Genetic diversity, evolution and selection in the major histocompatibility complex DRB and DQB loci in the family Equidae
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.1.05/1.1.00/02.0068
Central European Institute of Technology CEITEC
NPU LQ1601
Czech National Sustainability Programme
PubMed
32998693
PubMed Central
PMC7525986
DOI
10.1186/s12864-020-07089-6
PII: 10.1186/s12864-020-07089-6
Knihovny.cz E-zdroje
- Klíčová slova
- Family Equidae, MHC class II loci, MHC exon 2, Major histocompatibility complex, Positive selection, Selected amino acid sites, Trans-species polymorphism,
- MeSH
- Equidae klasifikace genetika MeSH
- fylogeneze MeSH
- hlavní histokompatibilní komplex genetika MeSH
- molekulární evoluce * MeSH
- polymorfismus genetický * MeSH
- rekombinace genetická MeSH
- selekce (genetika) * MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The mammalian Major Histocompatibility Complex (MHC) is a genetic region containing highly polymorphic genes with immunological functions. MHC class I and class II genes encode antigen-presenting molecules expressed on the cell surface. The MHC class II sub-region contains genes expressed in antigen presenting cells. The antigen binding site is encoded by the second exon of genes encoding antigen presenting molecules. The exon 2 sequences of these MHC genes have evolved under the selective pressure of pathogens. Interspecific differences can be observed in the class II sub-region. The family Equidae includes a variety of domesticated, and free-ranging species inhabiting a range of habitats exposed to different pathogens and represents a model for studying this important part of the immunogenome. While equine MHC class II DRA and DQA loci have received attention, the genetic diversity and effects of selection on DRB and DQB loci have been largely overlooked. This study aimed to provide the first in-depth analysis of the MHC class II DRB and DQB loci in the Equidae family. RESULTS: Three DRB and two DQB genes were identified in the genomes of all equids. The genes DRB2, DRB3 and DQB3 showed high sequence conservation, while polymorphisms were more frequent at DRB1 and DQB1 across all species analyzed. DQB2 was not found in the genome of the Asiatic asses Equus hemionus kulan and E. h. onager. The bioinformatic analysis of non-zero-coverage-bases of DRB and DQB genes in 14 equine individual genomes revealed differences among individual genes. Evidence for recombination was found for DRB1, DRB2, DQB1 and DQB2 genes. Trans-species allele sharing was identified in all genes except DRB1. Site-specific selection analysis predicted genes evolving under positive selection both at DRB and DQB loci. No selected amino acid sites were identified in DQB3. CONCLUSIONS: The organization of the MHC class II sub-region of equids is similar across all species of the family. Genomic sequences, along with phylogenetic trees suggesting effects of selection as well as trans-species polymorphism support the contention that pathogen-driven positive selection has shaped the MHC class II DRB/DQB sub-regions in the Equidae.
Ceitec MU Masaryk University Kamenice 753 5 625 00 Brno Czech Republic
Ceitec VFU RG Animal Immunogenomics Brno Czech Republic
Ceitec VRI RG Animal Cytogenomics Brno Czech Republic
Centre for GeoGenetics Natural History Museum of Denmark Øster Voldgade 5 7 1350K Copenhagen Denmark
Department of Animal Genetics Veterinary and Pharmaceutical University Brno Czech Republic
Zoo Prague U Trojského zámku 120 3 171 00 Praha 7 Czech Republic
Zobrazit více v PubMed
Abi Rached L, McDermott MF, Pontarotti P. The MHC big bang. Immunol Rev. 1999;167:33–44. doi: 10.1111/j.1600-065X.1999.tb01380.x. PubMed DOI
Chowdhary BP. Equine Genomics. 1st Edition. Ames: Wiley-Blackwell; 2013.
Flajnik MF, Kasahara M. Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity. 2001;15:351–362. doi: 10.1016/S1074-7613(01)00198-4. PubMed DOI
Klein J. Natural history of the major Histocompatability complex. 99t. New York: Wiley; 1986.
Sommer S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool. 2005;2:16. doi: 10.1186/1742-9994-2-16. PubMed DOI PMC
Takahashi K, Rooney AP, Nei M. Origins and divergence times of mammalian class II MHC gene clusters. J Hered. 2000;91:198–204. doi: 10.1093/jhered/91.3.198. PubMed DOI
Yuhki N, Beck T, Stephens R, Neelam B, O’Brien SJ. Comparative genomic structure of human, dog, and cat MHC: HLA, DLA, and FLA. J Hered. 2007;98:390–399. doi: 10.1093/jhered/esm056. PubMed DOI
Beck S, Trowsdale J. Sequence organisation of the class II region of the human MHC. Immunol Rev. 1999;167:201–210. doi: 10.1111/j.1600-065X.1999.tb01393.x. PubMed DOI
Hughes AL, Nei M. Evolutionary relationships of class II major-histocompatibility-complex genes in mammals. Mol Biol Evol. 1990;7:491–514. PubMed
Futas J, Horin P. Natural killer cell receptor genes in the family Equidae: not only Ly49. PLoS One. 2013;8:e64736. doi: 10.1371/journal.pone.0064736. PubMed DOI PMC
Janova E, Matiasovic J, Vahala J, Vodicka R, Van Dyk E, Horin P. Polymorphism and selection in the major histocompatibility complex DRA and DQA genes in the family Equidae. Immunogenetics. 2009;61:513–527. doi: 10.1007/s00251-009-0380-0. PubMed DOI
Kamath PL, Getz WM. Adaptive molecular evolution of the major histocompatibility complex genes, DRA and DQA, in the genus Equus. BMC Evol Biol. 2011;11:128. doi: 10.1186/1471-2148-11-128. PubMed DOI PMC
Krüger K, Gaillard C, Stranzinger G, Rieder S. Phylogenetic analysis and species allocation of individual equids using microsatellite data. J Anim Breed Genet. 2005;122:78–86. doi: 10.1111/j.1439-0388.2005.00505.x. PubMed DOI
Vilstrup JT, Seguin-Orlando A, Stiller M, Ginolhac A, Raghavan M, Nielsen SCA, et al. Mitochondrial phylogenomics of modern and ancient equids. PLoS One. 2013;8:e55950. doi: 10.1371/journal.pone.0055950. PubMed DOI PMC
Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M, et al. Recalibrating Equus evolution using the genome sequence of an early middle Pleistocene horse. Nature. 2013;499:74–78. doi: 10.1038/nature12323. PubMed DOI
Jónsson H, Schubert M, Seguin-Orlando A, Ginolhac A, Petersen L, Fumagalli M, et al. Speciation with gene flow in equids despite extensive chromosomal plasticity. Proc Natl Acad Sci. 2014;111:18655–18660. doi: 10.1073/pnas.1412627111. PubMed DOI PMC
Nergadze SG, Lupotto M, Pellanda P, Santagostino M, Vitelli V, Giulotto E. Mitochondrial DNA insertions in the nuclear horse genome. Anim Genet. 2010;41(Suppl 2):176–185. doi: 10.1111/j.1365-2052.2010.02130.x. PubMed DOI
Trifonov VA, Musilova P, Kulemsina AI. Chromosome evolution in Perissodactyla. Cytogenet Genome Res. 2012;137:208–217. doi: 10.1159/000339900. PubMed DOI
Bailey E. Identification and genetics of horse lymphocyte alloantigens. Immunogenetics. 1980;11:499–506. doi: 10.1007/BF01567818. PubMed DOI
Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, et al. Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics. 1990;31:217–219. PubMed
Gustafson AL, Tallmadge RL, Ramlachan N, Miller D, Bird H, Antczak DF, et al. An ordered BAC contig map of the equine major histocompatibility complex. Cytogenet Genome Res. 2003;102:189–195. doi: 10.1159/000075747. PubMed DOI
Kalbfleisch TS, Rice ES, DePriest MS, Walenz BP, Hestand MS, Vermeesch JR, et al. Improved reference genome for the domestic horse increases assembly contiguity and composition. Commun Biol. 2018;1:1–8. doi: 10.1038/s42003-018-0199-z. PubMed DOI PMC
Raudsepp T, Finno CJ, Bellone RR, Petersen JL. Ten years of the horse reference genome: insights into equine biology, domestication and population dynamics in the post-genome era. Anim Genet. 2019;50:569–597. doi: 10.1111/age.12857. PubMed DOI PMC
Viļuma A, Mikko S, Hahn D, Skow L, Andersson G, Bergström TF. Genomic structure of the horse major histocompatibility complex class II region resolved using PacBio long-read sequencing technology. Sci Rep. 2017;7. 10.1038/srep45518. PubMed PMC
Miller D, Tallmadge RL, Binns M, Zhu B, Mohamoud YA, Ahmed A, et al. Polymorphism at expressed DQ and DR loci in five common equine MHC haplotypes. Immunogenetics. 2017;69:145–156. doi: 10.1007/s00251-016-0964-4. PubMed DOI PMC
Arbanasić H, Galov A, Ambriović-Ristov A, Grizelj J, Arsenos G, Marković B, et al. Extensive polymorphism of the major histocompatibility complex DRA gene in Balkan donkeys: perspectives on selection and genealogy. Anim Genet. 2013;44:711–716. doi: 10.1111/age.12054. PubMed DOI
Díaz S, Echeverría MG, It V, Posik DM, Rogberg-Muñoz A, Pena NL, et al. Development of an ELA-DRA gene typing method based on pyrosequencing technology. Tissue Antigens. 2008;72:464–468. doi: 10.1111/j.1399-0039.2008.01113.x. PubMed DOI
Díaz S, Giovambattista G, Dulout FN, Peral-García P. Genetic variation of the second exon of ELA-DRB genes in argentine creole horses. Anim Genet. 2001;32:257–263. doi: 10.1046/j.1365-2052.2001.00779.x. PubMed DOI
Hedrick PW, Parker KM, Miller EL, Miller PS. Major histocompatibility complex variation in the endangered Przewalski’s horse. Genetics. 1999;152:1701–1710. PubMed PMC
Kamath PL, Getz WM. Unraveling the effects of selection and demography on immune gene variation in free-ranging plains zebra (Equus quagga) populations. PLoS One. 2012;7:e50971. doi: 10.1371/journal.pone.0050971. PubMed DOI PMC
Villegas-Castagnasso EE, Díaz S, Giovambattista G, Dulout FN, Peral-García P. Analysis of ELA-DQB exon 2 polymorphism in argentine creole horses by PCR-RFLP and PCR-SSCP. J Vet Med A Physiol Pathol Clin Med. 2003;50:280–285. doi: 10.1046/j.1439-0442.2003.00543.x. PubMed DOI
Vranova M, Alloggio I, Qablan M, Vyskocil M, Baumeisterova A, Sloboda M, et al. Genetic diversity of the class II major histocompatibility DRA locus in European, Asiatic and African domestic donkeys. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. 2011;11:1136–1141. PubMed
Spurgin LG, Richardson DS. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc Biol Sci. 2010;277:979–988. doi: 10.1098/rspb.2009.2084. PubMed DOI PMC
Borghans JAM, Beltman JB, Boer RJD. MHC polymorphism under host-pathogen coevolution. Immunogenetics. 2004;55:732–739. doi: 10.1007/s00251-003-0630-5. PubMed DOI
Hedrick PW. Balancing selection and MHC. Genetica. 1998;104:207–214. doi: 10.1023/A:1026494212540. PubMed DOI
Nikolich-Žugich J, Fremont DH, Miley MJ, Messaoudi I. The role of mhc polymorphism in anti-microbial resistance. Microbes Infect. 2004;6:501–512. doi: 10.1016/j.micinf.2004.01.006. PubMed DOI
Stear MJ, Innocent GT, Buitkamp J. The evolution and maintenance of polymorphism in the major histocompatibility complex. Vet Immunol Immunopathol. 2005;108:53–57. doi: 10.1016/j.vetimm.2005.07.005. PubMed DOI
Hughes AL, Yeager M. Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet. 1998;32:415–435. doi: 10.1146/annurev.genet.32.1.415. PubMed DOI
Meyer D, C. Aguiar VR, Bitarello BD, C. Brandt DY, Nunes K. A genomic perspective on HLA evolution. Immunogenetics. 2018;70:5–27. PubMed PMC
Meyer D, Thomson G. How selection shapes variation of the human major histocompatibility complex: a review. Ann Hum Genet. 2001;65(Pt 1):1–26. doi: 10.1046/j.1469-1809.2001.6510001.x. PubMed DOI
Yang Z, Bielawski JP. Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000;15:496–503. doi: 10.1016/S0169-5347(00)01994-7. PubMed DOI PMC
Kamath PL, Turner WC, Küsters M, Getz WM. Parasite-mediated selection drives an immunogenetic trade-off in plains zebras (Equus quagga) Proc R Soc Lond B Biol Sci. 2014;281:20140077. PubMed PMC
Soller JT, Murua-Escobar H, Willenbrock S, Janssen M, Eberle N, Bullerdiek J, et al. Comparison of the human and canine cytokines IL-1(alpha/beta) and TNF-alpha to orthologous other mammalians. J Hered. 2007;98:485–490. doi: 10.1093/jhered/esm025. PubMed DOI
Huang J, Zhao Y, Shiraigol W, Li B, Bai D, Ye W, et al. Analysis of horse genomes provides insight into the diversification and adaptive evolution of karyotype. Sci Rep. 2014;4:4958. doi: 10.1038/srep04958. PubMed DOI PMC
Huang J, Zhao Y, Bai D, Shiraigol W, Li B, Yang L, et al. Donkey genome and insight into the imprinting of fast karyotype evolution. Sci Rep. 2015;5:14106. doi: 10.1038/srep14106. PubMed DOI PMC
Mashima S. Comparative sequence analysis of equine and human MHC class II DQB genes. Cytogenet Genome Res. 2003;102:196–200. doi: 10.1159/000075748. PubMed DOI
GenBank. https://www.ncbi.nlm.nih.gov/genbank/. Accessed 11 Dec 2017.
IPD-MHC Database. https://www.ebi.ac.uk/ipd/mhc/. Accessed 11 Dec 2017.
Hořín P, Matiašovic J. A second locus and new alleles in the major histocompatibility complex class II (ELA-DQB) region in the horse. Anim Genet. 2002;33:196–200. doi: 10.1046/j.1365-2052.2002.00839.x. PubMed DOI
Renaud G, Petersen B, Seguin-Orlando A, Bertelsen MF, Waller A, Newton R, et al. Improved de novo genomic assembly for the domestic donkey. Sci Adv. 2018;4. 10.1126/sciadv.aaq0392. PubMed PMC
Hashimoto K, Hirai M, Kurosawa Y. A gene outside the human MHC related to classical HLA class I genes. Science. 1995;269:693–695. doi: 10.1126/science.7624800. PubMed DOI
Ghosh S, Qu Z, Das PJ, Fang E, Juras R, Cothran EG, et al. Copy number variation in the horse genome. PLoS Genet. 2014;10:e1004712. doi: 10.1371/journal.pgen.1004712. PubMed DOI PMC
Wang W, Wang S, Hou C, Xing Y, Cao J, Wu K, et al. Genome-wide detection of copy number variations among diverse horse breeds by array CGH. PLoS One. 2014;9:e86860. doi: 10.1371/journal.pone.0086860. PubMed DOI PMC
Ellis SA, Ballingall KT. Cattle MHC: evolution in action? Immunol Rev. 1999;167:159–168. doi: 10.1111/j.1600-065X.1999.tb01389.x. PubMed DOI
He Y, Xi D, Leng J, Qian T, Jin D, Chen T, et al. Genetic variability of MHC class II DQB exon 2 alleles in yak (Bos grunniens) Mol Biol Rep. 2014;41:2199–2206. doi: 10.1007/s11033-014-3071-3. PubMed DOI
Villanueva-Noriega MJ, Baker CS, Medrano-González L. Evolution of the MHC-DQB exon 2 in marine and terrestrial mammals. Immunogenetics. 2013;65:47–61. doi: 10.1007/s00251-012-0647-8. PubMed DOI
Schierup MH, Mikkelsen AM, Hein J. Recombination, balancing selection and phylogenies in MHC and self-incompatibility genes. Genetics. 2001;159:1833–1844. PubMed PMC
Collette Y, Gilles A, Pontarotti P, Olive D. A co-evolution perspective of the TNFSF and TNFRSF families in the immune system. Trends Immunol. 2003;24:387–394. doi: 10.1016/S1471-4906(03)00166-2. PubMed DOI
Těšický M, Vinkler M. Trans-species polymorphism in immune genes: general pattern or MHC-restricted phenomenon? J Immunol Res. 2015;2015:838035. doi: 10.1155/2015/838035. PubMed DOI PMC
Takahata N, Nei M. Allelic genealogy under Overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics. 1990;124:967–978. PubMed PMC
Arbanasić H, Huber Đ, Kusak J, Gomerčić T, Hrenović J, Galov A. Extensive polymorphism and evidence of selection pressure on major histocompatibility complex DLA-DRB1, DQA1 and DQB1 class II genes in Croatian grey wolves. Tissue Antigens. 2013;81:19–27. doi: 10.1111/tan.12029. PubMed DOI
Chen Y-Y, Zhang Y-Y, Zhang H-M, Ge Y-F, Wan Q-H, Fang S-G. Natural selection coupled with intragenic recombination shapes diversity patterns in the major histocompatibility complex class II genes of the giant panda. J Exp Zoolog B Mol Dev Evol. 2010;314B:208–223. PubMed
Schubert M, Ermini L, Der Sarkissian C, Jónsson H, Ginolhac A, Schaefer R, et al. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat Protoc. 2014;9:1056–1082. doi: 10.1038/nprot.2014.063. PubMed DOI
Schubert M, Ginolhac A, Lindgreen S, Thompson JF, AL-Rasheid KA, Willerslev E, et al. Improving ancient DNA read mapping against modern reference genomes. BMC Genomics. 2012;13:178. doi: 10.1186/1471-2164-13-178. PubMed DOI PMC
Song K, Li L, Zhang G. Coverage recommendation for genotyping analysis of highly heterologous species using next-generation sequencing technology. Sci Rep. 2016;6:35736. doi: 10.1038/srep35736. PubMed DOI PMC
NCBI clone database. https://www.ncbi.nlm.nih.gov/clone/library/genomic/197/. Accessed 11 Dec 2017.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–3152. doi: 10.1093/bioinformatics/bts565. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI
Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–98.
Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 10.1093/bib/bbx108. PubMed PMC
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC
Delport W, Poon AFY, Frost SDW, Pond SLK. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics. 2010;26:2455–2457. doi: 10.1093/bioinformatics/btq429. PubMed DOI PMC
Pond SLK, Frost SDW. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol. 2005;22:1208–1222. doi: 10.1093/molbev/msi105. PubMed DOI
Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Pond SLK, et al. FUBAR: a fast, unconstrained Bayesian AppRoximation for inferring selection. Mol Biol Evol. 2013;30:1196–1205. doi: 10.1093/molbev/mst030. PubMed DOI PMC
Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 2012;8:e1002764. doi: 10.1371/journal.pgen.1002764. PubMed DOI PMC
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–1591. doi: 10.1093/molbev/msm088. PubMed DOI
Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature. 1993;364:33–39. doi: 10.1038/364033a0. PubMed DOI
Bryja J, Galan M, Charbonnel N, Cosson JF. Duplication, balancing selection and trans-species evolution explain the high levels of polymorphism of the DQA MHC class II gene in voles (Arvicolinae) Immunogenetics. 2006;58:191–202. doi: 10.1007/s00251-006-0085-6. PubMed DOI
Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31:2745–2747. doi: 10.1093/bioinformatics/btv195. PubMed DOI PMC
Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–3814. doi: 10.1093/nar/gkg509. PubMed DOI PMC
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–249. doi: 10.1038/nmeth0410-248. PubMed DOI PMC
Innate Immunity Toll-Like Triad TLR6-1-10 and Its Diversity in Distinct Horse Breeds