Twelve toll-like receptor (TLR) genes in the family Equidae - comparative genomics, selection and evolution

. 2024 Apr ; 48 (2) : 725-741. [epub] 20231024

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37874499
Odkazy

PubMed 37874499
PubMed Central PMC10998774
DOI 10.1007/s11259-023-10245-4
PII: 10.1007/s11259-023-10245-4
Knihovny.cz E-zdroje

Toll-like receptors (TLRs) represent an important part of the innate immune system. While human and murine TLRs have been intensively studied, little is known about TLRs in non-model species. The order Perissodactyla comprises a variety of free-living and domesticated species exposed to different pathogens in different habitats and is therefore suitable for analyzing the diversity and evolution of immunity-related genes. We analyzed TLR genes in the order Perissodactyla with a focus on the family Equidae. Twelve TLRs were identified by bioinformatic analyses of online genomic resources; their sequences were confirmed in equids by genomic DNA re-sequencing of a panel of nine species. The expression of TLR11 and TLR12 was confirmed in the domestic horse by cDNA sequencing. Phylogenetic reconstruction of the TLR gene family in Perissodactyla identified six sub-families. TLR4 clustered together with TLR5; the TLR1-6-10 subfamily showed a high degree of sequence identity. The average estimated evolutionary divergence of all twelve TLRs studied was 0.3% among the Equidae; the most divergent CDS were those of Equus caballus and Equus hemionus kulan (1.34%) in the TLR3, and Equus africanus somaliensis and Equus quagga antiquorum (2.1%) in the TLR1 protein. In each TLR gene, there were haplotypes shared between equid species, most extensively in TLR3 and TLR9 CDS, and TLR6 amino acid sequence. All twelve TLR genes were under strong negative overall selection. Signatures of diversifying selection in specific codon sites were detected in all TLRs except TLR8. Differences in the selection patterns between virus-sensing and non-viral TLRs were observed.

Zobrazit více v PubMed

Anderson KV, Bokla L, Nüsslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the toll gene product. Cell. 1985;42:791–798. doi: 10.1016/0092-8674(85)90275-2. PubMed DOI

Andrade WA, Souza M, do C, Martinez ER, et al. Combined action of nucleic acid-sensing toll-like receptors (TLRs) and TLR11/TLR12 heterodimers imparts resistance to Toxoplasma Gondii in mice. Cell Host Microbe. 2013;13:42–53. doi: 10.1016/j.chom.2012.12.003. PubMed DOI PMC

Areal H, Abrantes J, Esteves PJ. Signatures of positive selection in toll-like receptor (TLR) genes in mammals. BMC Evol Biol. 2011;11:368. doi: 10.1186/1471-2148-11-368. PubMed DOI PMC

Astakhova NM, Perelygin AA, Zharkikh AA, et al. Characterization of equine and other vertebrate TLR3, TLR7, and TLR8 genes. Immunogenetics. 2009;61:529–539. doi: 10.1007/s00251-009-0381-z. PubMed DOI

Azevedo L, Serrano C, Amorim A, Cooper DN. Trans-species polymorphism in humans and the great apes is generally maintained by balancing selection that modulates the host immune response. Hum Genomics. 2015;9:21. doi: 10.1186/s40246-015-0043-1. PubMed DOI PMC

Bai B, Wang Y-Q, Meng J. The divergence and dispersal of early perissodactyls as evidenced by early Eocene equids from Asia. Commun Biol. 2018;1:115. doi: 10.1038/s42003-018-0116-5. PubMed DOI PMC

Barreiro LB, Ben-Ali M, Quach H, et al. Evolutionary dynamics of human toll-like receptors and their different contributions to host defense. PLoS Genet. 2009;5:e1000562. doi: 10.1371/journal.pgen.1000562. PubMed DOI PMC

Bayerova Z, Janova E, Matiasovic J, et al. Positive selection in the SLC11A1 gene in the family Equidae. Immunogenetics. 2016;68:353–364. doi: 10.1007/s00251-016-0905-2. PubMed DOI

Behzadi P, García-Perdomo HA, Karpiński TM (2021) Toll-Like Receptors: General Molecular and Structural Biology. J Immunol Res 2021:9914854. 10.1155/2021/9914854 PubMed PMC

Brennan JJ, Gilmore TD. Evolutionary origins of toll-like receptor signaling. Mol Biol Evol. 2018;35:1576–1587. doi: 10.1093/molbev/msy050. PubMed DOI

Darfour-Oduro KA, Megens H-J, Roca AL, et al. Evolutionary patterns of toll-like receptor signaling pathway genes in the Suidae. BMC Evol Biol. 2016;16:33. doi: 10.1186/s12862-016-0602-7. PubMed DOI PMC

Downing T, Lloyd AT, O’Farrelly C, Bradley DG. The differential evolutionary dynamics of avian cytokine and TLR gene classes. J Immunol. 2010;184:6993–7000. doi: 10.4049/jimmunol.0903092. PubMed DOI

Dubey JP, Murata FHA, Cerqueira-Cézar CK, Kwok OCH. Toxoplasma gondii Infections in horses, donkeys, and other equids: the last decade. Res Vet Sci. 2020;132:492–499. doi: 10.1016/j.rvsc.2020.07.005. PubMed DOI

Dugovich BS, Crane LL, Alcantar BB, et al. Multiple innate antibacterial immune defense elements are correlated in diverse ungulate species. PLoS ONE. 2019;14:e0225579. doi: 10.1371/journal.pone.0225579. PubMed DOI PMC

Fisher CA, Bhattarai EK, Osterstock JB, et al. Evolution of the Bovine TLR Gene Family and Member associations with Mycobacterium avium subspecies paratuberculosis Infection. PLoS ONE. 2011;6:e27744. doi: 10.1371/journal.pone.0027744. PubMed DOI PMC

Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020;180:1044–1066. doi: 10.1016/j.cell.2020.02.041. PubMed DOI PMC

Futas J, Horin P. Natural killer cell receptor genes in the family Equidae: not only Ly49. PLoS ONE. 2013;8:e64736. doi: 10.1371/journal.pone.0064736. PubMed DOI PMC

Gazzinelli RT, Mendonça-Neto R, Lilue J, et al. Innate resistance against Toxoplasma Gondii: an evolutionary tale of mice, cats and men. Cell Host Microbe. 2014;15:132–138. doi: 10.1016/j.chom.2014.01.004. PubMed DOI PMC

Ghosh M, Basak S, Dutta S. Natural selection shaped the evolution of amino acid usage in mammalian toll like receptor genes. Comput Biol Chem. 2022;97:107637. doi: 10.1016/j.compbiolchem.2022.107637. PubMed DOI

Halldórsdóttir K, Árnason E. Trans-species polymorphism at antimicrobial innate immunity cathelicidin genes of Atlantic Cod and related species. PeerJ. 2015;3:e976. doi: 10.7717/peerj.976. PubMed DOI PMC

Hatai H, Lepelley A, Zeng W, et al. Toll-like receptor 11 (TLR11) interacts with Flagellin and Profilin through disparate mechanisms. PLoS ONE. 2016;11:e0148987. doi: 10.1371/journal.pone.0148987. PubMed DOI PMC

Janova E, Matiasovic J, Vahala J, et al. Polymorphism and selection in the major histocompatibility complex DRA and DQA genes in the family Equidae. Immunogenetics. 2009;61:513–527. doi: 10.1007/s00251-009-0380-0. PubMed DOI

Johnson CM, Lyle EA, Omueti KO, et al. Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against Leprosy. J Immunol. 2007;178:7520–7524. doi: 10.4049/jimmunol.178.12.7520. PubMed DOI

Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in Infection and immunity. Immunity. 2011;34:637–650. doi: 10.1016/j.immuni.2011.05.006. PubMed DOI

Kesh S, Mensah NY, Peterlongo P, et al. TLR1 and TLR6 polymorphisms are associated with susceptibility to invasive aspergillosis after allogeneic stem cell transplantation. Ann N Y Acad Sci. 2005;1062:95–103. doi: 10.1196/annals.1358.012. PubMed DOI

Khan I, Maldonado E, Silva L, et al. The Vertebrate TLR Supergene Family Evolved dynamically by gene Gain/Loss and positive selection revealing a host–Pathogen Arms race in birds. Diversity. 2019;11:131. doi: 10.3390/d11080131. DOI

Kimble KM, Gomez G, Szule JA, et al. Systemic toxoplasmosis in a horse. J Comp Pathol. 2021;182:27–31. doi: 10.1016/j.jcpa.2020.11.004. PubMed DOI

Klumplerova M, Splichalova P, Oppelt J, et al. Genetic diversity, evolution and selection in the major histocompatibility complex DRB and DQB loci in the family Equidae. BMC Genomics. 2020;21:677. doi: 10.1186/s12864-020-07089-6. PubMed DOI PMC

Koblansky AA, Jankovic D, Oh H, et al. Recognition of Profilin by toll-like receptor 12 is critical for Host Resistance to Toxoplasma Gondii. Immunity. 2013;38:119–130. doi: 10.1016/j.immuni.2012.09.016. PubMed DOI PMC

Kruithof EK, Satta N, Liu JW, et al. Gene conversion limits divergence of mammalian TLR1 and TLR6. BMC Evol Biol. 2007;7:148. doi: 10.1186/1471-2148-7-148. PubMed DOI PMC

Kumar V. Toll-like receptors in adaptive immunity. Handb Exp Pharmacol. 2022;276:95–131. doi: 10.1007/164_2021_543. PubMed DOI

Librado P, Orlando L. Genomics and the Evolutionary history of Equids. Annu Rev Anim Biosci. 2021;9:81–101. doi: 10.1146/annurev-animal-061220-023118. PubMed DOI

Liu G, Zhang H, Sun G, et al. Characterization of the peripheral blood transcriptome and adaptive evolution of the MHC I and TLR gene families in the wolf (Canis lupus) BMC Genomics. 2017;18:584. doi: 10.1186/s12864-017-3983-0. PubMed DOI PMC

Liu G, Zhang H, Zhao C, Zhang H. Evolutionary history of the toll-like receptor gene family across vertebrates. Genome Biol Evol. 2020;12:3615–3634. doi: 10.1093/gbe/evz266. PubMed DOI PMC

Ma X, Liu Y, Gowen BB, et al. Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to Tuberculosis Disease. PLoS ONE. 2007;2:e1318. doi: 10.1371/journal.pone.0001318. PubMed DOI PMC

Manuja A, Manuja BK, Singha H. Sequence and functional variability of toll-like receptor 9 gene in equines. Mol Immunol. 2019;105:276–282. doi: 10.1016/j.molimm.2018.10.010. PubMed DOI

Mathur R, Oh H, Zhang D, et al. A mouse model of Salmonella typhi Infection. Cell. 2012;151:590–602. doi: 10.1016/j.cell.2012.08.042. PubMed DOI PMC

Meyer CG, Reiling N, Ehmen C, et al. TLR1 variant H305L Associated with Protection from Pulmonary Tuberculosis. PLoS ONE. 2016;11:e0156046. doi: 10.1371/journal.pone.0156046. PubMed DOI PMC

Minias P, Vinkler M. Selection balancing at Innate Immune genes: adaptive polymorphism maintenance in toll-like receptors. Mol Biol Evol. 2022;39:msac102. doi: 10.1093/molbev/msac102. PubMed DOI PMC

Mukherjee S, Huda S, Sinha Babu SP. Toll-like receptor polymorphism in host immune response to infectious Diseases: a review. Scand J Immunol. 2019;90:e12771. doi: 10.1111/sji.12771. PubMed DOI

Neves F, Marques JP, Areal H, et al. TLR7 and TLR8 evolution in lagomorphs: different patterns in the different lineages. Immunogenetics. 2022;74:475–485. doi: 10.1007/s00251-022-01262-9. PubMed DOI

Novák K. Functional polymorphisms in toll-like receptor genes for innate immunity in farm animals. Vet Immunol Immunopathol. 2014;157:1–11. doi: 10.1016/j.vetimm.2013.10.016. PubMed DOI

Oosting M, Cheng S-C, Bolscher JM, et al. Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proc Natl Acad Sci U S A. 2014;111:E4478–E4484. doi: 10.1073/pnas.1410293111. PubMed DOI PMC

Opsal MAa, Våge DI, Hayes B, et al. Genomic organization and transcript profiling of the bovine toll-like receptor gene cluster TLR6-TLR1-TLR10. Gene. 2006;384:45–50. doi: 10.1016/j.gene.2006.06.027. PubMed DOI

Price SA, Bininda-Emonds ORP. A comprehensive phylogeny of extant horses, rhinos and tapirs (Perissodactyla) through data combination. Zoosyst Evol. 2009;85:277–292. doi: 10.1002/zoos.200900005. DOI

Roach JC, Glusman G, Rowen L, et al. The evolution of vertebrate toll-like receptors. Proc Natl Acad Sci U S A. 2005;102:9577–9582. doi: 10.1073/pnas.0502272102. PubMed DOI PMC

Silva MJA, Santana DS, de Oliveira LG, et al. The relationship between 896A/G (rs4986790) polymorphism of TLR4 and infectious Diseases: a meta-analysis. Front Genet. 2022;13:1045725. doi: 10.3389/fgene.2022.1045725. PubMed DOI PMC

Smith RM, Kotzé A, Grobler JP, Dalton DL. Molecular characterization in the toll-like receptor 9 gene of Cape Mountain Zebra (Equus zebra zebra) from three populations. Infect Genet Evol. 2020;78:104118. doi: 10.1016/j.meegid.2019.104118. PubMed DOI

STEINER CC, RYDER OA. Molecular phylogeny and evolution of the Perissodactyla. Zoo j Linn Soc-Lond. 2011;163:1289–1303. doi: 10.1111/j.1096-3642.2011.00752.x. DOI

Stejskalova K, Janova E, Horecky C, et al. Associations between the presence of specific antibodies to the West Nile Virus Infection and candidate genes in Romanian horses from the Danube delta. Mol Biol Rep. 2019;46:4453–4461. doi: 10.1007/s11033-019-04900-w. PubMed DOI

Su S-B, Tao L, Deng Z-P, et al. TLR10: insights, controversies and potential utility as a therapeutic target. Scand J Immunol. 2021;93:e12988. doi: 10.1111/sji.12988. PubMed DOI

Tarlinton RE, Alder L, Moreton J, et al. RNA expression of TLR10 in normal equine tissues. BMC Res Notes. 2016;9:353. doi: 10.1186/s13104-016-2161-9. PubMed DOI PMC

Uddin MJ, Suen WW, Bosco-Lauth A, et al. Kinetics of the West Nile virus induced transcripts of selected cytokines and toll-like receptors in equine peripheral blood mononuclear cells. Vet Res. 2016;47:61. doi: 10.1186/s13567-016-0347-8. PubMed DOI PMC

Velová H, Gutowska-Ding MW, Burt DW, Vinkler M. Toll-like receptor evolution in birds: gene duplication, pseudogenization, and diversifying selection. Mol Biol Evol. 2018;35:2170–2184. doi: 10.1093/molbev/msy119. PubMed DOI PMC

Vijay K. Toll-like receptors in immunity and inflammatory Diseases: past, present, and future. Int Immunopharmacol. 2018;59:391–412. doi: 10.1016/j.intimp.2018.03.002. PubMed DOI PMC

Walsh C, Gangloff M, Monie T, et al. Elucidation of the MD-2/TLR4 interface required for signaling by lipid IVa1. J Immunol. 2008;181:1245–1254. doi: 10.4049/jimmunol.181.2.1245. PubMed DOI

Werners AH, Bull S, Vendrig JC, et al. Genotyping of toll-like receptor 4, myeloid differentiation factor 2 and CD-14 in the horse: an investigation into the influence of genetic polymorphisms on the LPS induced TNF-alpha response in equine whole blood. Vet Immunol Immunopathol. 2006;111:165–173. doi: 10.1016/j.vetimm.2005.12.003. PubMed DOI

Xu Y, Tao X, Shen B, et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature. 2000;408:111–115. doi: 10.1038/35040600. PubMed DOI

Yarovinsky F, Zhang D, Andersen JF, et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science. 2005;308:1626–1629. doi: 10.1126/science.1109893. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace