A new human-based metahurestic optimization method based on mimicking cooking training

. 2022 Sep 01 ; 12 (1) : 14861. [epub] 20220901

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36050468
Odkazy

PubMed 36050468
PubMed Central PMC9437068
DOI 10.1038/s41598-022-19313-2
PII: 10.1038/s41598-022-19313-2
Knihovny.cz E-zdroje

Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the chef-based optimization algorithm (CBOA), is developed. The fundamental inspiration employed in CBOA design is the process of learning cooking skills in training courses. The stages of the cooking training process in various phases are mathematically modeled with the aim of increasing the ability of global search in exploration and the ability of local search in exploitation. A collection of 52 standard objective functions is utilized to assess the CBOA's performance in addressing optimization issues. The optimization results show that the CBOA is capable of providing acceptable solutions by creating a balance between exploration and exploitation and is highly efficient in the treatment of optimization problems. In addition, the CBOA's effectiveness in dealing with real-world applications is tested on four engineering problems. Twelve well-known metaheuristic algorithms have been selected for comparison with the CBOA. The simulation results show that CBOA performs much better than competing algorithms and is more effective in solving optimization problems.

Zobrazit více v PubMed

Dhiman G. SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications. Knowl. Based Syst. 2021;222:106926. doi: 10.1016/j.knosys.2021.106926. DOI

Zeidabadi F-A, et al. SSABA: Search step adjustment based algorithm. Comput. Mater. Continua. 2022;71:4237–4256. doi: 10.32604/cmc.2022.023682. DOI

Mohammadi-Balani A, Nayeri MD, Azar A, Taghizadeh-Yazdi M. Golden eagle optimizer: A nature-inspired metaheuristic algorithm. Comput. Ind. Eng. 2021;152:107050. doi: 10.1016/j.cie.2020.107050. DOI

Cavazzuti M. Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics, Chap. Deterministic Optimization. Springer; 2013. pp. 77–102.

Gonzalez M, López-Espín JJ, Aparicio J, Talbi E-G. A hyper-matheuristic approach for solving mixed integer linear optimization models in the context of data envelopment analysis. PeerJ Comput. Sci. 2022;8:e828. doi: 10.7717/peerj-cs.828. PubMed DOI PMC

Goldberg DE, Holland JH. Genetic algorithms and machine learning. Mach. Learn. 1988;3:95–99. doi: 10.1023/A:1022602019183. DOI

Kennedy, J. & Eberhart, R. Particle swarm optimization. In Proc. ICNN’95—International Conference on Neural Networks, 1942–1948 (IEEE, 1995).

Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B (Cybern.) 1996;26:29–41. doi: 10.1109/3477.484436. PubMed DOI

Karaboga, D. & Basturk, B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science, 789–798 (Springer, 2007).

Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997;1:67–82. doi: 10.1109/4235.585893. DOI

Kaur S, Awasthi LK, Sangal AL, Dhiman G. Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020;90:103541. doi: 10.1016/j.engappai.2020.103541. DOI

Abdollahzadeh B, Gharehchopogh FS, Mirjalili S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021;158:107408. doi: 10.1016/j.cie.2021.107408. DOI

Hashim FA, Hussien AG. Snake optimizer: A novel meta-heuristic optimization algorithm. Knowl. Based Syst. 2022;242:108320. doi: 10.1016/j.knosys.2022.108320. DOI

Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI

Chopra N, Ansari MM. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. Expert Syst. Appl. 2022;198:116924. doi: 10.1016/j.eswa.2022.116924. DOI

Mirjalili S, Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI

Abualigah L, Elaziz MA, Sumari P, Geem ZW, Gandomi AH. Reptile search algorithm (rsa): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022;191:116158. doi: 10.1016/j.eswa.2021.116158. DOI

Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH. Marine predators algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020;152:113377. doi: 10.1016/j.eswa.2020.113377. DOI

Storn R, Price K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997;11:341–359. doi: 10.1023/A:1008202821328. DOI

Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220:671–680. doi: 10.1126/science.220.4598.671. PubMed DOI

Rashedi E, Nezamabadi-Pour H, Saryazdi SGSA. A gravitational search algorithm. Inf. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. DOI

Dehghani M, et al. A spring search algorithm applied to engineering optimization problems. Appl. Sci. 2020;10:6173. doi: 10.3390/app10186173. DOI

Eskandar H, Sadollah A, Bahreininejad A, Hamdi M. Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012;110:151–166. doi: 10.1016/j.compstruc.2012.07.010. DOI

Ray T, Liew KM. Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Trans. Evol. Comput. 2003;7:386–396. doi: 10.1109/TEVC.2003.814902. DOI

Moghdani R, Salimifard K. Volleyball premier league algorithm. Appl. Soft Comput. 2018;64:161–185. doi: 10.1016/j.asoc.2017.11.043. DOI

Zeidabadi FA, Dehghani M. POA: Puzzle optimization algorithm. Int. J. Intell. Eng. Syst. 2022;15:273–281.

Rao RV, Savsani VJ, Vakharia D. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011;43:469–492. doi: 10.1016/j.cad.2010.12.015. DOI

Dehghani M, et al. A new doctor and patient optimization algorithm: An application to energy commitment problem. Appl. Sci. 2020;10:5791. doi: 10.3390/app10175791. DOI

Dehghani M, Trojovský P. Teamwork optimization algorithm: A new optimization approach for function minimization/maximization. Sensors. 2021;21:4567. doi: 10.3390/s21134567. PubMed DOI PMC

Pira E. City councils evolution: A socio-inspired metaheuristic optimization algorithm. J. Ambient Intell. Hum. Comput. 2022 doi: 10.1007/s12652-022-03765-5. DOI

Ayyarao TL, et al. War strategy optimization algorithm: A new effective metaheuristic algorithm for global optimization. IEEE Access. 2022;10:25073–25105. doi: 10.1109/ACCESS.2022.3153493. DOI

Wilcoxon F. Individual comparisons by ranking methods. Biometr. Bull. 1945;1:80–83. doi: 10.2307/3001968. DOI

Awad N, Ali M, Liang J, Qu B, Suganthan P. Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. Kyungpook National University; 2016.

Kannan B, Kramer SN. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994;116:405–411. doi: 10.1115/1.2919393. DOI

Gandomi AH, Yang X-S. Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence, Chap. Benchmark Problems in Structural Optimization. Springer; 2011. pp. 259–281.

Mezura-Montes, E. & Coello, C.A.C. Useful infeasible solutions in engineering optimization with evolutionary algorithms. In Advances in Artificial Intelligence (MICAI 2005). Lecture Notes in Computer Science, 652–662 (Springer, 2005).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...