Cannabinoid receptor 2 evolutionary gene loss makes parrots more susceptible to neuroinflammation
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36475439
PubMed Central
PMC9727682
DOI
10.1098/rspb.2022.1941
Knihovny.cz E-zdroje
- Klíčová slova
- avian immunology, cannabinoid receptor pseudogenization, cannabinoid receptors, gene loss, neural inflammation, neuroimmunology,
- MeSH
- papouškovití * genetika MeSH
- receptory kanabinoidní MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- receptory kanabinoidní MeSH
In vertebrates, cannabinoids modulate neuroimmune interactions through two cannabinoid receptors (CNRs) conservatively expressed in the brain (CNR1, syn. CB1) and in the periphery (CNR2, syn. CB2). Our comparative genomic analysis indicates several evolutionary losses in the CNR2 gene that is involved in immune regulation. Notably, we show that the CNR2 gene pseudogenized in all parrots (Psittaciformes). This CNR2 gene loss occurred because of chromosomal rearrangements. Our positive selection analysis suggests the absence of any specific molecular adaptations in parrot CNR1 that would compensate for the CNR2 loss in the modulation of the neuroimmune interactions. Using transcriptomic data from the brains of birds with experimentally induced sterile inflammation we highlight possible functional effects of such a CNR2 gene loss. We compare the expression patterns of CNR and neuroinflammatory markers in CNR2-deficient parrots (represented by the budgerigar, Melopsittacus undulatus and five other parrot species) with CNR2-intact passerines (represented by the zebra finch, Taeniopygia guttata). Unlike in passerines, stimulation with lipopolysaccharide resulted in neuroinflammation in the parrots linked with a significant upregulation of expression in proinflammatory cytokines (including interleukin 1 beta (IL1B) and 6 (IL6)) in the brain. Our results indicate the functional importance of the CNR2 gene loss for increased sensitivity to brain inflammation.
Faculty of Science Department of Zoology Charles University Viničná 7 Prague 128 44 Czech Republic
Military Health Institute Military Medical Agency Tychonova 1 160 01 Prague 6 Czech Republic
Zobrazit více v PubMed
Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJL, Vos T, Whiteford HA. 2013. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med. 10, e1001547. (10.1371/journal.pmed.1001547) PubMed DOI PMC
Koopman M, El Aidy S. 2017. Depressed gut? The microbiota-diet-inflammation trialogue in depression. Curr. Opin Psychiatry 30, 369–377. (10.1097/YCO.0000000000000350) PubMed DOI
Gaskins LA, Bergman L. 2011. Surveys of avian practitioners and pet owners regarding common behavior problems in psittacine birds. J. Avian Med. Surg. 25, 111–118. (10.1647/2010-027.1) PubMed DOI
Kinkaid HYM, Mills DS, Nichols SG, Meagher RK, Mason GJ. 2013. Feather-damaging behaviour in companion parrots: an initial analysis of potential demographic risk factors. Avian Biol. Res. 6, 289–296. (10.3184/175815513X13803574144572) DOI
Ebisawa K, Nakayama S, Pai C, Kinoshita R, Koie H. 2021. Prevalence and risk factors for feather-damaging behavior in psittacine birds: analysis of a Japanese nationwide survey. PLoS ONE 16, e0254610. (10.1371/journal.pone.0254610) PubMed DOI PMC
van Zeeland YRA, Spruit BM, Rodenburg TB, Riedstra B, van Hierden YM, Buitenhuis B, Korte SM, Lumeij JT. 2009. Feather damaging behaviour in parrots: a review with consideration of comparative aspects. Appl. Anim. Behav. Sci. 121, 75–95. (10.1016/j.applanim.2009.09.006) DOI
Péron F, Grosset C. 2014. The diet of adult psittacids: veterinarian and ethological approaches. J. Anim. Physiol. Anim. Nutr. 98, 403–416. (10.1111/jpn.12103) PubMed DOI
Chen J, Guo J, Tian Y, Tizard I. 2020. The pathogenesis of proventricular dilatation disease caused by parrot bornaviruses: a possible role for neuropeptide Y (Npy). In review (cited 2 November 2020). See https://www.researchsquare.com/article/rs-49954/v1.
Swardfager W, Rosenblat JD, Benlamri M, McIntyre RS. 2016. Mapping inflammation onto mood: inflammatory mediators of anhedonia. Neurosci. Biobehav. Rev. 64, 148–166. (10.1016/j.neubiorev.2016.02.017) PubMed DOI
Kumar H, Kawai T, Akira S. 2011. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30, 16–34. (10.3109/08830185.2010.529976) PubMed DOI
Aguilera M, Vergara P, Martínez V. 2013. Stress and antibiotics alter luminal and wall-adhered microbiota and enhance the local expression of visceral sensory-related systems in mice. Neurogastroenterol. Motil. 25, e515–e529. (10.1111/nmo.12154) PubMed DOI
Vanner SJ, Greenwood-Van Meerveld B, Mawe GM, Shea-Donohue T, Verdu EF, Wood J, Grundy D. 2016. Fundamentals of neurogastroenterology: basic science. Gastroenterology 150, 1280–1291. (10.1053/j.gastro.2016.02.018) PubMed DOI PMC
Acharya N, Penukonda S, Shcheglova T, Hagymasi AT, Basu S, Srivastava PK. 2017. Endocannabinoid system acts as a regulator of immune homeostasis in the gut. Proc. Natl Acad. Sci. USA 114, 5005–5010. (10.1073/pnas.1612177114) PubMed DOI PMC
Rider P, Carmi Y, Guttman O, Braiman A, Cohen I, Voronov E, White MR, Dinarello CA, Apte RN. 2011. IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation. J. Immunol. 187, 4835–4843. (10.4049/jimmunol.1102048) PubMed DOI
DiSabato DJ, Quan N, Godbout JP. 2016. Neuroinflammation: the devil is in the details. J. Neurochem. 139, 136–153. (10.1111/jnc.13607) PubMed DOI PMC
Bird S, Zou J, Wang T, Munday B, Cunningham C, Secombes CJ. 2002. Evolution of interleukin-1β. Cytokine Growth Factor Rev. 13, 483–502. (10.1016/S1359-6101(02)00028-X) PubMed DOI
Ren K, Torres R. 2009. Role of interleukin-1β during pain and inflammation. Brain Res. Rev. 60, 57–64. (10.1016/j.brainresrev.2008.12.020) PubMed DOI PMC
Klegeris A, Bissonnette CJ, McGeer PL. 2003. Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br. J. Pharmacol. 139, 775–786. (10.1038/sj.bjp.0705304) PubMed DOI PMC
Domenici MR. 2006. Cannabinoid receptor type 1 located on presynaptic terminals of principal neurons in the forebrain controls glutamatergic synaptic transmission. J. Neurosci. 26, 5794–5799. (10.1523/JNEUROSCI.0372-06.2006) PubMed DOI PMC
Solas M, Francis PT, Franco R, Ramirez MJ. 2013. CB2 receptor and amyloid pathology in frontal cortex of Alzheimer's disease patients. Neurobiol. Aging 34, 805–808. (10.1016/j.neurobiolaging.2012.06.005) PubMed DOI
Tao Y, et al. 2016. Cannabinoid receptor-2 stimulation suppresses neuroinflammation by regulating microglial M1/M2 polarization through the cAMP/PKA pathway in an experimental GMH rat model. Brain Behav. Immun. 58, 118–129. (10.1016/j.bbi.2016.05.020) PubMed DOI
Emery NJ. 2006. Cognitive ornithology: the evolution of avian intelligence. Phil. Trans. R. Soc. B 361, 23–43. (10.1098/rstb.2005.1736) PubMed DOI PMC
Olkowicz S, Kocourek M, Lučan RK, Porteš M, Fitch WT, Herculano-Houzel S, Němec P. 2016. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl Acad. Sci. USA 113, 7255–7260. (10.1073/pnas.1517131113) PubMed DOI PMC
Wang X, Grus WE, Zhang J. 2006. Gene losses during human origins. PLoS Biol. 4, e52. (10.1371/journal.pbio.0040052) PubMed DOI PMC
Olson MV. 1999. When less is more: gene loss as an engine of evolutionary change. Am. J. Hum. Genet. 64, 18–23. (10.1086/302219) PubMed DOI PMC
Charlesworth B. 2012. The effects of deleterious mutations on evolution at linked sites. Genetics 190, 5–22. (10.1534/genetics.111.134288) PubMed DOI PMC
Damas J, Corbo M, Lewin HA. 2021. Vertebrate chromosome evolution. Annu. Rev. Anim. Biosci. 9, 1–27. (10.1146/annurev-animal-020518-114924) PubMed DOI
Huang Z, et al. 2022. Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots. Nat. Commun. 13, 944. (10.1038/s41467-022-28585-1) PubMed DOI PMC
Nanda I, Karl E, Griffin DK, Schartl M, Schmid M. 2007. Chromosome repatterning in three representative parrots (Psittaciformes) inferred from comparative chromosome painting. Cytogenet Genome Res. 117, 43–53. (10.1159/000103164) PubMed DOI
Harewood L, Fraser P. 2014. The impact of chromosomal rearrangements on regulation of gene expression. Hum. Mol. Genet. 23, R76–R82. (10.1093/hmg/ddu278) PubMed DOI
Furo IDO, Kretschmer R, O'Brien PCM, Pereira JC, Garnero ADV, Gunski RJ, Ferguson-Smith MA, De Oliveira EH. et al. 2018. Chromosome painting in neotropical long- and short-tailed parrots (Aves, Psittaciformes): phylogeny and proposal for a putative ancestral karyotype for tribe arini. Genes 9, 491. (10.3390/genes9100491) PubMed DOI PMC
Temperley ND, Berlin S, Paton IR, Griffin DK, Burt DW. 2008. Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. BMC Genom. 9, 62. (10.1186/1471-2164-9-62) PubMed DOI PMC
Bainová H, Králová T, Bryjová A, Albrecht T, Bryja J, Vinkler M. 2014. First evidence of independent pseudogenization of Toll-like receptor 5 in passerine birds. Dev. Comp. Immunol. 45, 151–155. (10.1016/j.dci.2014.02.010) PubMed DOI
van der Loo W, Magalhaes MJ, de Matos AL, Abrantes J, Yamada F, Esteves PJ. 2016. Adaptive gene loss? Tracing back the pseudogenization of the rabbit CCL8 chemokine. J. Mol. Evol. 83, 12–25. (10.1007/s00239-016-9747-7) PubMed DOI
Velová H, Gutowska-Ding MW, Burt DW, Vinkler M. 2018. Toll-like receptor evolution in birds: gene duplication, pseudogenization, and diversifying selection. Mol. Biol. Evol. 35, 2170–2184. (10.1093/molbev/msy119) PubMed DOI PMC
Lu HC, Mackie K. 2016. An introduction to the endogenous cannabinoid system. Biol. Psychiatry 79, 516–525. (10.1016/j.biopsych.2015.07.028) PubMed DOI PMC
Elphick MR. 2012. The evolution and comparative neurobiology of endocannabinoid signalling. Phil. Trans. R. Soc. B 367, 3201–3215. (10.1098/rstb.2011.0394) PubMed DOI PMC
Galiègue S, et al. 1995. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem. 232, 54–61. (10.1111/j.1432-1033.1995.tb20780.x) PubMed DOI
Carlisle SJ, Marciano-Cabral F, Staab A, Ludwick C, Cabral GA. 2002. Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation. Int. Immunopharmacol. 2, 69–82. (10.1016/S1567-5769(01)00147-3) PubMed DOI
Soderstrom K, Johnson F. 2000. CB1 cannabinoid receptor expression in brain regions associated with zebra finch song control. Brain Res. 857, 151–157. (10.1016/S0006-8993(99)02393-8) PubMed DOI
Soderstrom K, Johnson F. 2003. Cannabinoid exposure alters learning of zebra finch vocal patterns. Brain Res. Dev. Brain Res. 142, 215–217. (10.1016/S0165-3806(03)00061-0) PubMed DOI
Cristino L, Becker T, Di Marzo V. 2014. Endocannabinoids and energy homeostasis: an update: regolatory role of endocannabinoids in obesity. Biofactors 40, 389–397. (10.1002/biof.1168) PubMed DOI
Cani PD, Plovier H, Van Hul M, Geurts L, Delzenne NM, Druart C, Everard A. et al. 2016. Endocannabinoids — at the crossroads between the gut microbiota and host metabolism. Nat. Rev. Endocrinol. 12, 133–143. (10.1038/nrendo.2015.211) PubMed DOI
Greenwood-Van Meerveld B (ed.) 2017. Gastrointestinal pharmacology. Handbook of experimental pharmacology, vol. 239. Cham, Switzerland: Springer International Publishing; (cited 13 February 2019). See> http://link.springer.com/10.1007/978-3-319-56360-2.
Maresz K, Carrier EJ, Ponomarev ED, Hillard CJ, Dittel BN. 2005. Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. J. Neurochem. 95, 437–445. (10.1111/j.1471-4159.2005.03380.x) PubMed DOI
Vincent L, Vang D, Nguyen J, Benson B, Lei J, Gupta K. 2016. Cannabinoid receptor-specific mechanisms to alleviate pain in sickle cell anemia via inhibition of mast cell activation and neurogenic inflammation. Haematologica 101, 566–577. (10.3324/haematol.2015.136523) PubMed DOI PMC
Krustev E, Muley MM, McDougall JJ. 2017. Endocannabinoids inhibit neurogenic inflammation in murine joints by a non-canonical cannabinoid receptor mechanism. Neuropeptides 64, 131–135. (10.1016/j.npep.2016.08.007) PubMed DOI
Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, AmiGO Hub, Web Presence Working Group. 2009. AmiGO: online access to ontology and annotation data. Bioinformatics 25, 288–289. (10.1093/bioinformatics/btn615) PubMed DOI PMC
Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, Kasprzyk A. 2009. BioMart–biological queries made easy. BMC Genom. 10, 22. (10.1186/1471-2164-10-22) PubMed DOI PMC
Mueller RC, Mallig N, Smith J, Eöry L, Kuo RI, Kraus RHS. 2020. Avian immunome DB: an example of a user-friendly interface for extracting genetic information. BMC Bioinf. 21, 502. (10.1186/s12859-020-03764-3) PubMed DOI PMC
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. (10.1093/molbev/msy096) PubMed DOI PMC
Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296. (10.1093/nar/gkab301) PubMed DOI PMC
Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, Ben-Tal N. 2003. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19, 163–164. (10.1093/bioinformatics/19.1.163) PubMed DOI
Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K. 2013. FUBAR: a fast, unconstrained Bayesian approximation for inferring selection. Mol. Biol. Evol. 30, 1196–1205. (10.1093/molbev/mst030) PubMed DOI PMC
Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL. 2012. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 8, e1002764. (10.1371/journal.pgen.1002764) PubMed DOI PMC
Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K, Kosakovsky Pond SL. 2015. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–1353. (10.1093/molbev/msv022) PubMed DOI PMC
Wertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, Scheffler K. 2015. RELAX: detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32, 820–832. (10.1093/molbev/msu400) PubMed DOI PMC
Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. 2012. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7, e46688. (10.1371/journal.pone.0046688) PubMed DOI PMC
Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. 2016. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9. (10.1038/nprot.2015.123) PubMed DOI
Wegmann M, Voegeli B, Richner H. 2015. Parasites suppress immune-enhancing effect of methionine in nestling great tits. Oecologia 177, 213–221. (10.1007/s00442-014-3138-9) PubMed DOI
Grabherr MG, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652. (10.1038/nbt.1883) PubMed DOI PMC
Haas BJ, Papanicolau A. 2020. TransDecoder (cited 12 April 2021). See https://github.com/jls943/TransDecoder.
Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. (10.1093/bioinformatics/bts565) PubMed DOI PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212. (10.1093/bioinformatics/btv351) PubMed DOI
Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214. (10.1089/10665270050081478) PubMed DOI
Moll P, Ante M, Seitz A, Reda T. 2014. QuantSeq 3′ mRNA sequencing for RNA quantification. Nat. Methods 11, i–iii. (10.1038/nmeth.f.376) DOI
Bean AGD, Lowenthal JW. 2022. Chapter 9 - avian cytokines and their receptors. In Avian immunology (eds Kaspers B, Schat KA, Göbel TW, Vervelde L), pp. 249–276, 3rd edn. Boston, MA: Academic Press. (Cited 28 April 2022). See https://www.sciencedirect.com/science/article/pii/B9780128187081000245.
Kearse M, et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647. (10.1093/bioinformatics/bts199) PubMed DOI PMC
Vinkler M, Leon AE, Kirkpatrick L, Dalloul RA, Hawley DM. 2018. Differing house finch cytokine expression responses to original and evolved isolates of Mycoplasma gallisepticum. Front. Immunol. 9, 13. (10.3389/fimmu.2018.00013/full) [cited 2020 Mar 7] PubMed DOI PMC
Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45. (10.1093/nar/29.9.e45) PubMed DOI PMC
RStudio. Open source & professional software for data science teams (Internet). (Cited 17 January 2022). See https://rstudio.com.
Ban E. 1992. Brain interleukin 1 gene expression induced by peripheral lipopolysaccharide administration. Cytokine 4, 48–54. (10.1016/1043-4666(92)90036-Q) PubMed DOI
Sköld-Chiriac S, Nord A, Nilsson JÅ, Hasselquist D. 2014. Physiological and behavioral responses to an acute-phase response in zebra finches: immediate and short-term effects. Physiol. Biochem. Zool. 87, 288–298. (10.1086/674789) PubMed DOI
Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP. 2019. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int. J. Mol. Sci. 20, 2293. (10.3390/ijms20092293) PubMed DOI PMC
Jurgens HA, Amancherla K, Johnson RW. 2012. Influenza infection induces neuroinflammation, alters hippocampal neuron morphology, and impairs cognition in adult mice. J. Neurosci. 32, 3958–3968. (10.1523/JNEUROSCI.6389-11.2012) PubMed DOI PMC
Vermeulen A, Eens M, Zaid E, Müller W. 2016. Baseline innate immunity does not affect the response to an immune challenge in female great tits (Parus major). Behav. Ecol. Sociobiol. 70, 585–592. (10.1007/s00265-016-2077-3) DOI
Armour EM, Bruner TL, Hines JK, Butler MW. 2020. Low-dose immune challenges result in detectable levels of oxidative damage. J. Exp. Biol. 223, jeb220095. (10.1242/jeb.220095) PubMed DOI
Procaccini C, Pucino V, De Rosa V, Marone G, Matarese G. 2014. Neuro-endocrine networks controlling immune system in health and disease. Front. Immunol. 6, 143. (10.3389/fimmu.2014.00143/abstract) [cited 2019 Oct 21] PubMed DOI PMC
Hasenoehrl C, Taschler U, Storr M, Schicho R. 2016. The gastrointestinal tract - a central organ of cannabinoid signaling in health and disease. Neurogastroenterol. Motil. 28, 1765–1780. (10.1111/nmo.12931) PubMed DOI PMC
Alonso-Ferrero ME, Paniagua MA, Mostany R, Pilar-Cuéllar F, Díez-Alarcia R, Pazos A, Fernández-López A. 2006. Cannabinoid system in the budgerigar brain. Brain Res. 1087, 105–113. (10.1016/j.brainres.2006.02.119) PubMed DOI
Klein TW, Newton C, Larsen K, Lu L, Perkins I, Nong L, Friedman H. 2003. The cannabinoid system and immune modulation. J. Leukoc. Biol. 74, 486–496. (10.1189/jlb.0303101) PubMed DOI
Rinder M, Ackermann A, Kempf H, Kaspers B, Korbel R, Staeheli P. 2009. Broad tissue and cell tropism of avian bornavirus in parrots with proventricular dilatation disease. J. Virol. 83, 5401–5407. (10.1128/JVI.00133-09) PubMed DOI PMC
Staeheli P, Rinder M, Kaspers B. 2010. Avian bornavirus associated with fatal disease in psittacine birds. J. Virol. 84, 6269–6275. (10.1128/JVI.02567-09) PubMed DOI PMC
Rubbenstroth D, Rinder M, Kaspers B, Staeheli P. 2012. Efficient isolation of avian bornaviruses (ABV) from naturally infected psittacine birds and identification of a new ABV genotype from a salmon-crested cockatoo (Cacatua moluccensis). Vet. Microbiol. 161, 36–42. (10.1016/j.vetmic.2012.07.004) PubMed DOI
Rubinstein J, Lightfoot T. 2012. Feather loss and feather destructive behavior in pet birds. J. Exot. Pet. Med. 21, 219–234. (10.1053/j.jepm.2012.06.024) PubMed DOI
Speer B. 2014. Normal and abnormal parrot behavior. J. Exot. Pet. Med. 23, 230–233. (10.1053/j.jepm.2014.06.009) DOI
Dovč A, et al. 2016. Occurrence of bacterial and viral pathogens in common and noninvasive diagnostic sampling from parrots and racing pigeons in Slovenia. Avian Dis. 60, 487–492. (10.1637/11373-011116-Reg) PubMed DOI
Karmaus PWF, Chen W, Crawford R, Kaplan BLF, Kaminski NE. 2013. Δ9-Tetrahydrocannabinol impairs the inflammatory response to influenza infection: role of antigen-presenting cells and the cannabinoid receptors 1 and 2. Toxicol. Sci. 131, 419–433. (10.1093/toxsci/kfs315) PubMed DOI PMC
Divín D, et al. . 2022. Cannabinoid receptor 2 evolutionary gene loss makes parrots more susceptible to neuroinflammation. Figshare. (10.6084/m9.figshare.c.6307543) PubMed DOI PMC
Understanding the evolution of immune genes in jawed vertebrates
Cannabinoid receptor 2 evolutionary gene loss makes parrots more susceptible to neuroinflammation
figshare
10.6084/m9.figshare.c.6307543