Phenogenomic resources immortalized in a panel of wild-derived strains of five species of house mice
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
40199997
PubMed Central
PMC11978780
DOI
10.1038/s41598-025-86505-x
PII: 10.1038/s41598-025-86505-x
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- divoká zvířata genetika MeSH
- druhová specificita MeSH
- fenotyp MeSH
- genetická variace * MeSH
- histonlysin-N-methyltransferasa genetika MeSH
- mitochondriální DNA genetika MeSH
- myši * genetika MeSH
- variabilita počtu kopií segmentů DNA MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši * genetika MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histonlysin-N-methyltransferasa MeSH
- mitochondriální DNA MeSH
- prdm9 protein, mouse MeSH Prohlížeč
The house mouse, Mus musculus, is a widely used animal model in biomedical research, with classical laboratory strains (CLS) being the most frequently employed. However, the limited genetic variability in CLS hinders their applicability in evolutionary studies. Wild-derived strains (WDS), on the other hand, provide a suitable resource for such investigations. This study quantifies genetic and phenotypic data of 101 WDS representing 5 species, 3 subspecies, and 8 natural Y consomic strains and compares them with CLS. Genetic variability was estimated using whole mtDNA sequences, the Prdm9 gene, and copy number variation at two sex chromosome-linked genes. WDS exhibit a large natural variation with up to 2173 polymorphic sites in mitogenomes, whereas CLS display 92 sites. Moreover, while CLS have two Prdm9 alleles, WDS harbour 46 different alleles. Although CLS resemble M. m. domesticus and M. m. musculus WDS, they differ from them in 10 and 14 out of 16 phenotypic traits, respectively. The results suggest that WDS can be a useful tool in evolutionary and biomedical studies with great potential for medical applications.
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Division BIOCEV Institute of Molecular Genetics Czech Academy of Sciences Vestec Czech Republic
General University Hospital and 1st Faculty of Medicine Charles University Prague Czech Republic
Institute of Animal Physiology and Genetics Czech Academy of Sciences Brno Czech Republic
ISEM CNRS EPHE IRD Université de Montpellier Montpellier France
Zobrazit více v PubMed
Yamaguchi, M. & Yoshida, H. in In Drosophila Models for Human Diseases (eds Yamaguchi, M.) 1–10 (Springer, 2018).
Morgan, T. H., Sturtevant, A. H., Muller, H. J. & Bridges, C. B. The Mechanisms of Mendelian Heredity (Henry Holt & Co., 1915).
Botstein, D. & Fink, G. R. Yeast: An experimental organism for 21st century biology. Genetics189, 695–704. 10.1534/genetics.111.130765 (2011). PubMed PMC
Fox, J. G. et al. The Mouse in Biomedical Research. Vol. 1. History, Wild Mice, and Genetics (Elsevier, 2007).
Fox, J. G. et al. The Mouse in Biomedical Research. Vol. 3. Normative Biology, Husbandry, and Models (Elsevier, 2007).
Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature420, 520–562. 10.1038/nature01262 (2002). PubMed
Eppig, J. T. Mouse Genome Informatics (MGI) resource: genetic, genomic, and biological knowledgebase for the laboratory mouse. ILAR J.58, 17–41. 10.1093/ilar/ilx013 (2017). PubMed PMC
Festing, M. F. W. in In Genetic Variants and Strains of the Laboratory Mouse (eds Lyon, M. F. et al.) 1537–1576 (Oxford University Press, 1996).
Yang, H. et al. Subspecific origin and haplotype diversity in the laboratory mouse. Nat. Genet.43, 648–655. 10.1038/ng.847 (2011). PubMed PMC
Takada, T. et al. The ancestor of extant Japanese fancy mice contributed to the mosaic genomes of classical inbred strains. Genome Res.23, 1329–1338. 10.1101/gr.156497.113 (2013). PubMed PMC
Ferris, S. D., Sage, R. D. & Wilson, A. C. Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female. Nature295, 163–165. 10.1038/295163a0 (1982). PubMed
Bayona-Bafaluy, M. P. et al. Revisiting the mouse mitochondrial DNA sequence. Nucleic Acids Res.31, 5349–5355. 10.1093/nar/gkg739 (2003). PubMed PMC
Goios, A., Pereira, L., Bogue, M., Macaulay, V. & Amorim, A. mtDNA phylogeny and evolution of laboratory mouse strains. Genome Res.17, 293–298. 10.1101/gr.5941007 (2007). PubMed PMC
Yu, X. et al. Dissecting the effects of mtDNA variations on complex traits using mouse conplastic strains. Genome Res.19, 159–165. 10.1101/gr.078865.108 (2009). PubMed PMC
Auton, A. et al. A global reference for human genetic variation. Nature526, 68–74. 10.1038/nature15393 (2015). PubMed PMC
Liao, W. W. et al. A draft human pangenome reference. Nature617, 312–324. 10.1038/s41586-023-05896-x (2023). PubMed PMC
Halligan, D. L., Oliver, F., Eyre-Walker, A., Harr, B. & Keightley, P. D. evidence for pervasive adaptive protein evolution in wild mice. PLoS Genet.6, e1000825. 10.1371/journal.pgen.1000825 (2010). PubMed PMC
Davies, R. W. Factors Influencing Genetic Variation in Wild Mice. PhD thesis, University of Oxford (2015).
Harr, B. et al. Genomic resources for wild populations of the house mouse, Mus musculus and its close relative Mus spretus. Sci. Data3, 160075. 10.1038/sdata.2016.75 (2016). PubMed PMC
Phifer-Rixey, M. et al. The genomic basis of environmental adaptation in house mice. PLoS Genet.14, e1007672. 10.1371/journal.pgen.1007672 (2018). PubMed PMC
Payseur, B. A. & Jing, P. Genomic targets of positive selection in giant mice from Gough Island. Mol. Biol. Evol.38, 911–926. 10.1093/molbev/msaa255 (2021). PubMed PMC
Fujiwara, K. et al. Insights into Mus musculus population structure across Eurasia revealed by whole-genome analysis. Genome Biol. Evol.14, evac068. 10.1093/gbe/evac068 (2022). PubMed PMC
Morgan, A. P. et al. Population structure and inbreeding in wild house mice (Mus musculus) at different geographic scales. Heredity129, 183–194. 10.1038/s41437-022-00551-z (2022). PubMed PMC
Lawal, R. A. et al. Taxonomic assessment of two wild house mouse subspecies using whole-genome sequencing. Sci. Rep.12, 20866. 10.1038/s41598-022-25420-x (2022). PubMed PMC
Liu, M. et al. Whole-genome sequencing reveals the genetic mechanisms of domestication in classical inbred mice. Genome Biol.23, 203. 10.1186/s13059-022-02772-1 (2022). PubMed PMC
Dumont, B. L. et al. Into the wild: a novel wild-derived inbred strain resource expands the genomic and phenotypic diversity of laboratory mouse models. PLoS Genet.20, e1011228. 10.1371/journal.pgen.1011228 (2024). PubMed PMC
Baird, S. J. E., Hiadlovská, Z., Daniszová, K., Piálek, J. & Macholán, M. A gene copy number arms race in action: X,Y-chromosome transmission distortion across a species barrier. Evolution77, 1330–1340. 10.1093/evolut/qpad051 (2023). PubMed
Macholán, M. et al. Widespread introgression of the Mus musculus musculus Y chromosome in Central Europe. BioRxiv. 10.1101/2019.12.23.887471 (2019).
Macholán, M. et al. A reappraisal of mitochondrial DNA introgression in the Mus musculus musculus/M. m. domesticus hybrid zone suggests ancient north-european associations between mice and humans. Zool. J. Linn. Soc.1, 1 (2024).
Staubach, F. et al. Genome patterns of selection and introgression of haplotypes in natural populations of the house mouse (Mus musculus). PLoS Genet.8, e1002891. https://doi.org/10.1371/journal.pgen.1002891 (2012). PubMed PMC
Tam, V. et al. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet.20, 467–484. 10.1038/s41576-019-0127-1 (2019). PubMed
Flint, J. & Eskin, E. Genome-wide association studies in mice. Nat. Rev. Genet.13, 807–817 (2012). PubMed PMC
Guénet, J. L. & Bonhomme, F. Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet.19, 24–31. 10.1016/S0168-9525(02)00007-0 (2003). PubMed
Phifer-Rixey, M. & Nachman, M. W. Insights into mammalian biology from the wild house mouse Mus musculus. Elife4, e05959. 10.7554/eLife.05959 (2015). PubMed PMC
Harper, J. M. Wild-derived mouse stocks: an underappreciated tool for aging research. Age30, 135–145. 10.1007/s11357-008-9057-0 (2008). PubMed PMC
Takada, T. et al. MoG+: a database of genomic variations across three mouse subspecies for biomedical research. Mamm. Genome33, 31–43. 10.1007/s00335-021-09933-w (2022). PubMed PMC
Seixas, F. A., Boursot, P. & Melo-Ferreira, J. The genomic impact of historical hybridization with massive mitochondrial DNA introgression. Genome Biol.19, 91. 10.1186/s13059-018-1471-8 (2018). PubMed PMC
Macholán, M. et al. A reappraisal of mitochondrial DNA introgression in the Mus musculus musculus/M. m. domesticus hybrid zone suggests ancient north-european associations between mice and humans. Zool. J. Linn. Soc.202, 110. 10.1093/zoolinnean/zlae110 (2024).
Forejt, J. & Iványi, P. Genetic studies on male sterility of hybrids between laboratory and wild mice (Mus musculus L). Genet. Res.24, 189–206. 10.1017/S0016672300015214 (1974). PubMed
Mihola, O., Trachtulec, Z., Vlcek, C., Schimenti, J. C. & Forejt, J. A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science323, 373–375. 10.1126/science.1163601 (2009). PubMed
Macholán, M. et al. Genetic conflict outweighs heterogametic incompatibility in the mouse hybrid zone? BMC Evol. Biol.8, 271. 10.1186/1471-2148-8-271 (2008). PubMed PMC
Chang, P. L. et al. Whole exome sequencing of wild-derived inbred strains of mice improves power to link phenotype and genotype. Mamm. Genome28, 416–425. 10.1007/s00335-017-9704-9 (2017). PubMed PMC
Bonhomme, F. & Guénet, J. L. in In Genetic Variants and Strains of the Laboratory Mouse (eds Lyon, M. F. et al.) Vol. 2, 1577–1596 (Oxford University Press, 1996).
Gregorová, S. & Forejt, J. PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies—A valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol. Praha46, 31–41 (2000). PubMed
Piálek, J. et al. Development of unique house mouse resources suitable for evolutionary studies of speciation. J. Hered.99, 34–44. 10.1093/jhered/esm083 (2008). PubMed
Martincová, I., Dureje, L., Kreisinger, J., Macholán, M. & Piálek, J. Phenotypic effects of the Y chromosome are variable and structured in hybrids among house mouse recombinant lines. Ecol. Evol.9, 6124–6137. 10.1002/ece3.5196 (2019). PubMed PMC
Rudra, M., Chatterjee, B. & Bahadur, M. Phylogenetic relationship and time of divergence of Mus terricolor with reference to other Mus species. J. Genet.95, 399–409. 10.1007/s12041-016-0654-x (2016). PubMed
Stopková, R. et al. Variation in mouse chemical signals is genetically controlled and environmentally modulated. Sci. Rep.13, 8573. 10.1038/s41598-023-35450-8 (2023). PubMed PMC
Flachs, P. et al. Prdm9 incompatibility controls oligospermia and delayed fertility but no selfish transmission in mouse intersubspecific hybrids. PLoS ONE9, e95806. 10.1371/journal.pone.0095806 (2014). PubMed PMC
Vošlajerová Bímová, B. et al. Sperm quality, aggressiveness and generation turnover may facilitate unidirectional Y chromosome introgression across the European house mouse hybrid zone. Heredity125, 200–211. 10.1038/s41437-020-0330-z (2020). PubMed PMC
Ďureje, L., Macholán, M., Baird, S. J. E. & Piálek, J. The mouse hybrid zone in Central Europe: from morphology to molecules. Folia Zool.61, 308–318. 10.25225/fozo.v61.i3.a13.2012 (2012).
Prager, E. M., Orrego, C. & Sage, R. D. Genetic variation and phylogeography of central Asian and other house mice, including a major new mitochondrial lineage in Yemen. Genetics150, 835–861. 10.1093/genetics/150.2.835 (1998). PubMed PMC
Duplantier, J. M., Orth, A., Catalan, J. & Bonhomme, F. Evidence for a mitochondrial lineage originating from the Arabian peninsula in the Madagascar house mouse (Mus musculus). Heredity89, 154–158. 10.1038/sj.hdy.6800122 (2002). PubMed
Bibi, S. et al. Mitochondrial genetic diversity and phylogeography of Mus musculus castaneus in Northern Punjab, Pakistan. Zool. Sci.34, 490–497. 10.2108/zs170086 (2017). PubMed
Rajabi-Maham, H. et al. The south-eastern house mouse Mus musculus castaneus (Rodentia: Muridae) is a polytypic subspecies. Biol. J. Linn. Soc.107, 295–306. 10.1111/j.1095-8312.2012.01957.x (2012).
Li, Y. et al. House mouse Mus musculus dispersal in East Eurasia inferred from 98 newly determined complete mitochondrial genome sequences. Heredity126, 132–147. 10.1038/s41437-020-00364-y (2021). PubMed PMC
Bielschowsky, M. & Goodall, C. M. Origin of inbred NZ mouse strains. Cancer Res.30, 834–836 (1970). PubMed
Grey, C., Baudat, F. & de Massy, B. PRDM9, a driver of the genetic map. PLoS Genet.14, e1007479 (2018). PubMed PMC
Kono, H. et al. Prdm9 polymorphism unveils mouse evolutionary tracks. DNA Res.21, 315–326. 10.1093/dnares/dst059 (2014). PubMed PMC
Mukaj, A. et al. Prdm9 intersubspecific interactions in hybrid male sterility of house mouse. Mol. Biol. Evol.37, 3423–3438. 10.1093/molbev/msaa167 (2020). PubMed PMC
Bishop, C. E., Boursot, P., Baron, B., Bonhomme, F. & Hatat, D. Most classical Mus musculus domesticus laboratory mouse strains carry a Mus musculus musculus Y chromosome. Nature315, 70–72. 10.1038/315070a0 (1985). PubMed
Morgan, A. P. & de Villena, F. P.-M. Sequence and structural diversity of mouse Y chromosomes. Mol. Biol. Evol.34, 3186–3204. 10.1093/molbev/msx250 (2017). PubMed PMC
Vyskočilová, M., Pražanová, G. & Piálek, J. Polymorphism in hybrid male sterility in wild-derived Mus musculus musculus strains on proximal chromosome 17. Mamm. Genome20, 83–91. 10.1007/s00335-008-9164-3 (2009). PubMed
Silver, L. M. Mouse Genetics (Oxford University Press, 1995).
Gasch, A. P., Payseur, B. A. & Pool, J. E. The power of natural variation for model organism biology. Trends Genet.32, 147–154. 10.1016/j.tig.2015.12.003 (2016). PubMed PMC
Fitzpatrick, J. L., Kahrl, A. F. & Snook, R. R. SpermTree, a species-level database of sperm morphology spanning the animal tree of life. Sci. Data9, 30. 10.1038/s41597-022-01131-w (2022). PubMed PMC
Mestas, J. & Hughes, C. C. W. Of mice and not men: differences between mouse and human immunology. J. Immunol.172, 2731–2738. 10.4049/jimmunol.172.5.2731 (2004). PubMed
Gage, M. J. G. Mammalian sperm morphometry. Proc. R. Soc. Lond. Ser. B Biol. Sci.265, 97–103. 10.1098/rspb.1998.0269 (1998). PubMed PMC
Forejt, J., Jansa, P. & Parvanov, E. Hybrid sterility genes in mice (Mus musculus): a peculiar case of PRDM9 incompatibility. Trends Genet.37, 1095–1108. 10.1016/j.tig.2021.06.008 (2021). PubMed
Paigen, K. & Petkov, P. M. PRDM9 and its role in genetic recombination. Trends Genet.34, 291–300. 10.1016/j.tig.2017.12.017 (2018). PubMed PMC
Saitou, M. & Gokcumen, O. An evolutionary perspective on the impact of genomic copy number variation on human health. J. Mol. Evol.88, 104–119. 10.1007/s00239-019-09911-6 (2020). PubMed
Locke, M. E. O. et al. Genomic copy number variation in Mus musculus. BMC Genom.16, 497. 10.1186/s12864-015-1713-z (2015). PubMed PMC
Cocquet, J. et al. A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse. PLoS Genet.8, e1002900. 10.1371/journal.pgen.1002900 (2012). PubMed PMC
Rathje, C. C. et al. Differential sperm motility mediates the sex ratio drive shaping mouse sex chromosome evolution. Curr. Biol.29, 3692–3698. 10.1016/j.cub.2019.09.031 (2019). PubMed PMC
Kruger, A. N. et al. A neofunctionalized X-linked ampliconic gene family is essential for male fertility and equal sex ratio in mice. Curr. Biol.29, 3699–3706. 10.1016/j.cub.2019.08.057 (2019). PubMed PMC
Moretti, C. et al. Battle of the sex chromosomes: competition between X and Y chromosome-encoded proteins for partner interaction and chromatin occupancy drives multicopy gene expression and evolution in muroid rodents. Mol. Biol. Evol.37, 3453–3468. 10.1093/molbev/msaa175 (2020). PubMed PMC
Piálek, J., Hauffe, H. C. & Searle, J. B. Chromosomal variation in the house mouse. Biol. J. Linn. Soc.84, 535–563. 10.1111/j.1095-8312.2005.00454.x (2005).
Sigmon, J. S. et al. Content and performance of the MiniMUGA genotyping array: a new tool to improve rigor and reproducibility in mouse research. Genetics216, 905–930. 10.1534/genetics.120.303596 (2020). PubMed PMC
Didion, J. P., de Villena, F. P.-M. Deconstructing Mus gemischus: Advances in understanding ancestry, structure, and variation in the genome of the laboratory mouse. Mamm. Genome24, 1–20. 10.1007/s00335-012-9441-z (2013). PubMed PMC
Bonhomme, F. et al. in Evolution of the House Mouse. Cambridge Studies in Morphology and Molecules: New Paradigms in Evolutionary Biology (eds Macholán, M. et al.) 278–296 (Cambridge University Press, 2012).
Bonhomme, F. et al. Genetic differentiation of the house mouse around the Mediterranean basin: matrilineal footprints of early and late colonization. Proc. R. Soc. B Biol. Sci.278, 1034–1043. 10.1098/rspb.2010.1228 (2011). PubMed PMC
García-Rodríguez, O. et al. Cyprus as an ancient hub for house mice and humans. J. Biogeogr.45, 2619–2630. 10.1111/jbi.13458 (2018).
Fornuskova, A., Bryja, J., Vinkler, M., Macholán, M. & Piálek, J. Contrasting patterns of polymorphism and selection in bacterial-sensing toll-like receptor 4 in two house mouse subspecies. Ecol. Evol.4, 2931–2944. 10.1002/ece3.1137 (2014). PubMed PMC
Buard, J. et al. Diversity of Prdm9 zinc finger array in wild mice unravels new facets of the evolutionary turnover of this coding minisatellite. PLoS ONE9, e85021. 10.1371/journal.pone.0085021 (2014). PubMed PMC
Vara, C. et al. PRDM9 diversity at fine geographical scale reveals contrasting evolutionary patterns and functional constraints in natural populations of house mice. Mol. Biol. Evol.36, 1686–1700. 10.1093/molbev/msz091 (2019). PubMed PMC
AbuAlia, K. F. N. et al. Natural variation in the zinc-finger-encoding exon of Prdm9 affects hybrid sterility phenotypes in mice. Genetics 226, iyae004. https://doi.org/10.1093/genetics/iyae004 (2024). PubMed PMC
Marín-García, C. et al. Multiple genomic landscapes of recombination and genomic divergence in wild populations of house mice—the role of chromosomal fusions and Prdm9. Mol. Biol. Evol.41, msae063. 10.1093/molbev/msae063 (2024). PubMed PMC
Smagulova, F., Brick, K., Pu, Y. M., Camerini-Otero, R. D. & Petukhova, G. V. The evolutionary turnover of recombination hot spots contributes to speciation in mice. Genes Dev.30, 266–280. 10.1101/gad.270009.115 (2016). PubMed PMC
Davies, B. et al. Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice. Nature530, 171–176. 10.1038/nature16931 (2016). PubMed PMC
Davies, B. et al. Altering the binding properties of PRDM9 partially restores fertility across the species boundary. Mol. Biol. Evol.38, 5555–5562. 10.1093/molbev/msab269 (2021). PubMed PMC
Albrechtová, J., Albrecht, T., Ďureje, L., Pallazola, V. A. & Piálek, J. Sperm morphology in two house mouse subspecies: do wild-derived strains and wild mice tell the same story? PLoS ONE9, e0120484. 10.1371/journal.pone.0120484 (2014). PubMed PMC
Weissbrod, L. et al. Origins of house mice in ecological niches created by settled hunter-gatherers in the Levant 15,000 y ago. Proc. Natl. Acad. Sci. U.S.A.114, 4099–4104. 10.1073/pnas.1619137114 (2017). PubMed PMC
Cucchi, T. et al. in Evolution of the House Mouse. Cambridge Studies in Morphology and Molecules: New Paradigms in Evolutionary Biology (eds Macholán, M. et al.) 65–93 (Cambridge University Press, 2012).
Macholán, M., Baird, S. J. E., Munclinger, P. & Piálek, J. Evolution of the House Mouse (Cambridge University Press, 2012).
Lawal, R. A., Arora, U. P. & Dumont, B. L. Selection shapes the landscape of functional variation in wild house mice. BMC Biol.19, 17. 10.1186/s12915-021-01165-3 (2021). PubMed PMC
Taylor, R. W. & Turnbull, D. M. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet.6, 389–402. 10.1038/nrg1606 (2005). PubMed PMC
Tyynismaa, H. & Suomalainen, A. Mouse models of mitochondrial DNA defects and their relevance for human disease. EMBO Rep.10, 137–143. 10.1038/embor.2008.242 (2009). PubMed PMC
Elson, J. L., Turnbull, D. M. & Howell, N. Comparative genomics and the evolution of human mitochondrial DNA: assessing the effects of selection. Am. J. Hum. Genet.74, 229–238. 10.1086/381505 (2004). PubMed PMC
Lechuga-Vieco, A. V., Justo-Méndez, R. & Enríquez, J. A. Not all mitochondrial DNAs are made equal and the nucleus knows it. IUBMB Life73, 511–529. 10.1002/iub.2434 (2021). PubMed PMC
Burgstaller, J. P. et al. mtDNA segregation in heteroplasmic tissues is common in vivo and modulated by haplotype differences and developmental stage. Cell Rep.7, 2031–2041. 10.1016/j.celrep.2014.05.020 (2014). PubMed PMC
Kang, E. et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature540, 270–275. 10.1038/nature20592 (2016). PubMed
Myers, S. et al. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science327, 876–879. 10.1126/science.1182363 (2010). PubMed PMC
Alleva, B., Brick, K., Pratto, F., Huang, M. N. & Camerini-Otero, R. D. Cataloging human PRDM9 allelic variation using long-read sequencing reveals PRDM9 population specificity and two distinct groupings of related alleles. Front. Cell. Dev. Biol.9, 675286. 10.3389/fcell.2021.675286 (2021). PubMed PMC
Lilue, J. T., Shivalikanjli, A., Adams, D. J. & Keane, T. M. Mouse protein coding diversity: what’s left to discover? PLoS Genet.15, e1008446. 10.1371/journal.pgen.1008446 (2019). PubMed PMC
Sun, D., Gao, W., Hu, H. & Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B12, 3049–3062. 10.1016/j.apsb.2022.02.002 (2022). PubMed PMC
Dowden, H. & Munro, J. Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov.18, 495–496. 10.1038/d41573-019-00074-z (2019). PubMed
Hinkson, I. V., Madej, B. & Stahlberg, E. A. Accelerating therapeutics for opportunities in medicine: a paradigm shift in drug discovery. Front. Pharmacol.11, 770. 10.3389/fphar.2020.00770 (2020). PubMed PMC
Zeiss, C. J. & Johnson, L. K. Bridging the gap between reproducibility and translation: data resources and approaches. ILAR J.58, CP3. 10.1093/ilar/ilx017 (2017). PubMed
Prager, E. M., Tichy, H. & Sage, R. D. Mitochondrial DNA sequence variation in the Eastern house mouse, Mus musculus: comparison with other house mouse mice and report of 75-bp tandem repeat. Genetics143, 427–446. 10.1093/genetics/143.1.427 (1996). PubMed PMC
Macholán, M., Vyskočilová, M., Bejcek, V. & Štastný, K. Mitochondrial DNA sequence variation and evolution of Old World house mice (Mus musculus). Folia Zool.61, 284–307. 10.25225/fozo.v61.i3.a12.2012 (2012).
Gregorová, S. et al. Mouse consomic strains: exploiting genetic divergence between Mus m. musculus and Mus m. domesticus subspecies. Genome Res.18, 509–515. 10.1101/gr.7160508 (2008). PubMed PMC
Loveland, B., Wang, C. R., Yonekawa, H., Hermel, E. & Lindahl, K. F. Maternally transmitted histocompatibility antigen of mice: a hydrophobic peptide of a mitochondrially encoded protein. Cell60, 971–980. 10.1016/0092-8674(90)90345-F (1990). PubMed
Zheng, J. et al. mtDNA sequence, phylogeny and evolution of laboratory mice. Mitochondrion17, 126–131. 10.1016/j.mito.2014.07.006 (2014). PubMed
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol.7, 539. 10.1038/msb.2011.75 (2011). PubMed PMC
Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect. Math. Life Sci.17, 57–86 (1986).
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods9, 772–772. 10.1038/nmeth.2109 (2012). PubMed PMC
Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol.52, 696–704. 10.1080/10635150390235520 (2003). PubMed
Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol.39, 306–314. 10.1007/BF00160154 (1994). PubMed
Felsenstein, J. Inferring Phylogenies (Sinauer Associates Inc., 2004).
Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol.38, 3022–3027. 10.1093/molbev/msab120 (2021). PubMed PMC
Oliver, P. L. et al. Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa. PLoS Genet.5, e1000753. 10.1371/journal.pgen.1000753 (2009). PubMed PMC
Vogelstein, B. 7 Kinzler, K. W. Digital PCR. Proc. Natl. Acad. Sci. U.S.A.96, 9236–9241 10.1073/pnas.96.16.9236 (1999). PubMed PMC
Pezer, Z., Harr, B., Teschke, M., Babiker, H. & Tautz, D. Divergence patterns of genic copy number variation in natural populations of the house mouse (Mus musculus domesticus) reveal three conserved genes with major population-specific expansions. Genome Res.25, 1114–1124. 10.1101/gr.187187.114 (2015). PubMed PMC
Team, R. R: A Language and Environment for Statistical Computing (2020).
Team, R. RStudio: Integrated Development for R (2019).
Eddy, W. F. Algorithm 523: CONVEX, a new convex hull algorithm for planar sets. ACM Trans. Math. Softw.3, 411–412. 10.1145/355759.355768 (1977).
Auffray, J. C. et al. in Evolution of the House Mouse. Cambridge Studies in Morphology and Molecules: New Paradigms in Evolutionary Bio (eds Macholán, M. et al.) 1–34 (Cambridge University Press, 2012).
Marshall, J. T. & Sage, R. D. in Biology of the House Mouse Symposium of the Zoological Society of London (ed Berry, R. J.) 15–25 (Academic Press, 1981).