Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
2101/2021
Faculty of Science, University of Hradec Kralove, Czech Republic
PubMed
34283111
PubMed Central
PMC8271451
DOI
10.3390/s21134567
PII: s21134567
Knihovny.cz E-resources
- Keywords
- optimization, optimization algorithm, optimization problem, population-based, teamwork,
- Publication type
- Journal Article MeSH
Population-based optimization algorithms are one of the most widely used and popular methods in solving optimization problems. In this paper, a new population-based optimization algorithm called the Teamwork Optimization Algorithm (TOA) is presented to solve various optimization problems. The main idea in designing the TOA is to simulate the teamwork behaviors of the members of a team in order to achieve their desired goal. The TOA is mathematically modeled for usability in solving optimization problems. The capability of the TOA in solving optimization problems is evaluated on a set of twenty-three standard objective functions. Additionally, the performance of the proposed TOA is compared with eight well-known optimization algorithms in providing a suitable quasi-optimal solution. The results of optimization of objective functions indicate the ability of the TOA to solve various optimization problems. Analysis and comparison of the simulation results of the optimization algorithms show that the proposed TOA is superior and far more competitive than the eight compared algorithms.
See more in PubMed
Doumari S.A., Givi H., Dehghani M., Malik O.P. Ring Toss Game-Based Optimization Algorithm for Solving Various Optimization Problems. Int. J. Intell. Eng. Syst. 2021;14:545–554.
Dhiman G. SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications. Knowl.-Based Syst. 2021;222:106926. doi: 10.1016/j.knosys.2021.106926. DOI
Dehghani M., Montazeri Z., Dehghani A., Samet H., Sotelo C., Sotelo D., Ehsanifar A., Malik O.P., Guerrero J.M., Dhiman G. DM: Dehghani Method for modifying optimization algorithms. Appl. Sci. 2020;10:7683. doi: 10.3390/app10217683. DOI
Dhiman G. ESA: A hybrid bio-inspired metaheuristic optimization approach for engineering problems. Eng. Comput. 2019;37:323–353. doi: 10.1007/s00366-019-00826-w. DOI
Doumari S.A., Givi H., Dehghani M., Montazeri Z., Leiva V., Guerrero J.M. A New Two-Stage Algorithm for Solving Optimization Problems. Entropy. 2021;23:491. doi: 10.3390/e23040491. PubMed DOI PMC
Dehghani M., Montazeri Z., Dehghani A., Ramirez-Mendoza R.A., Samet H., Guerrero J.M., Dhiman G. MLO: Multi leader optimizer. Int. J. Intell. Eng. Syst. 2020;13:364–373. doi: 10.22266/ijies2020.1231.32. DOI
Sadeghi A., Doumari S.A., Dehghani M., Montazeri Z., Trojovský P., Ashtiani H.J. A New “Good and Bad Groups-Based Optimizer” for Solving Various Optimization Problems. Appl. Sci. 2021;11:4382. doi: 10.3390/app11104382. DOI
Dorigo M., Maniezzo V., Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 1996;26:29–41. doi: 10.1109/3477.484436. PubMed DOI
Dehghani M., Montazeri Z., Dehghani A., Malik O.P., Morales-Menendez R., Dhiman G., Nouri N., Ehsanifar A., Guerrero J.M., Ramirez-Mendoza R.A. Binary spring search algorithm for solving various optimization problems. Appl. Sci. 2021;11:1286. doi: 10.3390/app11031286. DOI
Hofmeyr S.A., Forrest S. Architecture for an artificial immune system. Evol. Comput. 2000;8:443–473. doi: 10.1162/106365600568257. PubMed DOI
Craig I.D. Blackboard systems. Artif. Intell. Rev. 1988;2:103–118. doi: 10.1007/BF00140399. DOI
Bose A., Biswas T., Kuila P. Smart Innovations in Communication and Computational Sciences. Springer; Singapore: 2019. A novel genetic algorithm based scheduling for multi-core systems; pp. 45–54.
Kennedy J., Eberhart R. Particle swarm optimization; In proceeding of the IEEE International Conference on Neural Networks; Perth, Australia. 27 November–1 December 1995; pp. 1942–1948.
Rashedi E., Nezamabadi-Pour H., Saryazdi S. GSA: A gravitational search algorithm. Inf. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. DOI
Rao R.V., Savsani V.J., Vakharia D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011;43:303–315. doi: 10.1016/j.cad.2010.12.015. DOI
Mirjalili S., Mirjalili S.M., Lewis A. Grey wolf optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI
Mirjalili S., Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI
Faramarzi A., Heidarinejad M., Mirjalili S., Gandomi A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020;152:113377. doi: 10.1016/j.eswa.2020.113377. DOI
Kaur S., Awasthi L.K., Sangal A., Dhiman G. Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020;90:103541. doi: 10.1016/j.engappai.2020.103541. DOI
Yao X., Liu Y., Lin G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999;3:82–102.
OOBO: A New Metaheuristic Algorithm for Solving Optimization Problems
Drawer Algorithm: A New Metaheuristic Approach for Solving Optimization Problems in Engineering
Serval Optimization Algorithm: A New Bio-Inspired Approach for Solving Optimization Problems
A new human-based metahurestic optimization method based on mimicking cooking training
A new optimization algorithm based on mimicking the voting process for leader selection
Selecting Some Variables to Update-Based Algorithm for Solving Optimization Problems
Cat and Mouse Based Optimizer: A New Nature-Inspired Optimization Algorithm