Innate Immunity Toll-Like Triad TLR6-1-10 and Its Diversity in Distinct Horse Breeds
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
2021ITA12
VETUNI
PubMed
39918481
PubMed Central
PMC11804213
DOI
10.1002/vms3.70230
Knihovny.cz E-zdroje
- Klíčová slova
- equine, haplotype, innate immunity, toll‐like receptor,
- MeSH
- genetická variace * MeSH
- haplotypy * MeSH
- jednonukleotidový polymorfismus * MeSH
- koně genetika MeSH
- multigenová rodina MeSH
- přirozená imunita * genetika MeSH
- toll-like receptor 6 genetika MeSH
- toll-like receptory genetika MeSH
- vazebná nerovnováha MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- toll-like receptor 6 MeSH
- toll-like receptory MeSH
Toll-like receptors (TLRs) play important roles in innate immunity and developmental processes. Due to their nature as molecular pattern recognition receptors, their genetic diversity may reflect the effects of various pathogen pressures. Here, the extent of variability in the TLR1-6-10 gene cluster in three geographically and historically distinct breeds of horses was analysed. A genetically diverse group of representatives of 14 other horse breeds provided additional information on the variability of this gene cluster in the domestic horse. Altogether, 25 SNPs were identified in the TLR6-1-10 gene cluster across the 4 equine breed groups studied, of which 7 were synonymous and 18 non-synonymous. Twenty-eight inferred SNPs and 22 in silico translated amino acid haplotypes were identified. A predominant major haplotype present in all breed groups along with several group-specific haplotypes were identified. Strong linkage disequilibrium was detected for several SNPs, as well as effects of pervasive, site-specific selection. The existence of a major haplotype suggests it may confer a selective advantage across breeds. Less frequent breed-specific haplotypes may represent variability required or beneficial for responses to local pathogen pressures. Purifying site-specific selection was detected in the TIR domain and its vicinity in TLR6, whereas AA sites under diversifying selection were located in LRR domains and/or their surroundings in TLR1. Population structure models based on immune-related TLR6-1-10 markers did not distinguish between breed groups, whereas in models based on neutral microsatellite markers, breed groups clustered separately. This supports the assumption that the diversity of the TLR6-1-10 cluster is of adaptive value. The TLR6-1-10 alleles and haplotypes identified represent potential candidate markers for disease association studies.
Zobrazit více v PubMed
Areal, H. , Abrantes J., and Esteves P. J.. 2011. “Signatures of Positive Selection in Toll‐Like Receptor (TLR) Genes in Mammals.” BMC Evolutionary Biology 11: 368. 10.1186/1471-2148-11-368. PubMed DOI PMC
Bagheri, M. , and Zahmatkesh A.. 2018. “Evolution and Species‐Specific Conservation of Toll‐Like Receptors in Terrestrial Vertebrates.” International Reviews of Immunology 37, no. 5: 217–228. 10.1080/08830185.2018.1506780. PubMed DOI
Bayerova, Z. , Janova E., Matiasovic J., Orlando L., and Horin P.. 2016. “Positive Selection in the SLC11A1 Gene in the Family Equidae.” Immunogenetics 68, no. 5: 353–364. 10.1007/s00251-016-0905-2. PubMed DOI
Behzadi, P. , García‐Perdomo H. A., and Karpiński T. M.. 2021. “Toll‐Like Receptors: General Molecular and Structural Biology.” Journal of Immunology Research 2021: 9914854. 10.1155/2021/9914854. PubMed DOI PMC
Bergman, I.‐M. , Edman K., Ekdahl K. N., Rosengren K. J., and Edfors I.. 2012. “Extensive Polymorphism in the Porcine Toll‐Like Receptor 10 Gene.” International Journal of Immunogenetics 39, no. 1: 68–76. 10.1111/j.1744-313X.2011.01057.x. PubMed DOI
Bergman, I.‐M. , Rosengren J. K., Edman K., and Edfors I.. 2010. “European Wild Boars and Domestic Pigs Display Different Polymorphic Patterns in the Toll‐Like Receptor (TLR) 1, TLR2, and TLR6 Genes.” Immunogenetics 62, no. 1: 49–58. 10.1007/s00251-009-0409-4. PubMed DOI
Bielefeldt‐Ohmann, H. , Bosco‐Lauth A., Hartwig A.‐E., et al. 2017. “Characterization of Non‐Lethal West Nile Virus (WNV) Infection in Horses: Subclinical Pathology and Innate Immune Response.” Microbial Pathogenesis 103: 71–79. 10.1016/j.micpath.2016.12.018. PubMed DOI
Bjørnstad, G. , and Røed K. H.. 2001. “Breed Demarcation and Potential for Breed Allocation of Horses Assessed by Microsatellite Markers.” Animal Genetics 32, no. 2: 59–65. 10.1046/j.1365-2052.2001.00705.x. PubMed DOI
Brennan, J. J. , and Gilmore T. D.. 2018. “Evolutionary Origins of Toll‐Like Receptor Signaling.” Molecular Biology and Evolution 35, no. 7: 1576–1587. 10.1093/molbev/msy050. PubMed DOI
Bryant, C. E. , and Monie T. P.. 2012. “Mice, Men and the Relatives: Cross‐Species Studies Underpin Innate Immunity.” Open Biology 2, no. 4: 120015. 10.1098/rsob.120015. PubMed DOI PMC
Cieslak, M. , Pruvost M., Benecke N., et al. 2010. “Origin and History of Mitochondrial DNA Lineages in Domestic Horses.” PLoS One 5, no. 12: e15311. 10.1371/journal.pone.0015311. PubMed DOI PMC
Dannemann, M. , Andrés A. M., and Kelso J.. 2016. “Introgression of Neandertal‐ and Denisovan‐Like Haplotypes Contributes to Adaptive Variation in Human Toll‐Like Receptors.” American Journal of Human Genetics 98, no. 1: 22–33. 10.1016/j.ajhg.2015.11.015. PubMed DOI PMC
Darfour‐Oduro, K. A. , Megens H.‐J., Roca A. L., Groenen M. A. M., and Schook L. B.. 2015. “Adaptive Evolution of Toll‐Like Receptors (TLRs) in the Family Suidae.” PLoS One 10, no. 4: e0124069. 10.1371/journal.pone.0124069. PubMed DOI PMC
Futas, J. , and Horin P.. 2013. “Natural Killer Cell Receptor Genes in the Family Equidae: Not Only Ly49.” PloS One 8, no. 5: e64736. 10.1371/journal.pone.0064736. PubMed DOI PMC
Gasteiger, G. , D'Osualdo A., Schubert D. A., Weber A., Bruscia E. M., and Hartl D.. 2017. “Cellular Innate Immunity: An Old Game With New Players.” Journal of Innate Immunity 9, no. 2: 111–125. 10.1159/000453397. PubMed DOI PMC
Głażewska, I. 2010. “Speculations on the Origin of the Arabian Horse Breed.” Livestock Science 129, no. 1: 49–55. 10.1016/j.livsci.2009.12.009. DOI
Horín, P. , Cothran E. G., Trtková K., et al. 1998. “Polymorphism of Old Kladruber Horses, a Surviving but Endangered Baroque Breed.” European Journal of Immunogenetics 25, no. 5: 357–363. 10.1046/j.1365-2370.1998.00117.x. PubMed DOI
Imler, J.‐L. , and Zheng L.. 2004. “Biology of Toll Receptors: Lessons From Insects and Mammals.” Journal of Leukocyte Biology 75, no. 1: 18–26. 10.1189/jlb.0403160. PubMed DOI
Ishengoma, E. , and Agaba M.. 2017. “Evolution of Toll‐Like Receptors in the Context of Terrestrial Ungulates and Cetaceans Diversification.” BMC Evolutionary Biology 17, no. 1: 54. 10.1186/s12862-017-0901-7. PubMed DOI PMC
Janova, E. , Futas J., Klumplerova M., et al. 2013. “Genetic Diversity and Conservation in a Small Endangered Horse Population.” Journal of Applied Genetics 54, no. 3: 285–292. 10.1007/s13353-013-0151-3. PubMed DOI
Johnson, C. M. , Lyle E. A., Omueti K. O., et al. 2007. “Cutting Edge: A Common Polymorphism Impairs Cell Surface Trafficking and Functional Responses of TLR1 but Protects Against Leprosy.” Journal of Immunology 178, no. 12: 7520–7524. 10.4049/jimmunol.178.12.7520. PubMed DOI
Kawai, T. , and Akira S.. 2011. “Toll‐Like Receptors and Their Crosstalk With Other Innate Receptors in Infection and Immunity.” Immunity 34, no. 5: 637–650. 10.1016/j.immuni.2011.05.006. PubMed DOI
Klumplerova, M. , Splichalova P., Oppelt J., et al. 2020. “Genetic Diversity, Evolution and Selection in the Major Histocompatibility Complex DRB and DQB Loci in the Family Equidae.” BMC Genomics 21: 677. 10.1186/s12864-020-07089-6. PubMed DOI PMC
Kopelman, N. M. , Mayzel J., Jakobsson M., Rosenberg N. A., and Mayrose I.. 2015. “CLUMPAK: A Program for Identifying Clustering Modes and Packaging Population Structure Inferences Across K .” Molecular Ecology Resources 15, no. 5: 1179–1191. 10.1111/1755-0998.12387. PubMed DOI PMC
Kruithof, E. K. O. , Satta N., Liu J. W., Dunoyer‐Geindre S., and Fish R. J.. 2007. “Gene Conversion Limits Divergence of Mammalian TLR1 and TLR6.” BMC Evolutionary Biology 7, no. 1: 148. 10.1186/1471-2148-7-148. PubMed DOI PMC
Kumar, V. 2022. “Toll‐Like Receptors in Adaptive Immunity.” Toll‐like Receptors in Health and Disease: Handbook of Experimental Pharmacology, edited by Kumar V., 95–131. Springer. 10.1007/164_2021_543. PubMed DOI
Lazarus, R. , Raby B. A., Lange C., et al. 2004. “TOLL‐Like Receptor 10 Genetic Variation Is Associated With Asthma in Two Independent Samples.” American Journal of Respiratory and Critical Care Medicine 170, no. 6: 594–600. 10.1164/rccm.200404-491OC. PubMed DOI
Lee, S. , and Cho G.. 2006. “Parentage Testing of Thoroughbred Horse in Korea Using Microsatellite DNA Typing.” Journal of Veterinary Science 7, no. 1: 63–67. 10.4142/jvs.2006.7.1.63. PubMed DOI PMC
Lindsay, S. A. , and Wasserman S. A.. 2014. “Conventional and Non‐Conventional Drosophila Toll Signaling.” Developmental and Comparative Immunology 42, no. 1: 16–24. 10.1016/j.dci.2013.04.011. PubMed DOI PMC
Liu, G. , Zhang H., Zhao C., and Zhang H.. 2020. “Evolutionary History of the Toll‐Like Receptor Gene Family Across Vertebrates.” Genome Biology and Evolution 12, no. 1: 3615–3634. 10.1093/gbe/evz266. PubMed DOI PMC
Ma, X. , Yuhua L., Gowen B. B., Graviss E. A., Clark A. G., and Musser J. M.. 2007. “Full‐Exon Resequencing Reveals Toll‐Like Receptor Variants Contribute to Human Susceptibility to Tuberculosis Disease.” PLoS One 2, no. 12: e1318. 10.1371/journal.pone.0001318. PubMed DOI PMC
Meyer, C. G. , Reiling N., Ehmen C., et al. 2016. “TLR1 Variant H305L Associated With Protection From Pulmonary Tuberculosis.” PLoS One 11, no. 5: e0156046. 10.1371/journal.pone.0156046. PubMed DOI PMC
Mukherjee, S. , Huda S., and Sinha Babu S. P.. 2019. “Toll‐Like Receptor Polymorphism in Host Immune Response to Infectious Diseases: A Review.” Scandinavian Journal of Immunology 90, no. 1: e12771. 10.1111/sji.12771. PubMed DOI
Opsal, M. A. , Våge D. I., Hayes B., Berget I., and Lien S.. 2006. “Genomic Organization and Transcript Profiling of the Bovine Toll‐Like Receptor Gene Cluster TLR6‐TLR1‐TLR10 .” Gene 384: 45–50. 10.1016/j.gene.2006.06.027. PubMed DOI
Parker, H. G. , Kim L. V., Sutter N. B., et al. 2004. “Genetic Structure of the Purebred Domestic Dog.” Science 304, no. 5674: 1160–1164. 10.1126/science.1097406. PubMed DOI
Peakall, R. , and Smouse P. E.. 2012. “GenAlEx 6.5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research—An Update.” Bioinformatics 28, no. 19: 2537–2539. 10.1093/bioinformatics/bts460. PubMed DOI PMC
Pérez‐González, J. , Carranza J., Anaya G., et al. 2023. “Comparative Analysis of Microsatellite and SNP Markers for Genetic Management of Red Deer.” Animals 13, no. 21: 3374. 10.3390/ani13213374. PubMed DOI PMC
Pritchard, J. K. , Stephens M., and Donnelly P.. 2000. “Inference of Population Structure Using Multilocus Genotype Data.” Genetics 155, no. 2: 945–959. 10.1093/genetics/155.2.945. PubMed DOI PMC
Rahal, O. , Aissaoui C., Ata N., et al. 2021. “Genetic Characterization of Four Algerian Cattle Breeds Using Microsatellite Markers.” Animal Biotechnology 32, no. 6: 699–707. 10.1080/10495398.2020.1746321. PubMed DOI
Roach, J. C. , Glusman G., Rowen L., et al. 2005. “The Evolution of Vertebrate Toll‐Like Receptors.” Proceedings of the National Academy of Sciences of the United States of America 102, no. 27: 9577–9582. 10.1073/pnas.0502272102. PubMed DOI PMC
Rodrigues, C. R. , Balachandran Y., Aulakh G. K., and Singh B.. 2024. “TLR10: An Intriguing Toll‐Like Receptor With Many Unanswered Questions.” Journal of Innate Immunity 16, no. 1: 96–104. 10.1159/000535523. PubMed DOI PMC
Schierup, M. H. , Vekemans X., and Charlesworth D.. 2000. “The Effect of Subdivision on Variation at Multi‐Allelic Loci Under Balancing Selection.” Genetical Research 76, no. 1: 51–62. 10.1017/s0016672300004535. PubMed DOI
Seabury, C. M. , Cargill E. J., and Womack J. E.. 2007. “Sequence Variability and Protein Domain Architectures for Bovine Toll‐Like Receptors 1, 5, and 10.” Genomics 90, no. 4: 502–515. 10.1016/j.ygeno.2007.07.001. PubMed DOI
Stejskalova, K. , Cvanova M., Oppelt J., et al. 2019. “Genetic Susceptibility to West Nile Virus Infection in Camargue Horses.” Research in Veterinary Science 124: 284–292. 10.1016/j.rvsc.2019.04.004. PubMed DOI
Stejskalova, K. , Janova E., Horecky C., et al. 2019. “Associations Between the Presence of Specific Antibodies to the West Nile Virus Infection and Candidate Genes in Romanian Horses From the Danube Delta.” Molecular Biology Reports 46, no. 4: 4453–4461. 10.1007/s11033-019-04900-w. PubMed DOI
Stejskalova, K. , Janova E., Splichalova P., et al. 2023. “Twelve Toll‐Like Receptor (TLR) Genes in the Family Equidae—Comparative Genomics, Selection and Evolution.” Veterinary Research Communications 48: 725–741. 10.1007/s11259-023-10245-4. PubMed DOI PMC
Stevens, V. L. , Hsing A. W., Talbot J. T., et al. 2008. “Genetic Variation in the Toll‐Like Receptor Gene Cluster (TLR10‐TLR1‐TLR6) and Prostate Cancer Risk.” International Journal of Cancer 123, no. 11: 2644–2650. 10.1002/ijc.23826. PubMed DOI
Uddin, M. J. , Suen W. W., Bosco‐Lauth A., et al. 2016. “Kinetics of the West Nile Virus Induced Transcripts of Selected Cytokines and Toll‐Like Receptors in Equine Peripheral Blood Mononuclear Cells.” Veterinary Research 47: 61. 10.1186/s13567-016-0347-8. PubMed DOI PMC
Veltkamp, M. , van Moorsel C. H. M., Rijkers G. T., Ruven H. J. T., and Grutters J. C.. 2012. “Genetic Variation in the Toll‐Like Receptor Gene Cluster (TLR10‐TLR1‐TLR6) Influences Disease Course in Sarcoidosis.” Tissue Antigens 79, no. 1: 25–32. 10.1111/j.1399-0039.2011.01808.x. PubMed DOI
Vijay, K. 2018. “Toll‐Like Receptors in Immunity and Inflammatory Diseases: Past, Present, and Future.” International Immunopharmacology 59: 391–412. 10.1016/j.intimp.2018.03.002. PubMed DOI PMC
Vychodilova, L. , Matiasovic J., Bobrova O., et al. 2013. “Immunogenomic Analysis of Insect Bite Hypersensitivity in a Model Horse Population.” Veterinary Immunology and Immunopathology 152, no. 3: 260–268. 10.1016/j.vetimm.2012.12.013. PubMed DOI
Weaver, S. , Shank S. D., Spielman S. J., Li M., Muse S. V., and Kosakovsky Pond S. L.. 2018. “Datamonkey 2.0: A Modern Web Application for Characterizing Selective and Other Evolutionary Processes.” Molecular Biology and Evolution 35, no. 3: 773–777. 10.1093/molbev/msx335. PubMed DOI PMC