Mother optimization algorithm: a new human-based metaheuristic approach for solving engineering optimization
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
2104/2023-2024
University of Hradec Kralove, Czech Republic
PubMed
37365283
PubMed Central
PMC10293246
DOI
10.1038/s41598-023-37537-8
PII: 10.1038/s41598-023-37537-8
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
This article's innovation and novelty are introducing a new metaheuristic method called mother optimization algorithm (MOA) that mimics the human interaction between a mother and her children. The real inspiration of MOA is to simulate the mother's care of children in three phases education, advice, and upbringing. The mathematical model of MOA used in the search process and exploration is presented. The performance of MOA is assessed on a set of 52 benchmark functions, including unimodal and high-dimensional multimodal functions, fixed-dimensional multimodal functions, and the CEC 2017 test suite. The findings of optimizing unimodal functions indicate MOA's high ability in local search and exploitation. The findings of optimization of high-dimensional multimodal functions indicate the high ability of MOA in global search and exploration. The findings of optimization of fixed-dimension multi-model functions and the CEC 2017 test suite show that MOA with a high ability to balance exploration and exploitation effectively supports the search process and can generate appropriate solutions for optimization problems. The outcomes quality obtained from MOA has been compared with the performance of 12 often-used metaheuristic algorithms. Upon analysis and comparison of the simulation results, it was found that the proposed MOA outperforms competing algorithms with superior and significantly more competitive performance. Precisely, the proposed MOA delivers better results in most objective functions. Furthermore, the application of MOA on four engineering design problems demonstrates the efficacy of the proposed approach in solving real-world optimization problems. The findings of the statistical analysis from the Wilcoxon signed-rank test show that MOA has a significant statistical superiority compared to the twelve well-known metaheuristic algorithms in managing the optimization problems studied in this paper.
See more in PubMed
Dehghani M, et al. A spring search algorithm applied to engineering optimization problems. Appl. Sci. 2020;10(18):6173. doi: 10.3390/app10186173. DOI
Dehghani M, et al. DM: Dehghani Method for modifying optimization algorithms. Appl. Sci. 2020;10(21):7683. doi: 10.3390/app10217683. DOI
Coufal P, Hubálovský Š, Hubálovská M, Balogh Z. Snow leopard optimization algorithm: A new nature-based optimization algorithm for solving optimization problems. Mathematics. 2021;9(21):2832. doi: 10.3390/math9212832. DOI
Kvasov DE, Mukhametzhanov MS. Metaheuristic vs. deterministic global optimization algorithms: The univariate case. Appl. Math. Comput. 2018;318:245–259.
Mirjalili S. The ant lion optimizer. Adv. Eng. Softw. 2015;83:80–98. doi: 10.1016/j.advengsoft.2015.01.010. DOI
Dokeroglu T, Sevinc E, Kucukyilmaz T, Cosar A. A survey on new generation metaheuristic algorithms. Comput. Ind. Eng. 2019;137:106040. doi: 10.1016/j.cie.2019.106040. DOI
Dehghani M, et al. Binary spring search algorithm for solving various optimization problems. Appl. Sci. 2021;11(3):1286. doi: 10.3390/app11031286. DOI
Hussain K, Mohd Salleh MN, Cheng S, Shi Y. Metaheuristic research: A comprehensive survey. Artif. Intell. Rev. 2019;52(4):2191–2233. doi: 10.1007/s10462-017-9605-z. DOI
Iba K. Reactive power optimization by genetic algorithm. IEEE Trans. Power Syst. 1994;9(2):685–692. doi: 10.1109/59.317674. DOI
Lu C, Gao L, Li X, Xiao S. A hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industry. Eng. Appl. Artif. Intell. 2017;57:61–79. doi: 10.1016/j.engappai.2016.10.013. DOI
de Lima TPF, da Silva AJ, Ludermir TB, de Oliveira WR. An automatic methodology for construction of multi-classifier systems based on the combination of selection and fusion. Prog. Artif. Intell. 2014;2:205–215. doi: 10.1007/s13748-014-0053-6. DOI
Geetha TV, Deepa AJ. A FKPCA-GWO WDBiLSTM classifier for intrusion detection system in cloud environments. Knowl.-Based Syst. 2022;253:109557. doi: 10.1016/j.knosys.2022.109557. DOI
Cura T. A particle swarm optimization approach to clustering. Expert Syst. Appl. 2012;39(1):1582–1588. doi: 10.1016/j.eswa.2011.07.123. DOI
Gomez J, Leon E, Nasraoui O, Giraldo F. The parameter-less randomized gravitational clustering algorithm with online clusters’ structure characterization. Prog. Artif. Intell. 2014;2:217–236. doi: 10.1007/s13748-014-0054-5. DOI
Ahmadi R, Ekbatanifard G, Bayat P. A modified grey wolf optimizer based data clustering algorithm. Appl. Artif. Intell. 2021;35(1):63–79. doi: 10.1080/08839514.2020.1842109. DOI
Sun W, Tang M, Zhang L, Huo Z, Shu L. A survey of using swarm intelligence algorithms in IoT. Sensors. 2020;20:1420. doi: 10.3390/s20051420. PubMed DOI PMC
Al Shahrani AM, et al. An internet of things (IoT)-based optimization to enhance security in healthcare applications. Math. Probl. Eng. 2022;2022:6802967. doi: 10.1155/2022/6802967. DOI
Mehmood K, Chaudhary NI, Khan ZA, Cheema KM, Raja MAZ. Variants of chaotic grey wolf heuristic for robust identification of control autoregressive model. Biomimetics. 2023;8(2):141. doi: 10.3390/biomimetics8020141. PubMed DOI PMC
Mehmood K, Chaudhary NI, Khan ZA, Cheema KM, Raja MAZ, Milyani AH, Azhari AA. Dwarf mongoose optimization metaheuristics for autoregressive exogenous model identification. Mathematics. 2022;10(20):3821. doi: 10.3390/math10203821. DOI
Mehmood K, Chaudhary NI, Khan ZA, Raja MAZ, Cheema KM, Milyani AH. Design of aquila optimization heuristic for identification of control autoregressive systems. Mathematics. 2022;10(10):1749. doi: 10.3390/math10101749. DOI
Mehmood K, Chaudhary NI, Khan ZA, Cheema KM, Raja MAZ, Milyani AH, Azhari AA. Nonlinear hammerstein system identification: A novel application of marine predator optimization using the key term separation technique. Mathematics. 2022;10(22):4217. doi: 10.3390/math10224217. DOI
Mehmood K, Chaudhary NI, Cheema KM, Khan ZA, Raja MAZ, Milyani AH, Alsulami A. Design of nonlinear marine predator heuristics for hammerstein autoregressive exogenous system identification with key-term separation. Mathematics. 2023;11(11):2512. doi: 10.3390/math11112512. DOI
Ghasemi M, Ghavidel S, Ghanbarian MM, Gharibzadeh M, Vahed AA. Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm. Energy. 2014;78:276–289. doi: 10.1016/j.energy.2014.10.007. DOI
Montazeri Z, Niknam T. Optimal utilization of electrical energy from power plants based on final energy consumption using gravitational search algorithm. Electr. Eng. Electromech. 2018;2018(4):70–73. doi: 10.20998/2074-272X.2018.4.12. DOI
Rezk H, Fathy A, Aly M, Ibrahim MNF. Energy management control strategy for renewable energy system based on spotted hyena optimizer. Comput. Mater. Continua. 2021;67(2):2271–2281. doi: 10.32604/cmc.2021.014590. DOI
Panda M, Nayak YK. Impact analysis of renewable energy distributed generation in deregulated electricity markets: A context of Transmission Congestion Problem. Energy. 2022;254:124403. doi: 10.1016/j.energy.2022.124403. DOI
Xing Z, Zhu J, Zhang Z, Qin Y, Jia L. Energy consumption optimization of tramway operation based on improved PSO algorithm. Energy. 2022;258:124848. doi: 10.1016/j.energy.2022.124848. DOI
Alsallami SA, Rizvi ST, Seadawy AR. Study of stochastic–fractional Drinfel’d–Sokolov–Wilson equation for M-shaped rational, homoclinic breather, periodic and kink-cross rational solutions. Mathematics. 2023;11(6):1504. doi: 10.3390/math11061504. DOI
Ahmad H, Seadawy AR, Khan TA. Numerical solution of Korteweg–de Vries-Burgers equation by the modified variational iteration algorithm-II arising in shallow water waves. Phys. Scr. 2020;95(4):045210. doi: 10.1088/1402-4896/ab6070. DOI
Seadawy AR, Iqbal M, Lu D. Propagation of kink and anti-kink wave solitons for the nonlinear damped modified Korteweg–de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma. Physica A. 2020;544:123560. doi: 10.1016/j.physa.2019.123560. DOI
Seadawy AR, Rizvi STR, Ahmad S, Younis M, Baleanu D. Lump, lump-one stripe, multiwave and breather solutions for the Hunter-Saxton equation. Open Phys. 2021;19(1):1–10. doi: 10.1515/phys-2020-0224. DOI
Tala-Tebue E, Seadawy AR, Kamdoum-Tamo P, Lu D. Dispersive optical soliton solutions of the higher-order nonlinear Schrödinger dynamical equation via two different methods and its applications. Eur. Phys. J. Plus. 2018;133:1–10. doi: 10.1140/epjp/i2018-12133-8. DOI
Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997;1(1):67–82. doi: 10.1109/4235.585893. DOI
Kennedy, J. & Eberhart, R. Particle swarm optimization. In Proc. ICNN'95—International Conference on Neural Networks 1942–1948 (IEEE, 1998)
Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B. 1996;26(1):29–41. doi: 10.1109/3477.484436. PubMed DOI
Karaboga, D. & Basturk, B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science 789–798 (Springer, 2007).
Yang, X.-S. Firefly algorithms for multimodal optimization. In International Symposium on Stochastic Algorithms 169–178 (Springer, 2009).
Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI
Dhiman G, Kumar V. Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowl.-Based Syst. 2018;159:20–50. doi: 10.1016/j.knosys.2018.06.001. DOI
Trojovský P, Dehghani M. Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications. Sensors. 2022;22(3):855. doi: 10.3390/s22030855. PubMed DOI PMC
Dhiman G, Garg M, Nagar A, Kumar V, Dehghani M. A novel algorithm for global optimization: Rat swarm optimizer. J. Ambient. Intell. Humaniz. Comput. 2020;12:8457–8482. doi: 10.1007/s12652-020-02580-0. DOI
Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH. Marine predators algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020;152:113377. doi: 10.1016/j.eswa.2020.113377. DOI
Abdollahzadeh B, Gharehchopogh FS, Mirjalili S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021;158:107408. doi: 10.1016/j.cie.2021.107408. DOI
Zeidabadi F-A, et al. MLA: A new mutated leader algorithm for solving optimization problems. Comput. Mater. Continua. 2022;70(3):5631–5649. doi: 10.32604/cmc.2022.021072. DOI
Dehghani M, Montazeri Z, Trojovská E, Trojovský P. Coati optimization algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl.-Based Syst. 2023;259:110011. doi: 10.1016/j.knosys.2022.110011. DOI
Kaur S, Awasthi LK, Sangal AL, Dhiman G. Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020;90:103541. doi: 10.1016/j.engappai.2020.103541. DOI
Minh H-L, Sang-To T, Theraulaz G, Wahab MA, Cuong-Le T. Termite life cycle optimizer. Expert Syst. Appl. 2023;213:119211. doi: 10.1016/j.eswa.2022.119211. DOI
Doumari SA, et al. A new two-stage algorithm for solving optimization problems. Entropy. 2021;23(4):491. doi: 10.3390/e23040491. PubMed DOI PMC
Zhao W, Wang L, Mirjalili S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Comput. Methods Appl. Mech. Eng. 2022;388:114194. doi: 10.1016/j.cma.2021.114194. DOI
Trojovská P, Dehghani M, Trojovský P. Fennec fox optimization: A new nature-inspired optimization algorithm. IEEE Access. 2022;10:84417–84443. doi: 10.1109/ACCESS.2022.3197745. DOI
Braik M, Hammouri A, Atwan J, Al-Betar MA, Awadallah MA. White shark optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl.-Based Syst. 2022;243:108457. doi: 10.1016/j.knosys.2022.108457. DOI
Abualigah L, Abd Elaziz M, Sumari P, Geem ZW, Gandomi AH. Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022;191:116158. doi: 10.1016/j.eswa.2021.116158. DOI
Goldberg DE, Holland JH. Genetic algorithms and machine learning. Mach. Learn. 1988;3(2):95–99. doi: 10.1023/A:1022602019183. DOI
Storn R, Price K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997;11(4):341–359. doi: 10.1023/A:1008202821328. DOI
De Castro LN, Timmis JI. Artificial immune systems as a novel soft computing paradigm. Soft. Comput. 2003;7(8):526–544. doi: 10.1007/s00500-002-0237-z. DOI
Simon D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008;12(6):702–713. doi: 10.1109/TEVC.2008.919004. DOI
Reynolds, R. G. An introduction to cultural algorithms. In Proc. Third Annual Conference on Evolutionary Programming 131–139 (World Scientific, 1994).
Beyer H-G, Schwefel H-P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002;1(1):3–52. doi: 10.1023/A:1015059928466. DOI
Banzhaf W, Nordin P, Keller RE, Francone FD. Genetic Programming: An Introduction. Morgan Kaufmann Publishers; 1998.
Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220(4598):671–680. doi: 10.1126/science.220.4598.671. PubMed DOI
Rashedi E, Nezamabadi-Pour H, Saryazdi SGSA. A gravitational search algorithm. Inf. Sci. 2009;179(13):2232–2248. doi: 10.1016/j.ins.2009.03.004. DOI
Ghasemi M, et al. A novel and effective optimization algorithm for global optimization and its engineering applications: Turbulent flow of water-based optimization (TFWO) Eng. Appl. Artif. Intell. 2020;92:103666. doi: 10.1016/j.engappai.2020.103666. DOI
Mirjalili S, Mirjalili SM, Hatamlou A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016;27(2):495–513. doi: 10.1007/s00521-015-1870-7. DOI
Hatamlou A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013;222:175–184. doi: 10.1016/j.ins.2012.08.023. DOI
Shah-Hosseini H. Principal components analysis by the galaxy-based search algorithm: A novel metaheuristic for continuous optimization. Int. J. Comput. Sci. Eng. 2011;6(1–2):132–140.
Tayarani-N, M. H. & Akbarzadeh-T, M. R. Magnetic optimization algorithms a new synthesis. In IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) 2659–2664 (IEEE, 2006).
Alatas B. ACROA: Artificial chemical reaction optimization algorithm for global optimization. Expert Syst. Appl. 2011;38(10):13170–13180. doi: 10.1016/j.eswa.2011.04.126. DOI
Kaveh A, Khayatazad M. A new meta-heuristic method: Ray optimization. Comput. Struct. 2012;112–113:283–294. doi: 10.1016/j.compstruc.2012.09.003. DOI
Du H, Wu X, Zhuang J, et al. Small-world optimization algorithm for function optimization. In: Jiao L, et al., editors. Advances in Natural Computation. Springer; 2006. pp. 264–273.
Kashan AH. League championship algorithm (LCA): An algorithm for global optimization inspired by sport championships. Appl. Soft Comput. 2014;16:171–200. doi: 10.1016/j.asoc.2013.12.005. DOI
Dehghani M, Mardaneh M, Guerrero JM, Malik O, Kumar V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020;13:514–523.
Moghdani R, Salimifard K. Volleyball premier league algorithm. Appl. Soft Comput. 2018;64:161–185. doi: 10.1016/j.asoc.2017.11.043. DOI
Zeidabadi FA, Dehghani M. POA: Puzzle optimization algorithm. Int. J. Intell. Eng. Syst. 2022;15(1):273–281.
Dehghani M, Montazeri Z, Givi H, Guerrero JM, Dhiman G. Darts game optimizer: A new optimization technique based on darts game. Int. J. Intell. Eng. Syst. 2020;13:286–294.
Rao RV, Savsani VJ, Vakharia D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011;43(3):303–315. doi: 10.1016/j.cad.2010.12.015. DOI
Akbari E, Ghasemi M, Gil M, Rahimnejad A, Gadsden AS. Optimal power flow via teaching-learning-studying-based optimization algorithm. Electr. Power Components Syst. 2022;49(6–7):584–601.
Zou F, Wang L, Hei X, Chen D, Yang D. Teaching–learning-based optimization with dynamic group strategy for global optimization. Inf. Sci. 2014;273:112–131. doi: 10.1016/j.ins.2014.03.038. DOI
Xu Y, et al. Improving teaching–learning-based-optimization algorithm by a distance-fitness learning strategy. Knowl.-Based Syst. 2022;257:108271. doi: 10.1016/j.knosys.2022.108271. DOI
Trojovská E, Dehghani M. A new human-based metahurestic optimization method based on mimicking cooking training. Sci. Rep. 2022;12:14861. doi: 10.1038/s41598-022-19313-2. PubMed DOI PMC
Trojovský P, Dehghani M. A new optimization algorithm based on mimicking the voting process for leader selection. PeerJ Comput. Sci. 2022;2:e976. doi: 10.7717/peerj-cs.976. PubMed DOI PMC
Dehghani M, Trojovská E, Trojovský P. A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. Sci. Rep. 2022;12(1):9924. doi: 10.1038/s41598-022-14225-7. PubMed DOI PMC
Al-Betar MA, Alyasseri ZAA, Awadallah MA, Abu Doush I. Coronavirus herd immunity optimizer (CHIO) Neural Comput. Appl. 2021;33(10):5011–5042. doi: 10.1007/s00521-020-05296-6. PubMed DOI PMC
Borji A, Hamidi M. A new approach to global optimization motivated by parliamentary political competitions. Int. J. Innov. Comput. Inf. Control. 2009;5(6):1643–1653.
Shi, Y. Brain storm optimization algorithm. In International Conference in Swarm Intelligence 303–309 (Springer, 2011).
Ayyarao TL, et al. War strategy optimization algorithm: A new effective metaheuristic algorithm for global optimization. IEEE Access. 2022;10:25073–25105. doi: 10.1109/ACCESS.2022.3153493. DOI
Kuhn AL. The Mother's Role in Childhood Education: New England Concepts, 1830–1860. Yale University Press; 1947.
von der Lippe AL. The impact of maternal schooling and occupation on child-rearing attitudes and behaviours in low income neighbourhoods in Cairo, Egypt. Int. J. Behav. Dev. 1999;23(3):703–729. doi: 10.1080/016502599383766. PubMed DOI
Yao X, Liu Y, Lin G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999;3(2):82–102. doi: 10.1109/4235.771163. DOI
Awad, N., Ali, M., Liang, J., Qu, B. & Suganthan, P. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. Technical Report (2016).
Wilcoxon F. Individual comparisons by ranking methods. Biometr. Bull. 1945;1:80–83. doi: 10.2307/3001968. DOI
Mirjalili S, Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI
Gandomi AH, Yang X-S. Benchmark problems in structural optimization. In: Koziel S, Yang XS, editors. Computational Optimization, Methods and Algorithms. Springer; 2011. pp. 259–281.
Mezura-Montes, E. & Coello, C. A. C. Useful infeasible solutions in engineering optimization with evolutionary algorithms. In Mexican International Conference on Artificial Intelligence 652–662 (Springer, 2005).
Kannan B, Kramer SN. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994;116(2):405–411. doi: 10.1115/1.2919393. DOI
OOBO: A New Metaheuristic Algorithm for Solving Optimization Problems