Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications

. 2022 Jan 23 ; 22 (3) : . [epub] 20220123

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35161600

Grantová podpora
2217/2022-2023 Faculty of Science, University of Hradec Kralove

Optimization is an important and fundamental challenge to solve optimization problems in different scientific disciplines. In this paper, a new stochastic nature-inspired optimization algorithm called Pelican Optimization Algorithm (POA) is introduced. The main idea in designing the proposed POA is simulation of the natural behavior of pelicans during hunting. In POA, search agents are pelicans that search for food sources. The mathematical model of the POA is presented for use in solving optimization issues. The performance of POA is evaluated on twenty-three objective functions of different unimodal and multimodal types. The optimization results of unimodal functions show the high exploitation ability of POA to approach the optimal solution while the optimization results of multimodal functions indicate the high ability of POA exploration to find the main optimal area of the search space. Moreover, four engineering design issues are employed for estimating the efficacy of the POA in optimizing real-world applications. The findings of POA are compared with eight well-known metaheuristic algorithms to assess its competence in optimization. The simulation results and their analysis show that POA has a better and more competitive performance via striking a proportional balance between exploration and exploitation compared to eight competitor algorithms in providing optimal solutions for optimization problems.

Zobrazit více v PubMed

Farshi T.R. Battle royale optimization algorithm. Neural Comput. Appl. 2021;33:1139–1157. doi: 10.1007/s00521-020-05004-4. DOI

Ray T., Liew K.-M. Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Trans. Evol. Comput. 2003;7:386–396. doi: 10.1109/TEVC.2003.814902. DOI

Francisco M., Revollar S., Vega P., Lamanna R. A comparative study of deterministic and stochastic optimization methods for integrated design of processes. IFAC Proc. Vol. 2005;38:335–340. doi: 10.3182/20050703-6-CZ-1902.00917. DOI

Hashim F.A., Hussain K., Houssein E.H., Mabrouk M.S., Al-Atabany W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021;51:1531–1551. doi: 10.1007/s10489-020-01893-z. DOI

Abualigah L., Yousri D., Abd Elaziz M., Ewees A.A., Al-qaness M.A., Gandomi A.H. Aquila Optimizer: A novel meta-heuristic optimization Algorithm. Comput. Ind. Eng. 2021;157:107250. doi: 10.1016/j.cie.2021.107250. DOI

Iba K. Reactive power optimization by genetic algorithm. IEEE Trans. Power Syst. 1994;9:685–692. doi: 10.1109/59.317674. DOI

Geetha K., Anitha V., Elhoseny M., Kathiresan S., Shamsolmoali P., Selim M.M. An evolutionary lion optimization algorithm-based image compression technique for biomedical applications. Expert Syst. 2021;38:e12508. doi: 10.1111/exsy.12508. DOI

Yadav R.K., Mahapatra R.P. Hybrid metaheuristic algorithm for optimal cluster head selection in wireless sensor network. Pervasive Mob. Comput. 2021;79:101504. doi: 10.1016/j.pmcj.2021.101504. DOI

Cano Ortega A., Sánchez Sutil F.J., De la Casa Hernández J. Power factor compensation using teaching learning based optimization and monitoring system by cloud data logger. Sensors. 2019;19:2172. doi: 10.3390/s19092172. PubMed DOI PMC

Todorčević V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics. Springer; Berlin/Heidelberg, Germany: 2019.

Debnath P., Konwar N., Radenovic S. Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences. Springer; Berlin/Heidelberg, Germany: 2021.

Wolpert D.H., Macready W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997;1:67–82. doi: 10.1109/4235.585893. DOI

Kennedy J., Eberhart R. Particle swarm optimization; Proceedings of the ICNN’95—International Conference on Neural Networks; Perth, Australia. 27 November–1 December 1995; pp. 1942–1948.

Rao R.V., Savsani V.J., Vakharia D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011;43:303–315. doi: 10.1016/j.cad.2010.12.015. DOI

Mirjalili S., Mirjalili S.M., Lewis A. Grey wolf optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI

Mirjalili S., Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI

Kaur S., Awasthi L.K., Sangal A.L., Dhiman G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020;90:103541. doi: 10.1016/j.engappai.2020.103541. DOI

Faramarzi A., Heidarinejad M., Mirjalili S., Gandomi A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020;152:113377. doi: 10.1016/j.eswa.2020.113377. DOI

Goldberg D.E., Holland J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988;3:95–99. doi: 10.1023/A:1022602019183. DOI

De Castro L.N., Timmis J.I. Artificial immune systems as a novel soft computing paradigm. Soft Comput. 2003;7:526–544. doi: 10.1007/s00500-002-0237-z. DOI

Kirkpatrick S., Gelatt C.D., Vecchi M.P. Optimization by simulated annealing. Science. 1983;220:671–680. doi: 10.1126/science.220.4598.671. PubMed DOI

Rashedi E., Nezamabadi-Pour H., Saryazdi S. GSA: A gravitational search algorithm. Inf. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. DOI

Dehghani M., Mardaneh M., Guerrero J.M., Malik O., Kumar V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020;13:514–523. doi: 10.22266/ijies2020.1031.45. DOI

Kaveh A., Zolghadr A. A novel meta-heuristic algorithm: Tug of war optimization. Iran Univ. Sci. Technol. 2016;6:469–492.

Louchart A., Tourment N., Carrier J. The earliest known pelican reveals 30 million years of evolutionary stasis in beak morphology. J. Ornithol. 2010;152:15–20. doi: 10.1007/s10336-010-0537-5. DOI

Marchant S. Handbook of Australian, New Zealand & Antarctic Birds: Australian Pelican to Ducks. Oxford University Press; Melbourne, Australia: 1990.

Perrins C.M., Middleton A.L. The Encyclopaedia of Birds. Guild Publishing; London, UK: 1985. pp. 53–54.

Anderson J.G. Foraging behavior of the American white pelican (Pelecanus erythrorhyncos) in western Nevada. Colonial Waterbirds. 1991;14:166–172. doi: 10.2307/1521506. DOI

Wilcoxon F. Breakthroughs in Statistics. Springer; New York, NY, USA: 1992. Individual comparisons by ranking methods; pp. 196–202.

Kannan B., Kramer S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994;116:405–411. doi: 10.1115/1.2919393. DOI

Gandomi A.H., Yang X.-S. Computational Optimization, Methods and Algorithms. Springer; Berlin/Heidelberg, Germany: 2011. Benchmark problems in structural optimization; pp. 259–281.

Mezura-Montes E., Coello C.A.C. Useful Infeasible Solutions in Engineering Optimization with Evolutionary Algorithms; Proceedings of the Mexican International Conference on Artificial Intelligence; Monterrey, Mexico. 14–18 November 2005; Berlin/Heidelberg, Germany: Springer; 2005. pp. 652–662.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A comparative evaluation of nature-inspired algorithms for feature selection problems

. 2024 Jan 15 ; 10 (1) : e23571. [epub] 20231212

A New Hybrid Particle Swarm Optimization-Teaching-Learning-Based Optimization for Solving Optimization Problems

. 2023 Dec 25 ; 9 (1) : . [epub] 20231225

A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems Based on Technical and Vocational Education and Training

. 2023 Oct 23 ; 8 (6) : . [epub] 20231023

OOBO: A New Metaheuristic Algorithm for Solving Optimization Problems

. 2023 Oct 01 ; 8 (6) : . [epub] 20231001

Mother optimization algorithm: a new human-based metaheuristic approach for solving engineering optimization

. 2023 Jun 26 ; 13 (1) : 10312. [epub] 20230626

A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior

. 2023 May 31 ; 13 (1) : 8775. [epub] 20230531

A new human-inspired metaheuristic algorithm for solving optimization problems based on mimicking sewing training

. 2022 Oct 17 ; 12 (1) : 17387. [epub] 20221017

A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process

. 2022 Jun 15 ; 12 (1) : 9924. [epub] 20220615

A new optimization algorithm based on mimicking the voting process for leader selection

. 2022 ; 8 () : e976. [epub] 20220513

Hybrid leader based optimization: a new stochastic optimization algorithm for solving optimization applications

. 2022 Apr 01 ; 12 (1) : 5549. [epub] 20220401

Selecting Some Variables to Update-Based Algorithm for Solving Optimization Problems

. 2022 Feb 24 ; 22 (5) : . [epub] 20220224

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...