• This record comes from PubMed

Toll-Like Receptor Evolution in Birds: Gene Duplication, Pseudogenization, and Diversifying Selection

. 2018 Sep 01 ; 35 (9) : 2170-2184.

Language English Country United States Media print

Document type Comparative Study, Journal Article

Toll-like receptors (TLRs) are key sensor molecules in vertebrates triggering initial phases of immune responses to pathogens. The avian TLR family typically consists of ten receptors, each adapted to distinct ligands. To understand the complex evolutionary history of each avian TLR, we analyzed all members of the TLR family in the whole genome assemblies and target sequence data of 63 bird species covering all major avian clades. Our results indicate that gene duplication events most probably occurred in TLR1 before synapsids diversified from sauropsids. Unlike mammals, ssRNA-recognizing TLR7 has duplicated independently in several avian taxa, while flagellin-sensing TLR5 has pseudogenized multiple times in bird phylogeny. Our analysis revealed stronger positive, diversifying selection acting in TLR5 and the three-domain TLRs (TLR10 [TLR1A], TLR1 [TLR1B], TLR2A, TLR2B, TLR4) that face the extracellular space and bind complex ligands than in single-domain TLR15 and endosomal TLRs (TLR3, TLR7, TLR21). In total, 84 out of 306 positively selected sites were predicted to harbor substitutions dramatically changing the amino acid physicochemical properties. Furthermore, 105 positively selected sites were located in the known functionally relevant TLR regions. We found evidence for convergent evolution acting between birds and mammals at 54 of these sites. Our comparative study provides a comprehensive insight into the evolution of avian TLR genetic variability. Besides describing the history of avian TLR gene gain and gene loss, we also identified candidate positions in the receptors that have been likely shaped by direct molecular host-pathogen coevolutionary interactions and most probably play key functional roles in birds.

See more in PubMed

Alcaide M, Edwards SV.. 2011. Molecular evolution of the Toll-like receptor multigene family in birds. Mol Biol Evol. 285:1703–1715. PubMed

Andersen-Nissen E, Smith KD, Bonneau R, Strong RK, Aderem A.. 2007. A conserved surface on Toll-like receptor 5 recognizes bacterial flagellin. J Exp Med. 2042:393–403. PubMed PMC

Arbour N, Lorenz E, Schutte B, Zabner J, Kline J, Jones M, Frees K, Watt J, Schwartz D.. 2000. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet. 252:187–191. PubMed

Areal H, Abrantes J, Esteves PJ.. 2011. Signatures of positive selection in Toll-like receptor (TLR) genes in mammals. BMC Evol Biol. 11:368.. PubMed PMC

Atchley WR, Zhao J, Fernandes AD, Drüke T.. 2005. Solving the protein sequence metric problem. Proc Natl Acad Sci U S A. 10218:6395–6400. PubMed PMC

Bainova H, Kralova T, Bryjova A, Albrecht T, Bryja J, Vinkler M.. 2014. First evidence of independent pseudogenization of Toll-like receptor 5 in passerine birds. Dev Comp Immunol. 451:151–155. PubMed

Bell JK, Askins J, Hall PR, Davies DR, Segal DM.. 2006. The dsRNA binding site of human Toll-like receptor 3. Proc Natl Acad Sci U S A. 10323:8792–8797. PubMed PMC

Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW.. 2012. GenBank. Nucleic Acids Res. 41(D1):D36–D42. PubMed PMC

Boyd AC, Peroval MY, Hammond JA, Prickett MD, Young JR, Smith AL.. 2012. TLR15 is unique to avian and reptilian lineages and recognizes a yeast-derived agonist. J Immunol. 18910:4930–4938. PubMed

Brownlie R, Allan B.. 2011. Avian Toll-like receptors. Cell Tissue Res. 3431:121–130. PubMed

Brownlie R, Zhu J, Allan B, Mutwiri GK, Babiuk LA, Potter A, Griebel P.. 2009. Chicken TLR21 acts as a functional homologue to mammalian TLR9 in the recognition of CpG oligodeoxynucleotides. Mol Immunol. 4615:3163–3170. PubMed

Burri R, Salamin N, Studer RA, Roulin A, Fumagalli L.. 2010. Adaptive divergence of ancient gene duplicates in the avian MHC class II β. Mol Biol Evol. 2710:2360–2374. PubMed

Cario E. 2013. The human TLR4 variant D299G mediates inflammation-associated cancer progression in the intestinal epithelium. Oncoimmunology 27:e24890.. PubMed PMC

Cheng Y, Prickett MD, Gutowska W, Kuo R, Belov K, Burt DW.. 2015. Evolution of the avian β-defensin and cathelicidin genes. BMC Evol Biol. 15:188.. PubMed PMC

Choe J, Kelker MS, Wilson IA.. 2005. Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science 3095734:581–585. PubMed

Conant GC, Wagner GP, Stadler PF.. 2007. Modeling amino acid substitution patterns in orthologous and paralogous genes. Mol Phylogenet Evol. 422:298–307. PubMed

Cormican P, Lloyd AT, Downing T, Connell SJ, Bradley D, O’Farrelly C.. 2009. The avian Toll-Like receptor pathway-Subtle differences amidst general conformity. Dev Comp Immunol. 339:967–973. PubMed

Coscia MR, Giacomelli S, Oreste U.. 2011. Toll-like receptors: an overview from invertebrates to vertebrates. Invertebr Surviv J. 2011:210–226.

Crooks GE, Hon G, Chandonia JM, Brenner SE.. 2004. WebLogo: a sequence logo generator. Genome Res. 146:1188–1190. PubMed PMC

de Bouteiller O, Merck E, Hasan U, Hubac S, Benguigui B, Trinchieri G, Bates E, Caux C.. 2005. Recognition of double-stranded RNA by human Toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH. J Biol Chem. 28046:38133–38145. PubMed

de Zoete MR, Bouwman LI, Keestra AM, van Putten JPM.. 2011. Cleavage and activation of a Toll-like receptor by microbial proteases. Proc Natl Acad Sci U S A. 10812:4968–4973. PubMed PMC

Ellegren H. 2008. Comparative genomics and the study of evolution by natural selection. Mol Ecol. 1721:4586–4596. PubMed

Emery NJ, Clayton NS.. 2004. The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 3065703:1903–1907. PubMed

Eöry L, Gilbert MTP, Li C, Li B, Archibald A, Aken BL, Zhang G, Jarvis E, Flicek P, Burt DW.. 2015. Avianbase: a community resource for bird genomics. Genome Biol. 16:21.. PubMed PMC

Ewald SE, Lee BL, Lau L, Wickliffe KE, Shi G-P, Chapman HA, Barton GM.. 2008. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 4567222:658–662. PubMed PMC

Farmer CG. 2000. Parental care: the key to understanding endothermy and other convergent features in birds and mammals. Am Nat. 1553:326–334. PubMed

Ferrer-Admetlla A, Bosch E, Sikora M, Marques-Bonet T, Ramirez-Soriano A, Muntasell A, Navarro A, Lazarus R, Calafell F, Bertranpetit J, Casals F.. 2008. Balancing selection is the main force shaping the evolution of innate immunity genes. J Immunol. 1812:1315–1322. PubMed

Fornůsková A, Vinkler M, Pagès M, Galan M, Jousselin E, Cerqueira F, Morand S, Charbonnel N, Bryja J, Cosson J-F.. 2013. Contrasted evolutionary histories of two Toll-like receptors (Tlr4 and Tlr7) in wild rodents (MURINAE). BMC Evol Biol. 13:194.. PubMed PMC

Garate JA, Oostenbrink C.. 2013. Lipid a from lipopolysaccharide recognition: structure, dynamics and cooperativity by molecular dynamics simulations. Proteins 814:658–674. PubMed

Gautam JK, Ashish CLD, Krueger JK, Smith MF. Jr. 2006. Structural and functional evidence for the role of the TLR2 DD loop in TLR1/TLR2 heterodimerization and signaling. J Biol Chem. 281:30132–30142. PubMed PMC

Gay NJ, Gangloff M.. 2007. Structure and function of Toll receptors and their Ligands. Annu Rev Biochem. 76:141–165. PubMed

Gentile F, Deriu MA, Licandro G, Prunotto A, Danani A, Tuszynski JA.. 2015. Structure based modeling of small molecules binding to the TLR7 by atomistic level simulations. Molecules 205:8316–8340. PubMed PMC

Grueber CE, Wallis GP, Jamieson IG.. 2014. Episodic positive selection in the evolution of avian Toll-like receptor innate immunity genes. PLoS One 93:e89632.. PubMed PMC

Grueber CE, Wallis GP, King TM, Jamieson IG.. 2012. Variation at innate immunity Toll-like receptor genes in a bottlenecked population of a New Zealand robin. PLoS One 79:e45011.. PubMed PMC

Guan Y, Ranoa DRE, Jiang S, Mutha SK, Li X, Baudry J, Tapping RI.. 2010. Human TLRs 10 and 1 share common mechanisms of innate immune sensing but not signaling. J Immunol. 1849:5094–5103. PubMed

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O.. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 593:307–321. PubMed

Gupta CL, Akhtar S, Sayyed U, Pathak N, Bajpai P.. 2016. In silico analysis of human Toll-like receptor 7 ligand binding domain. Biotechnol Appl Biochem. 633:441–450. PubMed

Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E, Tancredi S, Guiet C, Briere F, Vlach J, Lebecque S, et al. 2005. Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol. 1745:2942–2950. PubMed

Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, Skerrett SJ, Beutler B, Schroeder L, Nachman A, et al. 2003. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to Legionnaires’ disease. J Exp Med. 19810:1563–1572. PubMed PMC

Hawn TR, Wu H, Grossman JM, Hahn BH, Tsao BP, Aderem A.. 2005. A stop codon polymorphism of Toll-like receptor 5 is associated with resistance to systemic lupus erythematosus. Proc Natl Acad Sci U S A. 10230:10593–10597. PubMed PMC

Hayashi F, Smith K, Ozinsky A, Hawn T, Yi E, Goodlett D, Eng J, Akira S, Underhill D, Aderem A.. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 4106832:1099–1103. PubMed

Higuchi M, Matsuo A, Shingai M, Shida K, Ishii A, Funami K, Suzuki Y, Oshiumi H, Matsumoto M, Seya T.. 2008. Combinational recognition of bacterial lipoproteins and peptidoglycan by chicken Toll-like receptor 2 subfamily. Dev Comp Immunol. 322:147–155. PubMed

Huang Y, Temperley ND, Ren L, Smith J, Li N, Burt DW.. 2011. Molecular evolution of the vertebrate TLR1 gene family – a complex history of gene duplication, gene conversion, positive selection and co-evolution. BMC Evol Biol. 11149:1–17. PubMed PMC

Iqbal M, Philbin VJ, Withanage GSK, Wigley P, Beal RK, Goodchild MJ, Barrow P, McConnell I, Maskell DJ, Young J, et al. 2005. Identification and functional characterization of chicken Toll-like receptor 5 reveals a fundamental role in the biology of infection with Salmonella enterica serovar typhimurium. Infect Immun. 734:2344–2350. PubMed PMC

Ivicak-Kocjan K, Panter G, Bencina M, Jerala R.. 2013. Determination of the physiological 2: 2 TLR5: flagellin activation stoichiometry revealed by the activity of a fusion receptor. Biochem Biophys Res Commun. 4351:40–45. PubMed

Iwasaki A, Medzhitov R.. 2015. Control of adaptive immunity by the innate immune system. Nat Immunol. 164:343–353. PubMed PMC

Jacchieri S, Torquato R, Brentani R.. 2003. Structural study of binding of flagellin by Toll-like receptor 5. J Bacteriol. 18514:4243–4247. PubMed PMC

Janeway CA, Medzhitov R.. 2002. Innate immune recognition. Annu Rev Immunol. 20:197–216. PubMed

Jang T, Park HH.. 2014. Crystal structure of TIR domain of TLR6 reveals novel dimeric interface of TIR-TIR interaction for Toll-like receptor signaling pathway. J Mol Biol. 42619:3305–3313. PubMed

Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, et al. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 3466215:1320–1331. PubMed PMC

Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO.. 2012. The global diversity of birds in space and time. Nature 4917424:444–448. PubMed

Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik S-G, Lee H, Lee J-O.. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 1306:1071–1082. PubMed

Kang JY, Nan X, Jin MS, Youn S-J, Ryu YH, Mah S, Han SH, Lee H, Paik S-G, Lee J-O.. 2009. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 316:873–884. PubMed

Kang T, Chae G.. 2001. Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol Med Microbiol. 311:53–58. PubMed

Kanno A, Yamamoto C, Onji M, Fukui R, Saitoh S, Motoi Y, Shibata T, Matsumoto F, Muta T, Miyake K.. 2013. Essential role for Toll-like receptor 7 (TLR7)-unique cysteines in an intramolecular disulfide bond, proteolytic cleavage and RNA sensing. Int Immunol. 257:413–422. PubMed

Katoh K, Standley DM.. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 304:772–780. PubMed PMC

Kawai T, Akira S.. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 115:373–384. PubMed

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C.. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2812:1647–1649. PubMed PMC

Keestra AM, de Zoete MR, Bouwman LI, Vaezirad MM, van Putten JPM.. 2013. Unique features of chicken Toll-like receptors. Dev Comp Immunol. 413:316–323. PubMed

Keestra AM, de Zoete MR, Bouwman LI, van Putten JPM.. 2010. Chicken TLR21 is an innate CpG DNA receptor distinct from mammalian TLR9. J Immunol. 1851:460–467. PubMed

Keestra AM, de Zoete MR, van Aubel RAMH, van Putten JPM.. 2007. The central Leucine-rich repeat region of chicken TLR16 dictates unique ligand specificity and species-specific interaction with TLR2. J Immunol. 17811:7110.. PubMed

Keestra AM, de Zoete MR, van Aubel RAMH, van Putten JPM.. 2008. Functional characterization of chicken TLR5 reveals species-specific recognition of flagellin. Mol Immunol. 455:1298–1307. PubMed

Kim HM, Park BS, Kim J-I, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ, Lee J-O.. 2007. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 1305:906–917. PubMed

Letunic I, Bork P.. 2018. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 46(D1):D493–D496. PubMed PMC

Leveque G, Forgetta V, Morroll S, Smith A, Bumstead N, Barrow P, Loredo-Osti J, Morgan K, Malo D.. 2003. Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar typhimurium infection in chickens. Infect Immun. 713:1116–1124. PubMed PMC

Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, Davies DR.. 2008. Structural basis of Toll-like receptor 3 signaling with double-stranded RNA. Science 3205874:379–381. PubMed PMC

Lorenz E, Mira J, Cornish K, Arbour N, Schwartz D.. 2000. A novel polymorphism in the Toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun. 6811:6398–6401. PubMed PMC

Lovegrove BG. 2017. A phenology of the evolution of endothermy in birds and mammals. Biol Rev. 922:1213–1240. PubMed

Luo J, Obmolova G, Malia TJ, Wu S-J, Duffy KE, Marion JD, Bell JK, Ge P, Zhou ZH, Teplyakov A, et al. 2012. Lateral clustering of TLR3: dsRNA signaling units revealed by TLR3ecd: 3Fabs quaternary structure. J Mol Biol. 4211:112–124. PubMed PMC

Mao F, Leung W-Y, Xin X.. 2007. Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnol. 7:76.. PubMed PMC

Medvedev AE. 2013. Toll-like receptor polymorphisms, inflammatory and infectious diseases, allergies, and cancer. J Interferon Cytokine Res off J Int Soc Interferon Cytokine Res. 339:467–484. PubMed PMC

Meng J, Lien E, Golenbock DT.. 2010. MD-2-mediated ionic interactions between lipid A and TLR4 are essential for receptor activation. J Biol Chem. 28512:8695–8702. PubMed PMC

Mikami T, Miyashita H, Takatsuka S, Kuroki Y, Matsushima N.. 2012. Molecular evolution of vertebrate Toll-like receptors: evolutionary rate difference between their leucine-rich repeats and their TIR domains. Gene 5032:235–243. PubMed

Mineev KS, Goncharuk SA, Arseniev AS.. 2014. Toll-like receptor 3 transmembrane domain is able to perform various homotypic interactions: an NMR structural study. FEBS Lett. 58821:3802–3807. PubMed

Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K.. 2013. FUBAR: a fast, unconstrained Bayesian AppRoximation for inferring selection. Mol Biol Evol. 305:1196–1205. PubMed PMC

Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Pond SLK.. 2012. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 87:e1002764.. PubMed PMC

Nakajima T, Ohtani H, Satta Y, Uno Y, Akari H, Ishida T, Kimura A.. 2008. Natural selection in the TLR-related genes in the course of primate evolution. Immunogenetics 6012:727–735. PubMed

Netea MG, Wijmenga C, O’Neill LAJ.. 2012. Genetic variation in Toll-like receptors and disease susceptibility. Nat Immunol. 136:535–542. PubMed

Nishitani C, Mitsuzawa H, Sano H, Shimizu T, Matsushima N, Kuroki Y.. 2006. Toll-like receptor 4 region Glu24-Lys47 is a site for MD-2 binding: importance of CYS29 and CYS40. J Biol Chem. 28150:38322–38329. PubMed

Nyman T, Stenmark P, Flodin S, Johansson I, Hammarström M, Nordlund P.. 2008. The crystal structure of the human Toll-like receptor 10 cytoplasmic domain reveals a putative signaling dimer. J Biol Chem. 28318:11861–11865. PubMed

Ohto U, Fukase K, Miyake K, Shimizu T.. 2012. Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc Natl Acad Sci U S A. 109:7421–7426. PubMed PMC

Ohto U, Yamakawa N, Akashi-Takamura S, Miyake K, Shimizu T.. 2012. Structural analyses of human Toll-like receptor 4 polymorphisms D299G and T399I. J Biol Chem. 28748:40611–40617. PubMed PMC

Olkowicz S, Kocourek M, Lučan RK, Porteš M, Fitch WT, Herculano-Houzel S, Němec P.. 2016. Birds have primate-like numbers of neurons in the forebrain. Proc Natl Acad Sci U S A. 11326:7255–7260. PubMed PMC

Omueti KO, Mazur DJ, Thompson KS, Lyle EA, Tapping RI.. 2007. The polymorphism P315L of human Toll-like receptor 1 impairs innate immune sensing of microbial cell wall components. J Immunol. 17810:6387–6394. PubMed

Palm NW, Medzhitov R.. 2009. Pattern recognition receptors and control of adaptive immunity. Immunol Rev. 2271:221–233. PubMed

Paramo T, Piggot TJ, Bryant CE, Bond PJ.. 2013. The structural basis for endotoxin-induced allosteric regulation of the Toll-like receptor 4 (TLR4) innate immune receptor. J Biol Chem. 28851:36215–36225. PubMed PMC

Park BS, Song DH, Kim HM, Choi B-S, Lee H, Lee J-O.. 2009. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 4587242:1191–1195. PubMed

Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 299:e45.. PubMed PMC

Philbin VJ, Iqbal M, Boyd Y, Goodchild MJ, Beal RK, Bumstead N, Young J, Smith AL.. 2005. Identification and characterization of a functional, alternatively spliced Toll-like receptor 7 (TLR7) and genomic disruption of TLR8 in chickens. Immunology 1144:507–521. PubMed PMC

Pirher N, Ivicak K, Pohar J, Bencina M, Jerala R.. 2008. A second binding site for double-stranded RNA in TLR3 and consequences for interferon activation. Nat Struct Mol Biol. 157:761–763. PubMed

Poltorak A, He X, Smirnova I, Liu M-Y, Huffel CV, Du X, Birdwell D, Alejos E, Silva M, Galanos C.. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 2825396:2085–2088. PubMed

Pond SLK, Frost SDW.. 2005. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 2110:2531–2533. PubMed

Ranjith-Kumar CT, Miller W, Xiong J, Russell WK, Lamb R, Santos J, Duffy KE, Cleveland L, Park M, Bhardwaj K, et al. 2007. Biochemical and functional analyses of the human Toll-like receptor 3 ectodomain. J Biol Chem. 28210:7668–7678. PubMed

Raven N, Lisovski S, Klaassen M, Lo N, Madsen T, Ho SYW, Ujvari B.. 2017. Purifying selection and concerted evolution of RNA-sensing Toll-like receptors in migratory waders. Infect Genet Evol. 53:135–145. PubMed

Reddick LE, Alto NM.. 2014. Bacteria fighting back: how pathogens target and subvert the host innate immune system. Mol Cell 542:321–328. PubMed PMC

Resman N, Vasl J, Oblak A, Pristovsek P, Gioannini TL, Weiss JP, Jerala R.. 2009. Essential roles of hydrophobic residues in both MD-2 and Toll-like receptor 4 in activation by endotoxin. J Biol Chem. 28422:15052–15060. PubMed PMC

Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A.. 2005. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A. 10227:9577–9582. PubMed PMC

Ronni T, Agarwal V, Haykinson M, Haberland M, Cheng G, Smale S.. 2003. Common interaction surfaces of the Toll-like receptor 4 cytoplasmic domain stimulate multiple nuclear targets. Mol Cell Biol. 237:2543–2555. PubMed PMC

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP.. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 613:539–542. PubMed PMC

Roy A, Kucukural A, Zhang Y.. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 54:725–738. PubMed PMC

Rupasree Y, Naushad SM, Rajasekhar L, Uma A, Kutala VK.. 2015. Association of TLR4 (D299G, T399I), TLR9-1486T < C, TIRAP S180L and TNF-alpha promoter (-1031,-863,-857) polymorphisms with risk for systemic lupus erythematosus among South Indians. Lupus 24:50–57. PubMed

Sarkar S, Smith H, Rowe T, Sen G.. 2003. Double-stranded RNA signaling by Toll-like receptor 3 requires specific tyrosine residues in its cytoplasmic domain. J Biol Chem. 2787:4393–4396. PubMed

Scior T, Lozano-Aponte J, Figueroa-Vazquez V, Yunes-Rojas JA, Zähringer U, Alexander C.. 2013. Three-dimensional mapping of differential amino acids of human, murine, canine and equine TLR4/MD-2 receptor complexes conferring endotoxic activation by lipid A, antagonism by Eritoran and species-dependent activities of Lipid IVA in the mammalian LPS sensor system. Comput Struct Biotechnol J. 7:e201305003.. PubMed PMC

Shen T, Xu S, Wang X, Yu W, Zhou K, Yang G.. 2012. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans. BMC Evol Biol. 12:39.. PubMed PMC

Shen X, Shi R, Zhang H, Li K, Zhao Y, Zhang R.. 2010. The Toll-like receptor 4 D299G and T399I polymorphisms are associated with Crohn’s disease and ulcerative colitis: a meta-analysis. Digestion 812:69–77. PubMed

Song WS, Jeon YJ, Namgung B, Hong M, Yoon S.. 2017. A conserved TLR5 binding and activation hot spot on flagellin. Sci Rep. 7:40878.. PubMed PMC

Sun J, Duffy KE, Ranjith-Kumar CT, Xiong J, Lamb RJ, Santos J, Masarapu H, Cunningham M, Holzenburg A, Sarisky RT, et al. 2006. Structural and functional analyses of the human Toll-like receptor 3 – role of glycosylation. J Biol Chem. 28116:11144–11151. PubMed

Suyama M, Torrents D, Bork P.. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34(Web Server):W609–W612. PubMed PMC

Tao X, Xu Y, Zheng Y, Beg AA, Tong L.. 2002. An extensively associated dimer in the structure of the C713S mutant of the TIR domain of human TLR2. Biochem Biophys Res Commun. 2992:216–221. PubMed

Temperley ND, Berlin S, Paton IR, Griffin DK, Burt DW.. 2008. Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. BMC Genomics 9:62.. PubMed PMC

Tseng C-Y, Gajewski M, Danani A, Tuszynski JA.. 2014. Homology and molecular dynamics models of Toll-like receptor 7 protein and its dimerization. Chem Biol Drug Des. 836:656–665. PubMed

Underhill D, Ozinsky A, Hajjar A, Stevens A, Wilson C, Bassetti M, Aderem A.. 1999. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 4016755:811–815. PubMed

Vinkler M, Bainova H, Bryja J.. 2014. Protein evolution of Toll-like receptors 4, 5 and 7 within Galloanserae birds. Genet Sel Evol. 46:72.. PubMed PMC

Vinkler M, Bryjova A, Albrecht T, Bryja J.. 2009. Identification of the first Toll-like receptor gene in passerine birds: tLR4 orthologue in zebra finch (Taeniopygia guttata). Tissue Antigens 741:32–41. PubMed

Waite DW, Taylor MW.. 2014. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front Microbiol. 5:223.. PubMed PMC

Walsh C, Gangloff M, Monie T, Smyth T, Wei B, McKinley TJ, Maskell D, Gay N, Bryant C.. 2008. Elucidation of the MD-2/TLR4 interface required for signaling by lipid IVa. J Immunol. 1812:1245–1254. PubMed

Wang J, Zhang Z, Chang F, Yin D.. 2016. Bioinformatics analysis of the structural and evolutionary characteristics for Toll-like receptor 15. PeerJ 4:e2079. PubMed PMC

Wang J, Zhang Z, Liu J, Zhao J, Yin D.. 2016. Ectodomain architecture affects sequence and functional evolution of vertebrate Toll-like receptors. Sci Rep. 6:26705.. PubMed PMC

Wang Y, Su L, Morin MD, Jones BT, Whitby LR, Surakattula MMRP, Huang H, Shi H, Choi JH, Wang K-w.. 2016. TLR4/MD-2 activation by a synthetic agonist with no similarity to LPS. Proc Natl Acad Sci U S A. 1137:E884–E893. PubMed PMC

Wei T, Gong J, Jamitzky F, Heckl WM, Stark RW, Rössle SC.. 2009. Homology modeling of human Toll-like receptors TLR7, 8, and 9 ligand-binding domains. Protein Sci. 188:1684–1691. PubMed PMC

Wlasiuk G, Khan S, Switzer WM, Nachman MW.. 2009. A history of recurrent positive selection at the Toll-like receptor 5 in primates. Mol Biol Evol. 264:937–949. PubMed PMC

Wlasiuk G, Nachman MW.. 2010. Adaptation and constraint at Toll-like receptors in primates. Mol Biol Evol. 279:2172–2186. PubMed PMC

Xu Y, Tao X, Shen B, Horng T, Medzhitov R, Manley JL, Tong L.. 2000. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 4086808:111–115. PubMed

Yang J, Zhang E, Liu F, Zhang Y, Zhong M, Li Y, Zhou D, Chen Y, Cao Y, Xiao Y, et al. 2014. Flagellins of Salmonella typhi and nonpathogenic Escherichia coli are differentially recognized through the NLRC4 pathway in macrophages. J Innate Immun. 61:47–57. PubMed PMC

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 248:1586–1591. PubMed

Yoon S, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA.. 2012. Structural basis of TLR5-flagellin recognition and signaling. Science 3356070:859–864. PubMed PMC

Yu H, Jin H, Sun L, Zhang L, Sun G, Wang Z, Yu Y.. 2013. Toll-like receptor 7 agonists: chemical feature based pharmacophore identification and molecular docking studies. PLoS One 83:e56514.. PubMed PMC

Zareparsi S, Buraczynska M, Branham KEH, Shah S, Eng D, Li M, Pawar H, Yashar BM, Moroi SE, Lichter PR, et al. 2005. Toll-like receptor 4 variant D299G is associated with susceptibility to age-related macular degeneration. Hum Mol Genet. 1411:1449–1455. PubMed

Zhang F, Gao X-D, Wu W-W, Gao Y, Zhang Y-W, Wang S-P.. 2013. Polymorphisms in Toll-like receptors 2, 4 and 5 are associated with Legionella pneumophila infection. Infection 415:941–948. PubMed

Zhang G, Jarvis ED, Gilbert MTP.. 2014. A flock of genomes. Science 3466215:1308–1309. PubMed PMC

Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, Storz JF, Antunes A, Greenwold MJ, Meredith RW, et al. 2014. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:1311–1320. PubMed PMC

Zhang J. 2003. Evolution by gene duplication: an update. Trends Ecol Evol. 186:292–298.

Zhang Z, Ohto U, Shibata T, Krayukhina E, Taoka M, Yamauchi Y, Tanji H, Isobe T, Uchiyama S, Miyake K, et al. 2016. Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 454:737–748. PubMed

Zhang Z, Schwartz S, Wagner L, Miller W.. 2000. A greedy algorithm for aligning DNA sequences. J Comput Biol. 7(1–2):203–214. PubMed

Zhao Y, Yang J, Shi J, Gong Y-N, Lu Q, Xu H, Liu L, Shao F.. 2011. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 4777366:596–600. PubMed

Newest 20 citations...

See more in
Medvik | PubMed

Twelve toll-like receptor (TLR) genes in the family Equidae - comparative genomics, selection and evolution

. 2024 Apr ; 48 (2) : 725-741. [epub] 20231024

Understanding the evolution of immune genes in jawed vertebrates

. 2023 Jun ; 36 (6) : 847-873. [epub] 20230531

Dynamic Evolution of Avian RNA Virus Sensors: Repeated Loss of RIG-I and RIPLET

. 2022 Dec 20 ; 15 (1) : . [epub] 20221220

Cannabinoid receptor 2 evolutionary gene loss makes parrots more susceptible to neuroinflammation

. 2022 Dec 14 ; 289 (1988) : 20221941. [epub] 20221207

Selection Balancing at Innate Immune Genes: Adaptive Polymorphism Maintenance in Toll-Like Receptors

. 2022 May 03 ; 39 (5) : .

Adaptation and Cryptic Pseudogenization in Penguin Toll-Like Receptors

. 2022 Jan 07 ; 39 (1) : .

Repeated MDA5 Gene Loss in Birds: An Evolutionary Perspective

. 2021 Oct 22 ; 13 (11) : . [epub] 20211022

Macroevolutionary foundations of a recently evolved innate immune defense

. 2021 Oct ; 75 (10) : 2600-2612. [epub] 20210815

Avian Toll-like receptor allelic diversity far exceeds human polymorphism: an insight from domestic chicken breeds

. 2018 Dec 14 ; 8 (1) : 17878. [epub] 20181214

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...