The two stork species that nest in Central Europe, Ciconia ciconia and Ciconia nigra, have been repeatedly shown to host the digenetic trematode Cathaemasia hians (Rudolphi, 1809) in their esophagus and muscular stomach. These host species differ in their habitat and food preferences, and the morphologic characters of C. hians isolates ex Ci. nigra and Ci. ciconia are not identical. These differences led to a previous proposal of two subspecies, Cathaemasia hians longivitellata Macko, 1960, and Cathaemasia hians hians Macko, 1960. We hypothesize that the Cathaemasia hians isolates ex Ci. nigra and Ci. ciconia represent two independent species. Therefore, in the present study, we performed the first molecular analyses of C. hians individuals that were consistent with the diagnosis of C. hians hians (ex Ci. nigra) and C. hians longivitellata (ex Ci. ciconia). The combined molecular and comparative morphological analyses of the central European Cathaemasia individuals ex Ci. nigra and Ci. ciconia led to the proposal of a split of C. hians into C. hians sensu stricto (formerly C. hians hians) and C. longivitellata sp. n. (formerly C. hians longivitellata). Morphological analyses confirmed that the length of the vitellaria is the key identification feature of the two previously mentioned species. Both Cathaemasia spp. substantially differ at the molecular level and have strict host specificity, which might be related to differences in the habitat and food preferences of the two stork species.
Bordetella pertussis is the causative agent of whooping cough in humans, a disease that has recently experienced a resurgence. In contrast, Bordetella bronchiseptica infects the respiratory tract of various mammalian species, causing a range of symptoms from asymptomatic chronic carriage to acute illness. Both pathogens utilize type III secretion system (T3SS) to deliver the effector protein BteA into host cells. Once injected, BteA triggers a cascade of events leading to caspase 1-independent necrosis through a mechanism that remains incompletely understood. We demonstrate that BteA-induced cell death is characterized by the fragmentation of the cellular endoplasmic reticulum and mitochondria, the formation of necrotic balloon-like protrusions, and plasma membrane permeabilization. Importantly, genome-wide CRISPR-Cas9 screen targeting 19,050 genes failed to identify any host factors required for BteA cytotoxicity, suggesting that BteA does not require a single nonessential host factor for its cytotoxicity. We further reveal that BteA triggers a rapid and sustained influx of calcium ions, which is associated with organelle fragmentation and plasma membrane permeabilization. The sustained elevation of cytosolic Ca2+ levels results in mitochondrial calcium overload, mitochondrial swelling, cristolysis, and loss of mitochondrial membrane potential. Inhibition of calcium channels with 2-APB delays both the Ca2+ influx and BteA-induced cell death. Our findings indicate that BteA exploits essential host processes and/or redundant pathways to disrupt calcium homeostasis and mitochondrial function, ultimately leading to host cell death.IMPORTANCEThe respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica exhibit cytotoxicity toward a variety of mammalian cells, which depends on the type III secretion effector BteA. Moreover, the increased virulence of B. bronchiseptica is associated with enhanced expression of T3SS and BteA. However, the molecular mechanism underlying BteA cytotoxicity is elusive. In this study, we performed a CRISPR-Cas9 screen, revealing that BteA-induced cell death depends on essential or redundant host processes. Additionally, we demonstrate that BteA disrupts calcium homeostasis, which leads to mitochondrial dysfunction and cell death. These findings contribute to closing the gap in our understanding of the signaling cascades targeted by BteA.
- MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- Bordetella bronchiseptica genetika metabolismus účinky léků MeSH
- Bordetella pertussis genetika patogenita metabolismus účinky léků MeSH
- buněčná smrt * účinky léků MeSH
- endoplazmatické retikulum metabolismus účinky léků MeSH
- homeostáza * MeSH
- interakce hostitele a patogenu MeSH
- lidé MeSH
- mitochondrie metabolismus účinky léků MeSH
- sekreční systém typu III metabolismus genetika MeSH
- vápník * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Schistosoma mansoni was introduced from Africa to the Americas during the transatlantic slave trade and remains a major public health problem in parts of South America and the Caribbean. This study presents a comprehensive comparative analysis of three S. mansoni strains with different geographical origins-from Liberia, Belo Horizonte and Puerto Rico. We demonstrated significant variation in virulence and host-parasite interactions. METHODS: We investigated the phenotypic characteristics of the parasite and its eggs, as well as the immunopathologic effects on laboratory mouse organ systems. RESULTS: Our results show significant differences in worm morphology, worm burden, egg size, and pathologic organ changes between these strains. The Puerto Rican strain showed the highest virulence, as evidenced by marked liver and spleen changes and advanced liver fibrosis indicated by increased collagen content. In contrast, the strains from Liberia and Belo Horizonte had a less pathogenic profile with less liver fibrosis. We found further variations in granuloma formation, cytokine expression and T-cell dynamics, indicating different immune responses. CONCLUSION: Our study emphasizes the importance of considering intra-specific variations of S. mansoni for the development of targeted therapies and public health strategies. The different virulence patterns, host immune responses and organ pathologies observed in these strains provide important insights for future research and could inform region-specific interventions for schistosomiasis control.
- MeSH
- cytokiny metabolismus MeSH
- interakce hostitele a parazita MeSH
- játra * parazitologie patologie MeSH
- myši MeSH
- Schistosoma mansoni * patogenita genetika imunologie MeSH
- schistosomiasis mansoni * parazitologie imunologie patologie MeSH
- slezina parazitologie patologie imunologie MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Libérie MeSH
- Portoriko MeSH
Multivalvulidan myxosporeans (Multivalvulida) of the genera Unicapsula Davis, 1924 and Kudoa Meglitsch, 1947 are mostly causative agents of latent and imperceptible infection in marine fishes. However, they are sometimes incriminated in causing post-mortem myoliquefaction or unsightly cyst formation in commercial fish. Despite the great commercial impacts of multivalvulidan infection, the biodiversity, host range and epidemiology of multivalvulidan species remain to be explored further, including infection of alternative annelid hosts. Therefore, this study aimed to identify multivalvulidan species and their host and/or distribution records in commercial fishes in China. Multivalvulidan infection was detected in ten commercial fish species of seven families from the South and East China Seas (Northwest Pacific Ocean) and the Eastern Central Atlantic Ocean (an imported Dagetichthys lusitanicus [de Brito Capello]). Based on morphological and molecular-genetic analyses of their small and large subunit of ribosomal RNA genes, five new host and/or geographical distribution records for five fish species are presented, and three new species in five fish species are described, namely Kudoa neoscomberomori sp. n. in Scomberomorus commerson (Lacépède); Kudoa pilosa sp. n. in Helicolenus hilgendorfi (Döderlein) (type host) and Sebastiscus tertius (Barsukov et Chen); and Kudoa tumidisporica sp. n. in Photopectoralis bindus (Valenciennes) (type host) and Nuchequula nuchalis (Temminck et Schlegel). This study provides new data on multivalvulidan diversity in the ocean ecosystem.
- MeSH
- fylogeneze * MeSH
- hostitelská specificita MeSH
- Myxozoa * klasifikace genetika izolace a purifikace MeSH
- nemoci ryb * parazitologie epidemiologie MeSH
- parazitární nemoci u zvířat * parazitologie epidemiologie MeSH
- ryby * parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Čína MeSH
Trematodes of the order Diplostomida are well known as serious pathogens of man, and both farm and wild animals; members of the genus Schistosoma (Schistosomatidae) are responsible for human schistosomosis (schistosomiasis) affecting more than 200 million people in tropical and subtropical countries, and infections of mammals and birds by animal schistosomes are of great veterinary importance. The order Diplostomida is also rich in species parasitizing other major taxa of vertebrates. The "Aporocotylidae" sensu lato are pathogenic in fish, "Spirorchiidae" sensu lato in reptiles. All these flukes have two-host life cycles, with asexually reproducing larvae usually in mollusks and occasionally in annelids, and adults usually live in the blood vessels of their vertebrate hosts. Pathology is frequently associated with inflammatory reactions to eggs trapped in various tissues/organs. On the other hand, the representatives of Diplostomidae and Strigeidae have three- or four-host life cycles in which vertebrates often serve not only as definitive but also as intermediate or paratenic hosts. Pathology is usually associated with migration of metacercariae and mesocercariae within the host tissues. The impact of these trematode infections on both farm and wild animals may be significant.
In this review, I take the first-person perspective of a neuroscientist interested in Toxoplasma gondii (Nicolle et Manceaux, 1908). I reflect on the value of behavioural manipulation as a perturbation tool to understand the organisation of behaviour within the brain. Toxoplasma gondii infection reduces the aversion of rats to the olfactory cues of cat presence. This change in behaviour is one of the often-discussed exemplars of host-parasite coevolution, culminating in the manipulation of the host behaviour for the benefit of the parasite. Such coevolution also means that we can use host-parasite systems as tools to derive fundamental insights about the host brain itself.
- MeSH
- chování zvířat * fyziologie MeSH
- interakce hostitele a parazita * MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- Toxoplasma * fyziologie MeSH
- toxoplazmóza zvířat parazitologie MeSH
- toxoplazmóza parazitologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Po koupání v přírodních nádržích se v létě 2023 na několika místech v České republice objevila u lidí, zejména u dětí, cerkáriová dermatitida. Jde o imunitní reakci na průnik larvy motolice – ptačí krevničky – do kůže nesprávného hostitele. Mezi hostiteli parazita jsou plicnatí vodní plži – plovatky a okružáci – a definitivní hostitelé vodní ptáci, zejména kachny. Hodiny až dny po koupání se vyvine svědivá vyrážka, následně s puchýřky. Hojení trvá dva týdny, symptomy lze tišit antihistaminiky. Čisté vodní nádrže bez plžů jsou bezpečné a v některých přírodních nádržích po nahlášení onemocnění přistoupila samospráva nebo provozovatel koupaliště k fyzické likvidaci plžů.
After swimming in natural reservoirs in the summer of 2023, cercarial dermatitis or Swimmer's itch appeared in several places in the Czech Republic in people, especially in children. It is an immune reaction to the penetration of a fluke larva – a bird blood fluke into the skin of the wrong host. The intermediate hosts of the parasite are pulmonate aquatic gas- tropods – pond snails and ramshorns – and the definitive hosts are waterfowl, especially ducks. An itchy rash develops hours to days after bathing, followed by blisters. Healing takes two weeks symptoms can be calmed by antihistamines. Clean water reservoirs without snails are safe, and in some natural ones, after the disease has been reported, the municipality or the operator of the swimming pool proceeded to physically dispose of the snails.
- MeSH
- cerkárie * patogenita MeSH
- dítě MeSH
- interakce hostitele a parazita MeSH
- lidé MeSH
- parazitární onemocnění kůže * diagnóza prevence a kontrola terapie MeSH
- rybníky MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Geografické názvy
- Česká republika MeSH
UNLABELLED: Lyme disease, caused by spirochetes in the Borrelia burgdorferi sensu lato clade within the Borrelia genus, is transmitted by Ixodes ticks and is currently the most prevalent and rapidly expanding tick-borne disease in Europe and North America. We report complete genome sequences of 47 isolates that encompass all established species in this clade while highlighting the diversity of the widespread human pathogenic species B. burgdorferi. A similar set of plasmids has been maintained throughout Borrelia divergence, indicating that they are a key adaptive feature of this genus. Phylogenetic reconstruction of all sequenced Borrelia genomes revealed the original divergence of Eurasian and North American lineages and subsequent dispersals that introduced B. garinii, B. bavariensis, B. lusitaniae, B. valaisiana, and B. afzelii from East Asia to Europe and B. burgdorferi and B. finlandensis from North America to Europe. Molecular phylogenies of the universally present core replicons (chromosome and cp26 and lp54 plasmids) are highly consistent, revealing a strong clonal structure. Nonetheless, numerous inconsistencies between the genome and gene phylogenies indicate species dispersal, genetic exchanges, and rapid sequence evolution at plasmid-borne loci, including key host-interacting lipoprotein genes. While localized recombination occurs uniformly on the main chromosome at a rate comparable to mutation, lipoprotein-encoding loci are recombination hotspots on the plasmids, suggesting adaptive maintenance of recombinant alleles at loci directly interacting with the host. We conclude that within- and between-species recombination facilitates adaptive sequence evolution of host-interacting lipoprotein loci and contributes to human virulence despite a genome-wide clonal structure of its natural populations. IMPORTANCE: Lyme disease (also called Lyme borreliosis in Europe), a condition caused by spirochete bacteria of the genus Borrelia, transmitted by hard-bodied Ixodes ticks, is currently the most prevalent and rapidly expanding tick-borne disease in the United States and Europe. Borrelia interspecies and intraspecies genome comparisons of Lyme disease-related bacteria are essential to reconstruct their evolutionary origins, track epidemiological spread, identify molecular mechanisms of human pathogenicity, and design molecular and ecological approaches to disease prevention, diagnosis, and treatment. These Lyme disease-associated bacteria harbor complex genomes that encode many genes that do not have homologs in other organisms and are distributed across multiple linear and circular plasmids. The functional significance of most of the plasmid-borne genes and the multipartite genome organization itself remains unknown. Here we sequenced, assembled, and analyzed whole genomes of 47 Borrelia isolates from around the world, including multiple isolates of the human pathogenic species. Our analysis elucidates the evolutionary origins, historical migration, and sources of genomic variability of these clinically important pathogens. We have developed web-based software tools (BorreliaBase.org) to facilitate dissemination and continued comparative analysis of Borrelia genomes to identify determinants of human pathogenicity.
- MeSH
- Borrelia burgdorferi komplex genetika klasifikace MeSH
- Borrelia burgdorferi genetika klasifikace MeSH
- Borrelia genetika klasifikace MeSH
- fylogeneze * MeSH
- genetická variace MeSH
- genom bakteriální * MeSH
- interakce mikroorganismu a hostitele genetika MeSH
- klíště mikrobiologie MeSH
- lidé MeSH
- lipoproteiny * genetika MeSH
- lymeská nemoc * mikrobiologie přenos MeSH
- molekulární evoluce MeSH
- plazmidy genetika MeSH
- rekombinace genetická * MeSH
- sekvenování celého genomu MeSH
- selekce (genetika) * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH
Leishmania species, members of the kinetoplastid parasites, cause leishmaniasis, a neglected tropical disease, in millions of people worldwide. Leishmania has a complex life cycle with multiple developmental forms, as it cycles between a sand fly vector and a mammalian host; understanding their life cycle is critical to understanding disease spread. One of the key life cycle stages is the haptomonad form, which attaches to insect tissues through its flagellum. This adhesion, conserved across kinetoplastid parasites, is implicated in having an important function within their life cycles and hence in disease transmission. Here, we discover the kinetoplastid-insect adhesion proteins (KIAPs), which localise in the attached Leishmania flagellum. Deletion of these KIAPs impairs cell adhesion in vitro and prevents Leishmania from colonising the stomodeal valve in the sand fly, without affecting cell growth. Additionally, loss of parasite adhesion in the sand fly results in reduced physiological changes to the fly, with no observable damage of the stomodeal valve and reduced midgut swelling. These results provide important insights into a comprehensive understanding of the Leishmania life cycle, which will be critical for developing transmission-blocking strategies.
- MeSH
- buněčná adheze MeSH
- flagella * metabolismus MeSH
- hmyz - vektory parazitologie MeSH
- hmyzí proteiny metabolismus genetika MeSH
- interakce hostitele a parazita MeSH
- Leishmania * fyziologie genetika metabolismus MeSH
- leishmanióza parazitologie přenos MeSH
- protozoální proteiny metabolismus genetika MeSH
- Psychodidae * parazitologie MeSH
- stadia vývoje MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Glypthelmins quieta is a frog trematode native to North and Central America. This trematode was recently detected in Japan in the American bullfrog Lithobates catesbeianus, which was introduced from North America to Japan. As the first intermediate host of G. quieta, typically a snail, has not yet been identified in Japan, we conducted a snail survey in eastern Japan to screen for an intermediate host using DNA barcoding based on the nuclear 28S ribosomal RNA and mitochondrial cytochrome c oxidase subunit 1. We sampled 3 different snail species, Orientogalba ollula, Physella acuta, and Sinotaia quadrata histrica (157 individuals in total), and only the freshwater snail Physella acuta, which is also believed to have been introduced from North America to Japan, had sporocysts of G. quieta in its hepatopancreas. The introduction of the intermediate and definitive hosts from North America may have facilitated the invasion of G. quieta into Japan.
- MeSH
- hlemýždi * parazitologie MeSH
- interakce hostitele a parazita MeSH
- RNA ribozomální 28S genetika MeSH
- Trematoda * genetika MeSH
- zavlečené druhy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Japonsko MeSH