholán M, Piálek J. Mitochondrial DNA in the hybrid zone between Mus musculus musculus and Mus musculus domesticus: a comparison of two transects: mtDNA in the house mouse hybrid zone. Biol. J. Linn. Soc. 2005;84:363–378.

Carlton JM. Genome sequencing and comparative genomics of tropical disease pathogens. Cell. Microbiol. 2003;5:861–873. PubMed

Cizkova D, de Bellocq JG, Baird SJE, Pialek J, Bryja J. Genetic structure and contrasting selection pattern at two major histocompatibility complex genes in wild house mouse populations. Heredity. 2011;106:727–740. PubMed PMC

Cucchi T, Auffray JC, Vigne JD. On the origin of the house mouse synanthropy and dispersal in the Near East and Europe: zooarchaeological review and perspectives. In: Macholán M, Baird SJE, Munclinger P, Piálek J, editors. Evolution of the house mouse. Cambridge: Cambridge Univ. Press; 2012. pp. 65–93.

Cucchi T, Kovács ZE, Berthon R, Orth A, Bonhomme F, Evin A, et al. On the trail of Neolithic mice and men towards Transcaucasia: zooarchaeological clues from Nakhchivan (Azerbaijan) Biol. J. Linn. Soc. 2013;108:917–928.

Danilova N. The evolution of immune mechanisms. J. Exp. Zool. B Mol. Dev. Evol. 2006;306B:496–520. PubMed

Day DF, Marrceau-Day ML. Lipopolysaccharide variability in Pseudomonas aeruginosa. Curr. Microbiol. 1982;7:93–98.

Delport W, Poon AFY, Frost SDW, Pond SLK. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics. 2010;26:2455–2457. PubMed PMC

Downing T, Lloyd AT, O'Farrelly C, Bradley DG. The differential evolutionary dynamics of avian cytokine and tlr gene classes. J. Immunol. 2010;184:6993–7000. PubMed

Ďureje L, Macholán M, Baird SJE, Piálek J. The mouse hybrid zone in Central Europe: from morphology to molecules. Folia Zool. 2012;61:308–318.

Duvaux L, Belkhir K, Boulesteix M, Boursot P. Isolation and gene flow: inferring the speciation history of European house mice. Mol. Ecol. 2011;20:5248–5264. PubMed

Ferwerda B, McCall MBB, Alonso S, Giamarellos-Bourboulis EJ, Mouktaroudi M, Izagirre N, et al. TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. Proc. Natl Acad. Sci. USA. 2007;104:16645–16650. PubMed PMC

Fornuskova A, Vinkler M, Pagès M, Galan M, Jousselin E, Cerqueira F, et al. Contrasted evolutionary histories of two Toll-like receptors (Tlr4 and Tlr7) in wild rodents (Murinae) BMC Evol. Biol. 2013;13:194. PubMed PMC

Frank SA. Specificity versus detectable polymorphism in host-parasite genetics. Proc. Biol. Sci. 1993;254:191–197. PubMed

Geraldes A, Basset P, Gibson B, Smith KL, Harr B, Yu H-T, et al. Inferring the history of speciation in house mice from autosomal, X-linked, Y-linked and mitochondrial genes. Mol. Ecol. 2008;17:5349–5363. PubMed PMC

Grueber CE, Wallis GP, King TM, Jamieson IG. Variation at innate immunity Toll-like receptor genes in a bottlenecked population of a New Zealand Robin. PLoS One. 2012;7:e45011. PubMed PMC

Grueber CE, Wallis GP, Jamieson IG. Genetic drift outweighs natural selection at toll-like receptor (TLR) immunity loci in a re-introduced population of a threatened species. Mol. Ecol. 2013;22:4470–4482. PubMed

Guénet J-L, Bonhomme F. Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet. 2003;19:24–31. PubMed

Hajjar AM, Harvey MD, Shaffer SA, Goodlett DR, Sjostedt A, Edebro H, et al. Lack of in vitro and in vivo recognition of Francisella tularensis subspecies lipopolysaccharide by Toll-like receptors. Infect. Immun. 2006;74:6730–6738. PubMed PMC

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.

Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 1985;22:160–174. PubMed

Hawn TR, Verbon A, Janer M, Zhao LP, Beutler B, Aderem A. Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires' disease. Proc. Natl Acad. Sci. USA. 2005;102:2487–2489. PubMed PMC

Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. PubMed

Janssens S, Beyaert R. Role of Toll-like receptors in pathogen recognition. Clin. Microbiol. Rev. 2003;16:637–646. PubMed PMC

Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 2010;11:373–384. PubMed

Kim HM, Park BS, Kim J-I, Kim SE, Lee J, Oh SC, et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell. 2007;130:906–917. PubMed

Knirel YA, Dentovskaya SV, Senchenkova SN, Shaikhutdinova RZ, Kocharova NA, Anisimov AP. Structural features and structural variability of the lipopolysaccharide of Yersinia pestis, the cause of plague. J. Endotoxin Res. 2006;12:3–9. PubMed

Kváč M, McEvoy J, Loudová M, Stenger B, Sak B, Květoňová D, et al. Coevolution of Cryptosporidium tyzzeri and the house mouse (Mus musculus. Int. J. Parasitol. 2013;43:805–817. PubMed PMC

Lecompte E, Granjon L, Peterhans JK, Denys C. Cytochrome b-based phylogeny of the Praomys group (Rodentia, Murinae): a new African radiation? C. R. Biol. 2002;325:827–840. PubMed

Leveque G, Forgetta V, Morroll S, Smith AL, Bumstead N, Barrow P, et al. Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar Typhimurium infection in chickens. Infect. Immun. 2003;71:1116–1124. PubMed PMC

Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. PubMed

Linnenbrink M, Wang J, Hardouin EA, Künzel S, Metzler D, Baines JF. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol. Ecol. 2013;22:1904–1916. PubMed

Macholán M, Vyskocilová M, Bonhomme F, Krystufek B, Orth A, Vohralík V. Genetic variation and phylogeography of free-living mouse species (genus Mus) in the Balkans and the Middle East. Mol. Ecol. 2007;16:4774–4788. PubMed

Macholán M, Baird SJE, Dufková P, Munclinger P, Bímová BV, Piálek J. Assessing multilocus introgression patterns: a case study on the mouse X chromosome in central Europe. Evolution. 2011;65:1428–1446. PubMed

Macholán M, Pialek J, Baird SJE, Munclinger P. Evolution of the house mouse. 1st ed. Cambridge, U.K: Cambridge Univ. Press; 2012.

McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991;351:652–654. PubMed

Medzhitov R, Janeway CA., Jr Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296:298–300. PubMed

Medzhitov R, Preston-Hurlburt P, Janeway CA., Jr A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388:394–397. PubMed

Milinski M. The major histocompatibility complex, sexual selection, and mate choice. Annu. Rev. Ecol. Evol. Syst. 2006;37:159–186.

Montminy SW, Khan N, McGrath S, Walkowicz MJ, Sharp F, Conlon JE, et al. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat. Immunol. 2006;7:1066–1073. PubMed

Mukherjee S, Sarkar-Roy N, Wagener DK, Majumder PP. Signatures of natural selection are not uniform across genes of innate immune system, but purifying selection is the dominant signature. Proc. Natl Acad. Sci. 2009;106:7073–7078. PubMed PMC

Netea MG, Wijmenga C, O'Neill LAJ. Genetic variation in Toll-like receptors and disease susceptibility. Nat. Immunol. 2012;13:535–542. PubMed

Ohto U, Fukase K, Miyake K, Shimizu T. Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc. Natl Acad. Sci. USA. 2012;109:7421–7426. PubMed PMC

O'Neill LAJ. TLRs: Professor Mechnikov, sit on your hat. Trends Immunol. 2004;25:687–693. PubMed

Park BS, Song DH, Kim HM, Choi B-S, Lee H, Lee J-O. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 2009;458:1191–1195. PubMed

Park S, Park D, Jung Y, Chung E, Choi S. Positive selection signatures in the TLR7 family. Genes Genomics. 2010;32:143–150.

Pasare C, Medzhitov R. Toll-like receptors and acquired immunity. Semin. Immunol. 2004;16:23–26. PubMed

Pedersen AB, Babayan SA. Wild immunology. Mol. Ecol. 2011;20:872–880. PubMed

Piálek J, Vyskočilová M, Bímová B, Havelková D, Piálková J, Dufková P, et al. Development of unique house mouse resources suitable for evolutionary studies of speciation. J. Hered. 2008;99:34–44. PubMed

Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085–2088. PubMed

Pond SLK, Frost SDW. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics. 2005a;21:2531–2533. PubMed

Pond SLK, Frost SDW. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 2005b;22:1208–1222. PubMed

Pond SLK, Posada D, Gravenor MB, Woelk CH, Frost SDW. Automated phylogenetic detection of recombination using a genetic algorithm. Mol. Biol. Evol. 2006a;23:1891–1901. PubMed

Pond SLK, Posada D, Gravenor MB, Woelk CH, Frost SDW. GARD: a genetic algorithm for recombination detection. Bioinformatics. 2006b;22:3096–3098. PubMed

Posada D. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 2008;25:1253–1256. PubMed

Ray A, Redhead K, Selkirk S, Poole S. Variability in LPS composition, antigenicity and reactogenicity of phase variants of Bordetella pertussis. FEMS Microbiol. Lett. 1991;79:211–218. PubMed

Resman N, Vasl J, Oblak A, Pristovsek P, Gioannini TL, Weiss JP, et al. Essential roles of hydrophobic residues in both MD-2 and Toll-like receptor 4 in activation by endotoxin. J. Biol. Chem. 2009;284:15052–15060. PubMed PMC

Riley EM, Viney ME. Wild mice provide insights into natural killer cell maturation and memory. Mol. Ecol. 2011;20:4827–4829. PubMed

Robinson RT, Khader SA, Locksley RM, Lien E, Smiley ST, Cooper AM. Yersinia pestis evades TLR4-dependent induction of IL-12(p40)2 by dendritic cells and subsequent cell migration. J. Immunol. 2008;181:5560–5567. PubMed PMC

Schmid-Hempel P. Evolutionary parasitology: the integrated study of infections, immunology, ecology, and genetics. New York: Oxford Univ. Press, Oxford; 2011.

Seabury CM, Seabury PM, Decker JE, Schnabel RD, Taylor JF, Womack JE. Diversity and evolution of 11 innate immune genes in Bos taurus taurus and Bos taurus indicus cattle. Proc. Natl Acad. Sci. USA. 2010;107:151–156. PubMed PMC

Sentitula Kumar R, Yadav BR. Molecular analysis of TLR4 gene and its association with intra-mammary infections in Sahiwal cattle and Murrah buffaloes. Indian J. Biotechnol. 2012;11:267–273.

Smirnova I, Poltorak A, Chan EK, McBride C, Beutler B. Phylogenetic variation and polymorphism at the Toll-like receptor 4 locus (TLR4) Genome Biol. 2000;1:research002.1–research002.10. PubMed PMC

Stephan K, Smirnova I, Jacque B, Poltorak A. Genetic analysis of the innate immune responses in wild-derived inbred strains of mice. Eur. J. Immunol. 2007;37:212–223. PubMed

Stephens M, Donnelly P. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 2003;73:1162–1169. PubMed PMC

Suzuki H, Shimada T, Terashima M, Tsuchiya K, Aplin K. Temporal, spatial, and ecological modes of evolution of Eurasian Mus based on mitochondrial and nuclear gene sequences. Mol. Phylogenet. Evol. 2004;33:626–646. PubMed

Takeda K, Akira S. Toll-like receptors in innate immunity. Int. Immunol. 2005;17:1–14. PubMed

Tavaré S. Some probabilistic and statisical problems on the analysis of DNA sequences. Lectures Math. Life Sci. 1986;17:57–86.

Tschirren B, Råberg L, Westerdahl H. Signatures of selection acting on the innate immunity gene Toll-like receptor 2 (TLR2) during the evolutionary history of rodents. J. Evol. Biol. 2011;24:1232–1240. PubMed

Tschirren B, Andersson M, Scherman K, Westerdahl H, Råberg L. Contrasting patterns of diversity and population differentiation at the innate immunity gene Toll-like receptor 2 (TLR2) in two sympatric rodent species. Evolution. 2012;66:720–731. PubMed

Tschirren B, Andersson M, Scherman K, Westerdahl H, Mittl PRE, Råberg L. Polymorphisms at the innate immune receptor TLR2 are associated with Borrelia infection in a wild rodent population. Proc. Biol. Sci. 2013;280:20130364. PubMed PMC

Turner AK, Begon M, Jackson JA, Bradley JE, Paterson S. Genetic diversity in cytokines associated with immune variation and resistance to multiple pathogens in a natural rodent population. PLoS Genet. 2011;7:e1002343. PubMed PMC

Villesen P. FaBox: an online toolbox for fasta sequences. Mol. Ecol. Notes. 2007;7:965–968.

Vinkler M, Albrecht T. The question waiting to be asked: innate immunity receptors in the perspective of zoological research. Folia Zool. 2009;58:15–28.

Vinkler M, Bryjová A, Albrecht T, Bryja J. Identification of the first Toll-like receptor gene in passerine birds: TLR4 orthologue in zebra finch (Taeniopygia guttata. Tissue Antigens. 2009;74:32–41. PubMed

Vyskocilová M, Prazanová G, Piálek J. Polymorphism in hybrid male sterility in wild-derived Mus musculus musculus strains on proximal chromosome 17. Mamm. Genome. 2009;20:83–91. PubMed

Werling D, Jann OC, Offord V, Glass EJ, Coffey TJ. Variation matters: TLR structure and species-specific pathogen recognition. Trends Immunol. 2009;30:124–130. PubMed

Wlasiuk G, Nachman MW. Adaptation and constraint at Toll-like receptors in primates. Mol. Biol. Evol. 2010;27:2172–2186. PubMed PMC

Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat. Genet. 2002;32:569–577. PubMed

Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, Welsh CE, et al. Subspecific origin and haplotype diversity in the laboratory mouse. Nat. Genet. 2011;43:648–655. PubMed PMC

Zaki HY, Leung KH, Yiu WC, Gasmelseed N, Elwali NEM, Yip SP. Common polymorphisms in TLR4 gene associated with susceptibility to pulmonary tuberculosis in the Sudanese. Int J Tuberc Lung Dis. 2012;16:934–940. PubMed

Zhang Z, Miteva MA, Wang L, Alexov E. Analyzing effects of naturally occurring missense mutations. Comput. Math. Methods Med. 2012;2012:e805827. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace