OOBO: A New Metaheuristic Algorithm for Solving Optimization Problems
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Natural Sciences and Engineering Research Council of Canada (NSERC), Canada, research grant
University of Calgary
Natural Sciences and Engineering Research Council of Canada (NSERC), Canada, research grant
Natural Sciences and Engineering Research Council of Canada (NSERC), Canada, research grant
PubMed
37887599
PubMed Central
PMC10604662
DOI
10.3390/biomimetics8060468
PII: biomimetics8060468
Knihovny.cz E-zdroje
- Klíčová slova
- engineering, exploitation, exploration, metaheuristic algorithm, one-to-one correspondence, sensors,
- Publikační typ
- časopisecké články MeSH
This study proposes the One-to-One-Based Optimizer (OOBO), a new optimization technique for solving optimization problems in various scientific areas. The key idea in designing the suggested OOBO is to effectively use the knowledge of all members in the process of updating the algorithm population while preventing the algorithm from relying on specific members of the population. We use a one-to-one correspondence between the two sets of population members and the members selected as guides to increase the involvement of all population members in the update process. Each population member is chosen just once as a guide and is only utilized to update another member of the population in this one-to-one interaction. The proposed OOBO's performance in optimization is evaluated with fifty-two objective functions, encompassing unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC 2017 test suite. The optimization results highlight the remarkable capacity of OOBO to strike a balance between exploration and exploitation within the problem-solving space during the search process. The quality of the optimization results achieved using the proposed OOBO is evaluated by comparing them to eight well-known algorithms. The simulation findings show that OOBO outperforms the other algorithms in addressing optimization problems and can give more acceptable quasi-optimal solutions. Also, the implementation of OOBO in six engineering problems shows the effectiveness of the proposed approach in solving real-world optimization applications.
Zobrazit více v PubMed
Dhiman G. SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications. Knowl.-Based Syst. 2021;222:106926. doi: 10.1016/j.knosys.2021.106926. DOI
Nocedal J., Wright S. Numerical Optimization. Springer Science & Business Media; Berlin, Germany: 2006.
Talbi E.-G. Metaheuristics: From Design to Implementation. Volume 74 John Wiley & Sons; Hoboken, NJ, USA: 2009.
Gu Q., Wang Q., Li X., Li X. A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems. Knowl.-Based Syst. 2021;223:107049. doi: 10.1016/j.knosys.2021.107049. DOI
Iba K. Reactive power optimization by genetic algorithm. IEEE Trans. Power Syst. 1994;9:685–692. doi: 10.1109/59.317674. DOI
Dehghani M., Trojovský P. Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization. Sensors. 2021;21:4567. doi: 10.3390/s21134567. PubMed DOI PMC
Wolpert D.H., Macready W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997;1:67–82. doi: 10.1109/4235.585893. DOI
Singh P., Dhiman G., Kaur A. A quantum approach for time series data based on graph and Schrödinger equations methods. Mod. Phys. Lett. A. 2018;33:1850208. doi: 10.1142/S0217732318502085. DOI
Kennedy J., Eberhart R. Particle Swarm Optimization; Proceedings of the ICNN’95—International Conference on Neural Networks; Perth, WA, Australia. 27 November–1 December 1995; pp. 1942–1948.
Dorigo M., Maniezzo V., Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B. 1996;26:29–41. doi: 10.1109/3477.484436. PubMed DOI
Yang X.S., Gandomi A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012;29:464–483. doi: 10.1108/02644401211235834. DOI
Mirjalili S., Mirjalili S.M., Lewis A. Grey wolf optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI
Dehghani M., Trojovský P., Malik O.P. Green Anaconda Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2023;8:121. doi: 10.3390/biomimetics8010121. PubMed DOI PMC
Dhiman G., Kumar V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 2017;114:48–70. doi: 10.1016/j.advengsoft.2017.05.014. DOI
Dehghani M., Hubálovský Š., Trojovský P. Northern Goshawk Optimization: A New Swarm-Based Algorithm for Solving Optimization Problems. IEEE Access. 2021;9:162059–162080. doi: 10.1109/ACCESS.2021.3133286. DOI
Jiang Y., Wu Q., Zhu S., Zhang L. Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems. Expert Syst. Appl. 2022;188:116026. doi: 10.1016/j.eswa.2021.116026. DOI
Neshat M., Sepidnam G., Sargolzaei M., Toosi A.N. Artificial fish swarm algorithm: A survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artif. Intell. Rev. 2014;42:965–997. doi: 10.1007/s10462-012-9342-2. DOI
Abualigah L., Abd Elaziz M., Sumari P., Geem Z.W., Gandomi A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022;191:116158. doi: 10.1016/j.eswa.2021.116158. DOI
Yang X.-S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2010;2:78–84. doi: 10.1504/IJBIC.2010.032124. DOI
Saremi S., Mirjalili S., Lewis A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 2017;105:30–47. doi: 10.1016/j.advengsoft.2017.01.004. DOI
Shiqin Y., Jianjun J., Guangxing Y. A Dolphin Partner Optimization. Global Congress on Intelligent Systems, IEEE; Piscataway, NJ, USA: 2009. pp. 124–128.
Mirjalili S., Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI
Oftadeh R., Mahjoob M., Shariatpanahi M. A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search. Comput. Math. Appl. 2010;60:2087–2098. doi: 10.1016/j.camwa.2010.07.049. DOI
Mirjalili S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015;89:228–249. doi: 10.1016/j.knosys.2015.07.006. DOI
Dhiman G., Singh K.K., Soni M., Nagar A., Dehghani M., Slowik A., Kaur A., Sharma A., Houssein E.H., Cengiz K. MOSOA: A new multi-objective seagull optimization algorithm. Expert Syst. Appl. 2020;167:114150. doi: 10.1016/j.eswa.2020.114150. DOI
Trojovský P., Dehghani M. Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2023;8:149. doi: 10.3390/biomimetics8020149. PubMed DOI PMC
Jia H., Peng X., Lang C. Remora optimization algorithm. Expert Syst. Appl. 2021;185:115665. doi: 10.1016/j.eswa.2021.115665. DOI
Faramarzi A., Heidarinejad M., Mirjalili S., Gandomi A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020;152:113377. doi: 10.1016/j.eswa.2020.113377. DOI
Zhao W., Wang L., Mirjalili S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Comput. Methods Appl. Mech. Eng. 2022;388:114194. doi: 10.1016/j.cma.2021.114194. DOI
Połap D., Woźniak M. Red fox optimization algorithm. Expert Syst. Appl. 2021;166:114107. doi: 10.1016/j.eswa.2020.114107. DOI
Kaur S., Awasthi L.K., Sangal A.L., Dhiman G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020;90:103541. doi: 10.1016/j.engappai.2020.103541. DOI
Trojovský P., Dehghani M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications. Sensors. 2022;22:855. doi: 10.3390/s22030855. PubMed DOI PMC
Dehghani M., Hubálovský Š., Trojovský P. Cat and Mouse Based Optimizer: A New Nature-Inspired Optimization Algorithm. Sensors. 2021;21:5214. doi: 10.3390/s21155214. PubMed DOI PMC
Dehghani M., Trojovský P. Selecting Some Variables to Update-Based Algorithm for Solving Optimization Problems. Sensors. 2022;22:1795. doi: 10.3390/s22051795. PubMed DOI PMC
Givi H., Dehghani M., Montazeri Z., Morales-Menendez R., Ramirez-Mendoza R.A., Nouri N. GBUO: “The Good, the Bad, and the Ugly” Optimizer. Appl. Sci. 2021;11:2042. doi: 10.3390/app11052042. DOI
Dehghani M., Montazeri Z., Hubálovský Š. GMBO: Group Mean-Based Optimizer for Solving Various Optimization Problems. Mathematics. 2021;9:1190. doi: 10.3390/math9111190. DOI
Hashim F.A., Hussien A.G. Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst. 2022;242:108320. doi: 10.1016/j.knosys.2022.108320. DOI
Kirkpatrick S., Gelatt C.D., Vecchi M.P. Optimization by simulated annealing. Science. 1983;220:671–680. doi: 10.1126/science.220.4598.671. PubMed DOI
Rashedi E., Nezamabadi-Pour H., Saryazdi S. GSA: A gravitational search algorithm. Inf. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. DOI
Shah-Hosseini H. Principal Components Analysis by the Galaxy-Based Search Algorithm: A novel metaheuristic for continuous optimisation. Int. J. Comput. Sci. Eng. 2011;6:132–140.
Du H., Wu X., Zhuang J. Small-World Optimization Algorithm for Function Optimization; Proceedings of the International Conference on Natural Computation; Xi’an, China. 24–28 September 2006; pp. 264–273.
Hashim F.A., Houssein E.H., Mabrouk M.S., Al-Atabany W., Mirjalili S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener. Comput. Syst. 2019;101:646–667. doi: 10.1016/j.future.2019.07.015. DOI
Formato R.A. Nature Inspired Cooperative Strategies for Optimization (NICSO 2007) Springer; Berlin, Germany: 2008. Central force optimization: A new nature inspired computational framework for multidimensional search and optimization; pp. 221–238.
Kaveh A., Khayatazad M. A new meta-heuristic method: Ray optimization. Comput. Struct. 2012;112:283–294. doi: 10.1016/j.compstruc.2012.09.003. DOI
Tahani M., Babayan N. Flow Regime Algorithm (FRA): A physics-based meta-heuristics algorithm. Knowl. Inf. Syst. 2019;60:1001–1038. doi: 10.1007/s10115-018-1253-3. DOI
Moghaddam F.F., Moghaddam R.F., Cheriet M. Curved space optimization: A random search based on general relativity theory. arXiv. 20121208.2214
Kaveh A., Khanzadi M., Moghaddam M.R. Billiards-Inspired Optimization Algorithm; A New Meta-Heuristic Method. Structures. 2020;27:1722–1739. doi: 10.1016/j.istruc.2020.07.058. DOI
Wei Z., Huang C., Wang X., Han T., Li Y. Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access. 2019;7:66084–66109. doi: 10.1109/ACCESS.2019.2918406. DOI
Goldberg D.E., Holland J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988;3:95–99. doi: 10.1023/A:1022602019183. DOI
Simon D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008;12:702–713. doi: 10.1109/TEVC.2008.919004. DOI
Moscato P., Norman M.G. A memetic approach for the traveling salesman problem implementation of a computational ecology for combinatorial optimization on message-passing systems. Parallel Comput. Transput. Appl. 1992;1:177–186.
Fogel L.J., Owens A.J., Walsh M.J. Artificial Intelligence through Simulated Evolution. John Wiley & Sons; Hoboken, NJ, USA: 1966.
Trojovská E., Dehghani M., Leiva V. Drawer Algorithm: A New Metaheuristic Approach for Solving Optimization Problems in Engineering. Biomimetics. 2023;8:239. doi: 10.3390/biomimetics8020239. PubMed DOI PMC
Beyer H.-G., Schwefel H.-P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002;1:3–52. doi: 10.1023/A:1015059928466. DOI
Das S., Suganthan P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2011;15:4–31. doi: 10.1109/TEVC.2010.2059031. DOI
Koza J.R. Genetic programming as a means for programming computers by natural selection. Stat. Comput. 1994;4:87–112. doi: 10.1007/BF00175355. DOI
Rao R.V., Savsani V.J., Vakharia D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. -Aided Des. 2011;43:303–315. doi: 10.1016/j.cad.2010.12.015. DOI
Matoušová I., Trojovský P., Dehghani M., Trojovská E., Kostra J. Mother optimization algorithm: A new human-based metaheuristic approach for solving engineering optimization. Sci. Rep. 2023;13:10312. doi: 10.1038/s41598-023-37537-8. PubMed DOI PMC
Ghorbani N., Babaei E. Exchange market algorithm. Appl. Soft Comput. 2014;19:177–187.
Eita M., Fahmy M. Group counseling optimization. Appl. Soft Comput. 2014;22:585–604. doi: 10.1016/j.asoc.2014.03.043. DOI
Wang C., Zhang X., Niu Y., Gao S., Jiang J., Zhang Z., Yu P., Dong H. Dual-Population Social Group Optimization Algorithm Based on Human Social Group Behavior Law. IEEE Trans. Comput. Soc. Syst. 2022;10:166–177. doi: 10.1109/TCSS.2022.3141114. DOI
Moghdani R., Salimifard K. Volleyball premier league algorithm. Appl. Soft Comput. 2018;64:161–185. doi: 10.1016/j.asoc.2017.11.043. DOI
Dehghani M., Mardaneh M., Guerrero J.M., Malik O., Kumar V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020;13:514–523. doi: 10.22266/ijies2020.1031.45. DOI
Doumari S.A., Givi H., Dehghani M., Malik O.P. Ring Toss Game-Based Optimization Algorithm for Solving Various Optimization Problems. Int. J. Intell. Eng. Syst. 2021;14:545–554. doi: 10.22266/ijies2021.0630.46. DOI
Montazeri Z., Niknam T., Aghaei J., Malik O.P., Dehghani M., Dhiman G. Golf Optimization Algorithm: A New Game-Based Metaheuristic Algorithm and Its Application to Energy Commitment Problem Considering Resilience. Biomimetics. 2023;5:386. doi: 10.3390/biomimetics8050386. PubMed DOI PMC
Mohammad D., Zeinab M., Malik O.P., Givi H., Guerrero J.M. Shell Game Optimization: A Novel Game-Based Algorithm. Int. J. Intell. Eng. Syst. 2020;13:246–255.
Wang G.-G., Deb S., Cui Z. Monarch butterfly optimization. Neural Comput. Appl. 2019;31:1995–2014. doi: 10.1007/s00521-015-1923-y. DOI
Li S., Chen H., Wang M., Heidari A.A., Mirjalili S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020;111:300–323. doi: 10.1016/j.future.2020.03.055. DOI
Wang G.-G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput. 2018;10:151–164. doi: 10.1007/s12293-016-0212-3. DOI
Yang Y., Chen H., Heidari A.A., Gandomi A.H. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst. Appl. 2021;177:114864.
Ahmadianfar I., Heidari A.A., Gandomi A.H., Chu X., Chen H. RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Syst. Appl. 2021;181:115079. doi: 10.1016/j.eswa.2021.115079. DOI
Tu J., Chen H., Wang M., Gandomi A.H. The Colony Predation Algorithm. J. Bionic Eng. 2021;18:674–710. doi: 10.1007/s42235-021-0050-y. DOI
Ahmadianfar I., Heidari A.A., Noshadian S., Chen H., Gandomi A.H. INFO: An efficient optimization algorithm based on weighted mean of vectors. Expert Syst. Appl. 2022;195:116516. doi: 10.1016/j.eswa.2022.116516. DOI
Heidari A.A., Mirjalili S., Faris H., Aljarah I., Mafarja M., Chen H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019;97:849–872. doi: 10.1016/j.future.2019.02.028. DOI
Su H., Zhao D., Heidari A.A., Liu L., Zhang X., Mafarja M., Chen H. RIME: A physics-based optimization. Neurocomputing. 2023;532:183–214. doi: 10.1016/j.neucom.2023.02.010. DOI
Yao X., Liu Y., Lin G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999;3:82–102.
Awad N., Ali M., Liang J., Qu B., Suganthan P., Definitions P. Evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technol. Rep. 2016
Wilcoxon F. Breakthroughs in Statistics. Springer; Berlin, Germany: 1992. Individual comparisons by ranking methods; pp. 196–202.
Kannan B., Kramer S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994;116:405–411. doi: 10.1115/1.2919393. DOI
Golinski J. Optimal synthesis problems solved by means of nonlinear programming and random methods. J. Mech. 1970;5:287–309. doi: 10.1016/0022-2569(70)90064-9. DOI
Mezura-Montes E., Coello C.A.C. Useful Infeasible Solutions in Engineering Optimization with Evolutionary Algorithms; Proceedings of the 4th Mexican International Conference on Artificial Intelligence; Monterrey, Mexico. 14–18 November 2005; pp. 652–662.