Positive selection in the SLC11A1 gene in the family Equidae
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26846480
DOI
10.1007/s00251-016-0905-2
PII: 10.1007/s00251-016-0905-2
Knihovny.cz E-zdroje
- Klíčová slova
- Equidae, Polymorphism, SLC11A1 gene,
- MeSH
- Equidae genetika MeSH
- fylogeneze MeSH
- genomika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- kodon genetika MeSH
- molekulární evoluce * MeSH
- proteiny přenášející kationty genetika MeSH
- selekce (genetika) genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kodon MeSH
- natural resistance-associated macrophage protein 1 MeSH Prohlížeč
- proteiny přenášející kationty MeSH
Immunity-related genes are a suitable model for studying effects of selection at the genomic level. Some of them are highly conserved due to functional constraints and purifying selection, while others are variable and change quickly to cope with the variation of pathogens. The SLC11A1 gene encodes a transporter protein mediating antimicrobial activity of macrophages. Little is known about the patterns of selection shaping this gene during evolution. Although it is a typical evolutionarily conserved gene, functionally important polymorphisms associated with various diseases were identified in humans and other species. We analyzed the genomic organization, genetic variation, and evolution of the SLC11A1 gene in the family Equidae to identify patterns of selection within this important gene. Nucleotide SLC11A1 sequences were shown to be highly conserved in ten equid species, with more than 97 % sequence identity across the family. Single nucleotide polymorphisms (SNPs) were found in the coding and noncoding regions of the gene. Seven codon sites were identified to be under strong purifying selection. Codons located in three regions, including the glycosylated extracellular loop, were shown to be under diversifying selection. A 3-bp indel resulting in a deletion of the amino acid 321 in the predicted protein was observed in all horses, while it has been maintained in all other equid species. This codon comprised in an N-glycosylation site was found to be under positive selection. Interspecific variation in the presence of predicted N-glycosylation sites was observed.
Centre for GeoGenetics Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
Department of Immunology Veterinary Research Institute Brno Czech Republic
Zobrazit více v PubMed
BMC Bioinformatics. 2015 Jan 28;16:29 PubMed
Evolution. 2011 Mar;65(3):842-8 PubMed
Nat Rev Genet. 2012 Feb 07;13(3):175-88 PubMed
Cytogenet Genome Res. 2012;137(2-4):208-17 PubMed
Clin Exp Immunol. 1977 Oct;30(1):130-40 PubMed
Drug Metab Pers Ther. 2015 Sep;30(3):211-4 PubMed
Plant J. 2009 Apr;58(2):195-207 PubMed
Nature. 2013 Jul 4;499(7456):74-8 PubMed
Trends Microbiol. 2001 Aug;9(8):397-403 PubMed
PLoS One. 2013;8(2):e55950 PubMed
Mol Aspects Med. 2013 Apr-Jun;34(2-3):270-87 PubMed
Bioinformatics. 2005 May 15;21(10):2531-3 PubMed
Bioinformatics. 2006 Dec 15;22(24):3096-8 PubMed
Comp Immunol Microbiol Infect Dis. 2011 May;34(3):197-208 PubMed
J Biol Chem. 2007 Dec 7;282(49):35646-56 PubMed
Open Biol. 2014 Sep;4(9):140088 PubMed
J Mol Evol. 1984-1985;21(2):112-25 PubMed
Mol Biol Evol. 2013 Dec;30(12):2725-9 PubMed
J Exp Med. 1995 Sep 1;182(3):655-66 PubMed
Cell Microbiol. 2001 Dec;3(12):773-84 PubMed
J Med Genet. 1999 Apr;36(4):295-9 PubMed
Mol Biol Evol. 2005 Mar;22(3):478-85 PubMed
Microbes Infect. 2000 Mar;2(3):317-21 PubMed
Nat Methods. 2010 Apr;7(4):248-9 PubMed
Nat Rev Genet. 2014 Jun;15(6):379-93 PubMed
PLoS One. 2011 Jan 25;6(1):e15831 PubMed
Sci Rep. 2014 May 14;4:4958 PubMed
Mol Biol Evol. 2010 Sep;27(9):2172-86 PubMed
Tuberculosis (Edinb). 2008 Jan;88(1):52-7 PubMed
Microbes Infect. 2012 Mar;14(3):207-16 PubMed
Res Immunol. 1989 Oct;140(8):767-9 PubMed
PLoS One. 2014 Jan 24;9(1):e86088 PubMed
Clin Exp Immunol. 1994 Jul;97(1):107-12 PubMed
Curr Opin Microbiol. 2000 Feb;3(1):43-8 PubMed
Mol Biol Evol. 2011 Nov;28(11):3033-43 PubMed
Blood. 2007 Oct 15;110(8):3039-48 PubMed
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18655-60 PubMed
Genes Immun. 2006 Apr;7(3):185-9 PubMed
Anim Genet. 2010 Dec;41 Suppl 2:176-85 PubMed
Biochem J. 2001 Mar 15;354(Pt 3):511-9 PubMed
Eur J Immunogenet. 2002 Oct;29(5):423-9 PubMed
Nucleic Acids Res. 2014 Jan;42(Database issue):D259-66 PubMed
Biology (Basel). 2013 Jan 25;2(1):233-83 PubMed
PLoS One. 2012;7(11):e49525 PubMed
BMC Evol Biol. 2011 Apr 18;11:106 PubMed
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):E5661-9 PubMed
Hum Mutat. 2012 Oct;33(10):1456-63 PubMed
Nature. 1982 Jun 10;297(5866):506-9 PubMed
Immunogenetics. 2014 Jan;66(1):43-52 PubMed
Bioinformatics. 2010 Aug 15;26(16):2069-70 PubMed
J Leukoc Biol. 1999 Nov;66(5):757-62 PubMed
Infect Genet Evol. 2006 Sep;6(5):361-7 PubMed
J Infect Dis. 1976 Jan;133(1):72-8 PubMed
Blood. 2003 Sep 1;102(5):1884-92 PubMed
J Mol Biol. 1988 Dec 20;204(4):1019-29 PubMed
J Clin Immunol. 2010 Jul;30(4):583-6 PubMed
Innate Immunity Toll-Like Triad TLR6-1-10 and Its Diversity in Distinct Horse Breeds