Adaptive evolution
Dotaz
Zobrazit nápovědu
BACKGROUND: The integration of robotic technology into surgical procedures has gained considerable attention for its promise to enhance a variety of clinical outcomes. Robotic deep inferior epigastric perforator (DIEP) flap harvest has emerged as a novel approach for autologous breast reconstruction. This systematic review aims to provide a comprehensive overview of the current techniques, outcomes, and complications of robotic DIEP flap surgery. METHODS: A systematic literature search was conducted after PRISMA 2020 guidelines across databases including PubMed, Embase, Google Scholar, and Web of Science from 2000 to 2023. Articles exploring robotic DIEP flap harvest for breast reconstruction were assessed to compare operative techniques, clinical outcomes, and complications. The risk of bias was evaluated using ROBINS-I and the Newcastle-Ottawa scale. RESULTS: Fourteen studies involving 108 patients were included. Three studies used a totally extraperitoneal (TEP) technique, whereas 11 studies used a transabdominal preperitoneal (TAPP) approach. Preoperative planning utilized computed tomography angiography and magnetic resonance angiography imaging. The mean robotic operative time was 64 minutes, with total operative times averaging 574 minutes for TAPP and 497 minutes for TEP. The mean length of stay was 5 days, and the mean fascial incision length was 3 cm. Overall complication rate was 14.9%, with no significant difference compared with conventional DIEP flap procedures. CONCLUSION: Robotic DIEP flap harvest is a promising technique that may reduce postoperative pain and limiting abdominal donor site morbidity. Potential limitations include longer operative times, variable hospital stays, and increased costs.
- MeSH
- arteriae epigastricae * transplantace MeSH
- délka operace * MeSH
- délka pobytu MeSH
- lidé MeSH
- mamoplastika * metody MeSH
- odběr tkání a orgánů metody MeSH
- perforátorový lalok * krevní zásobení MeSH
- pooperační komplikace prevence a kontrola MeSH
- roboticky asistované výkony * metody MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
An organism is considered "alive" if it can grow, reproduce, respond to external stimuli, metabolize nutrients, and maintain stability. By this definition, both mitochondria and viruses exhibit the key characteristics of independent life. In addition to their capacity for self-replication under specifically defined conditions, both mitochondria and viruses can communicate via shared biochemical elements, alter cellular energy metabolism, and adapt to their local environment. To explain this phenomenon, we hypothesize that early viral prototype species evolved from ubiquitous environmental DNA and gained the capacity for self-replication within coacervate-like liquid droplets. The high mutation rates experienced in this environment streamlined their acquisition of standard genetic codes and adaptation to a diverse set of host environments. Similarly, mitochondria, eukaryotic intracellular organelles that generate energy and resolve oxygen toxicity, originally evolved from an infectious bacterial species and maintain their capacity for active functionality within the extracellular space. Thus, while mitochondria contribute profoundly to eukaryotic cellular homeostasis, their capacity for freestanding existence may lead to functional disruptions over time, notably, the overproduction of reactive oxygen species, a phenomenon strongly linked to aging-related disorders. Overall, a more in-depth understanding of the full extent of the evolution of both viruses and mitochondria from primordial precursors may lead to novel insights and therapeutic strategies to address neurodegenerative processes and promote healthy aging.
- MeSH
- energetický metabolismus MeSH
- lidé MeSH
- mitochondrie * metabolismus MeSH
- původ života * MeSH
- viry * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
INTRODUCTION: Threats to our survival are often posed by the environment in which humans have evolved or live today. Animal and human ancestors developed complex physiological and behavioral response systems to cope with two types of threats: immediate physical harm from predators or conspecifics, triggering fear, and the risk of infections from parasites and pathogens leading to the evolution of the behavioral immune system (BIS) with disgust as the key emotion. Here we ask whether the BIS has adapted to protect us from pandemic risks or poisoning by modern toxic substances. METHODS: We have developed a survey comprised of 60 vignettes describing threats evoking fear and disgust belonging to one of the three main categories of threats: (1) ancestral, (2) modern, and (3) pandemic of airborne disease. Each vignette was evaluated on a 7-point Likert scale based on fear, disgust, and anger. Respondents also completed an assessment battery. RESULTS: The results show that the strongest fear is triggered by modern threats (electricity, car accidents), while the highest disgust is evoked by ancient threats (body waste products, worms). Disgust does not respond to modern threat stimuli such as toxic substances or radioactivity as these evoke mainly fear and anger. A discriminant factor analysis classified nine out of 10 pandemic disgust vignettes into the ancestral disgust category, convincingly assigning the pandemic disgust threats to the ancestral type. Gender, age, and type of education were significant moderators of emotional responses across all threat categories. DISCUSSION: Our study reveals that while fear is more context-dependent, particularly triggered by modern threats, disgust operates on an evolutionarily hardwired basis, making it less effective against contemporary risks. Furthermore, disgust experienced during a pandemic outbreak is more closely aligned with ancestral disgust-related threats tapping into evolutionary ancient survival circuits of the BIS. However, as disgust declines with age, the brain must adaptatively shift the emotional processing from disgust to fear to protect older adults from contamination risks. Finally, our study reveals that pandemic fear is better predicted by specific behaviors rather than general anxiety, suggesting a need for new assessments.
- Publikační typ
- časopisecké články MeSH
Mikroorganismy si během evoluce vyvinuly širokou škálu strategií, jak uniknout vrozenému i adaptivnímu imunitnímu systému, a některým těmto strategiím se věnujeme v našem přehledu. Mikroorganismy mohou využívat podobnost svých proteinů s proteiny hostitele, produkovat protizánětlivé faktory, narušovat komplementový systém, ovlivňovat funkci a blokovat syntézu cytokinů, inhibovat rozpoznávání imunoglobulinů, snižovat expresi a modifikovat antigeny na svém povrchu, narušovat zpracování a prezentaci antigenu imunitními buňkami, vstupovat do imunitních buněk, ovlivňovat apoptózu buněk, modulovat funkce imunitních buněk nebo ovlivňovat produkci hormonů. S těmito únikovými strategiemi je nutné počítat při léčbě infekčních onemocnění.
Microorganisms have evolved a wide variety of strategies to evade both the innate and adaptive immune systems during evolution, and some of these strategies are addressed in our review. Microorganisms can use the similarity of their proteins to host proteins, produce anti-inflammatory factors, disrupt the complement system, affect the function and block the synthesis of cytokines, inhibit the recognition of immunoglobulins, reduce the expression and modify antigens on their surface, disrupt the processing and presentation of antigen by immune cells, enter immune cells , influence cell apoptosis, modulate immune cell functions or influence hormone production. These escape strategies must be taken into account when treating infectious diseases.
- Klíčová slova
- únikové strategie mikroorganismů,
- MeSH
- interakce hostitele a patogenu MeSH
- lidé MeSH
- mikrobiologické jevy * MeSH
- přirozená imunita * MeSH
- trénovaná imunita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Horizontal gene transfer (HGT) is a key driver in the evolution of bacterial genomes. The acquisition of genes mediated by HGT may enable bacteria to adapt to ever-changing environmental conditions. Long-term application of antibiotics in intensive agriculture is associated with the dissemination of antibiotic resistance genes among bacteria with the consequences causing public health concern. Commensal farm-animal-associated gut microbiota are considered the reservoir of the resistance genes. Therefore, in this study, we identified known and not-yet characterized mobilized genes originating from chicken and porcine fecal samples using our innovative pipeline followed by network analysis to provide appropriate visualization to support proper interpretation.
- MeSH
- antibakteriální látky MeSH
- Bacteria genetika MeSH
- bakteriální geny MeSH
- genom bakteriální MeSH
- mikrobiota * MeSH
- prasata MeSH
- přenos genů horizontální * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
We report avian cervical vertebrae from the Quercy fissure fillings in France, which are densely covered with villi-like tubercles. Two of these vertebrae stem from a late Eocene site, another lacks exact stratigraphic data. Similar cervical vertebrae occur in avian species from Eocene fossils sites in Germany and the United Kingdom, but the new fossils are the only three-dimensionally preserved vertebrae with pronounced surface sculpturing. So far, the evolutionary significance of this highly bizarre morphology, which is unknown from extant birds, remained elusive, and even a pathological origin was considered. We note the occurrence of similar structures on the skull of the extant African rodent Lophiomys and detail that the tubercles represent true osteological features and characterize a distinctive clade of Eocene birds (Perplexicervicidae). Micro-computed tomography (μCT) shows the tubercles to be associated with osteosclerosis of the cervical vertebrae, which have a very thick cortex and much fewer trabecles and pneumatic spaces than the cervicals of most extant birds aside from some specialized divers. This unusual morphology is likely to have served for strengthening the vertebral spine in the neck region, and we hypothesize that it represents an anti-predator adaptation against the craniocervical killing bite ("neck bite") that evolved in some groups of mammalian predators. Tuberculate vertebrae are only known from the Eocene of Central Europe, which featured a low predation pressure on birds during that geological epoch, as is evidenced by high numbers of flightless avian species. Strengthening of the cranialmost neck vertebrae would have mitigated attacks by smaller predators with weak bite forces, and we interpret these vertebral specializations as the first evidence of "internal bony armor" in birds.
The genomic signature of an organism captures the characteristics of repeated oligonucleotide patterns in its genome 1, such as oligomer frequencies, GC content, and differences in codon usage. Viruses, however, are obligate intracellular parasites that are dependent on their host cells for replication, and information about genomic signatures in viruses has hitherto been sparse.Here, we investigate the presence and specificity of genomic signatures in 2,768 eukaryotic viral species from 105 viral families, aiming to illuminate dependencies and selective pressures in viral genome evolution. We demonstrate that most viruses have highly specific genomic signatures that often also differ significantly between species within the same family. The species-specificity is most prominent among dsDNA viruses and viruses with large genomes. We also reveal consistent dissimilarities between viral genomic signatures and those of their host cells, although some viruses present slight similarities, which may be explained by genetic adaptation to their native hosts. Our results suggest that significant evolutionary selection pressures act upon viral genomes to shape and preserve their genomic signatures, which may have implications for the field of synthetic biology in the construction of live attenuated vaccines and viral vectors.
OBJECTIVE: Dynamic systems theory and complexity theory (DST/CT) is a framework explaining how complex systems change and adapt over time. In psychotherapy, DST/CT can be used to understand how a person's mental and emotional state changes during therapy incorporating higher levels of complexity. This study aimed to systematically review the variability of DST/CT methods applied in psychotherapy research. METHODS: A primary studies search was conducted in the EBSCO and Web of Knowledge databases, extracting information about the analyzed DST/CT phenomena, employed mathematical methods to investigate these phenomena, descriptions of specified dynamic models, psychotherapy phenomena, and other information regarding studies with empirical data (e.g., measurement granularity). RESULTS: After screening 38,216 abstracts and 4,194 full texts, N = 41 studies published from 1990 to 2021 were identified. The employed methods typically included measures of dynamic complexity or chaoticity. Computational and simulation studies most often employed first-order ordinary differential equations and typically focused on describing the time evolution of client-therapist dyadic influences. Eligible studies with empirical data were usually based on case studies and focused on data with high time intensity of within-session dynamics. CONCLUSION: This review provides a descriptive synthesis of the current state of the proliferation of DST/CT methods in the psychotherapy research field.
- MeSH
- lidé MeSH
- psychologická teorie MeSH
- psychoterapie * metody MeSH
- systémová teorie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
UNLABELLED: Lyme disease, caused by spirochetes in the Borrelia burgdorferi sensu lato clade within the Borrelia genus, is transmitted by Ixodes ticks and is currently the most prevalent and rapidly expanding tick-borne disease in Europe and North America. We report complete genome sequences of 47 isolates that encompass all established species in this clade while highlighting the diversity of the widespread human pathogenic species B. burgdorferi. A similar set of plasmids has been maintained throughout Borrelia divergence, indicating that they are a key adaptive feature of this genus. Phylogenetic reconstruction of all sequenced Borrelia genomes revealed the original divergence of Eurasian and North American lineages and subsequent dispersals that introduced B. garinii, B. bavariensis, B. lusitaniae, B. valaisiana, and B. afzelii from East Asia to Europe and B. burgdorferi and B. finlandensis from North America to Europe. Molecular phylogenies of the universally present core replicons (chromosome and cp26 and lp54 plasmids) are highly consistent, revealing a strong clonal structure. Nonetheless, numerous inconsistencies between the genome and gene phylogenies indicate species dispersal, genetic exchanges, and rapid sequence evolution at plasmid-borne loci, including key host-interacting lipoprotein genes. While localized recombination occurs uniformly on the main chromosome at a rate comparable to mutation, lipoprotein-encoding loci are recombination hotspots on the plasmids, suggesting adaptive maintenance of recombinant alleles at loci directly interacting with the host. We conclude that within- and between-species recombination facilitates adaptive sequence evolution of host-interacting lipoprotein loci and contributes to human virulence despite a genome-wide clonal structure of its natural populations. IMPORTANCE: Lyme disease (also called Lyme borreliosis in Europe), a condition caused by spirochete bacteria of the genus Borrelia, transmitted by hard-bodied Ixodes ticks, is currently the most prevalent and rapidly expanding tick-borne disease in the United States and Europe. Borrelia interspecies and intraspecies genome comparisons of Lyme disease-related bacteria are essential to reconstruct their evolutionary origins, track epidemiological spread, identify molecular mechanisms of human pathogenicity, and design molecular and ecological approaches to disease prevention, diagnosis, and treatment. These Lyme disease-associated bacteria harbor complex genomes that encode many genes that do not have homologs in other organisms and are distributed across multiple linear and circular plasmids. The functional significance of most of the plasmid-borne genes and the multipartite genome organization itself remains unknown. Here we sequenced, assembled, and analyzed whole genomes of 47 Borrelia isolates from around the world, including multiple isolates of the human pathogenic species. Our analysis elucidates the evolutionary origins, historical migration, and sources of genomic variability of these clinically important pathogens. We have developed web-based software tools (BorreliaBase.org) to facilitate dissemination and continued comparative analysis of Borrelia genomes to identify determinants of human pathogenicity.
- MeSH
- Borrelia burgdorferi komplex genetika klasifikace MeSH
- Borrelia burgdorferi genetika klasifikace MeSH
- Borrelia genetika klasifikace MeSH
- fylogeneze * MeSH
- genetická variace MeSH
- genom bakteriální * MeSH
- interakce mikroorganismu a hostitele genetika MeSH
- klíště mikrobiologie MeSH
- lidé MeSH
- lipoproteiny * genetika MeSH
- lymeská nemoc * mikrobiologie přenos MeSH
- molekulární evoluce MeSH
- plazmidy genetika MeSH
- rekombinace genetická * MeSH
- sekvenování celého genomu MeSH
- selekce (genetika) * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH
Polyploidy, the result of whole-genome duplication (WGD), is a major driver of eukaryote evolution. Yet WGDs are hugely disruptive mutations, and we still lack a clear understanding of their fitness consequences. Here, we study whether WGDs result in greater diversity of genomic structural variants (SVs) and how they influence evolutionary dynamics in a plant genus, Cochlearia (Brassicaceae). By using long-read sequencing and a graph-based pangenome, we find both negative and positive interactions between WGDs and SVs. Masking of recessive mutations due to WGDs leads to a progressive accumulation of deleterious SVs across four ploidal levels (from diploids to octoploids), likely reducing the adaptive potential of polyploid populations. However, we also discover putative benefits arising from SV accumulation, as more ploidy-specific SVs harbor signals of local adaptation in polyploids than in diploids. Together, our results suggest that SVs play diverse and contrasting roles in the evolutionary trajectories of young polyploids.