Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2217/2022-2023
Faculty of Science, University of Hradec Kralove
PubMed
35161600
PubMed Central
PMC8838090
DOI
10.3390/s22030855
PII: s22030855
Knihovny.cz E-zdroje
- Klíčová slova
- nature inspired, optimization, optimization problem, pelican, population-based algorithm, stochastic, swarm intelligence,
- MeSH
- algoritmy * MeSH
- počítačová simulace MeSH
- teoretické modely * MeSH
- Publikační typ
- časopisecké články MeSH
Optimization is an important and fundamental challenge to solve optimization problems in different scientific disciplines. In this paper, a new stochastic nature-inspired optimization algorithm called Pelican Optimization Algorithm (POA) is introduced. The main idea in designing the proposed POA is simulation of the natural behavior of pelicans during hunting. In POA, search agents are pelicans that search for food sources. The mathematical model of the POA is presented for use in solving optimization issues. The performance of POA is evaluated on twenty-three objective functions of different unimodal and multimodal types. The optimization results of unimodal functions show the high exploitation ability of POA to approach the optimal solution while the optimization results of multimodal functions indicate the high ability of POA exploration to find the main optimal area of the search space. Moreover, four engineering design issues are employed for estimating the efficacy of the POA in optimizing real-world applications. The findings of POA are compared with eight well-known metaheuristic algorithms to assess its competence in optimization. The simulation results and their analysis show that POA has a better and more competitive performance via striking a proportional balance between exploration and exploitation compared to eight competitor algorithms in providing optimal solutions for optimization problems.
Zobrazit více v PubMed
Farshi T.R. Battle royale optimization algorithm. Neural Comput. Appl. 2021;33:1139–1157. doi: 10.1007/s00521-020-05004-4. DOI
Ray T., Liew K.-M. Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Trans. Evol. Comput. 2003;7:386–396. doi: 10.1109/TEVC.2003.814902. DOI
Francisco M., Revollar S., Vega P., Lamanna R. A comparative study of deterministic and stochastic optimization methods for integrated design of processes. IFAC Proc. Vol. 2005;38:335–340. doi: 10.3182/20050703-6-CZ-1902.00917. DOI
Hashim F.A., Hussain K., Houssein E.H., Mabrouk M.S., Al-Atabany W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021;51:1531–1551. doi: 10.1007/s10489-020-01893-z. DOI
Abualigah L., Yousri D., Abd Elaziz M., Ewees A.A., Al-qaness M.A., Gandomi A.H. Aquila Optimizer: A novel meta-heuristic optimization Algorithm. Comput. Ind. Eng. 2021;157:107250. doi: 10.1016/j.cie.2021.107250. DOI
Iba K. Reactive power optimization by genetic algorithm. IEEE Trans. Power Syst. 1994;9:685–692. doi: 10.1109/59.317674. DOI
Geetha K., Anitha V., Elhoseny M., Kathiresan S., Shamsolmoali P., Selim M.M. An evolutionary lion optimization algorithm-based image compression technique for biomedical applications. Expert Syst. 2021;38:e12508. doi: 10.1111/exsy.12508. DOI
Yadav R.K., Mahapatra R.P. Hybrid metaheuristic algorithm for optimal cluster head selection in wireless sensor network. Pervasive Mob. Comput. 2021;79:101504. doi: 10.1016/j.pmcj.2021.101504. DOI
Cano Ortega A., Sánchez Sutil F.J., De la Casa Hernández J. Power factor compensation using teaching learning based optimization and monitoring system by cloud data logger. Sensors. 2019;19:2172. doi: 10.3390/s19092172. PubMed DOI PMC
Todorčević V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics. Springer; Berlin/Heidelberg, Germany: 2019.
Debnath P., Konwar N., Radenovic S. Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences. Springer; Berlin/Heidelberg, Germany: 2021.
Wolpert D.H., Macready W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997;1:67–82. doi: 10.1109/4235.585893. DOI
Kennedy J., Eberhart R. Particle swarm optimization; Proceedings of the ICNN’95—International Conference on Neural Networks; Perth, Australia. 27 November–1 December 1995; pp. 1942–1948.
Rao R.V., Savsani V.J., Vakharia D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011;43:303–315. doi: 10.1016/j.cad.2010.12.015. DOI
Mirjalili S., Mirjalili S.M., Lewis A. Grey wolf optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI
Mirjalili S., Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI
Kaur S., Awasthi L.K., Sangal A.L., Dhiman G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020;90:103541. doi: 10.1016/j.engappai.2020.103541. DOI
Faramarzi A., Heidarinejad M., Mirjalili S., Gandomi A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020;152:113377. doi: 10.1016/j.eswa.2020.113377. DOI
Goldberg D.E., Holland J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988;3:95–99. doi: 10.1023/A:1022602019183. DOI
De Castro L.N., Timmis J.I. Artificial immune systems as a novel soft computing paradigm. Soft Comput. 2003;7:526–544. doi: 10.1007/s00500-002-0237-z. DOI
Kirkpatrick S., Gelatt C.D., Vecchi M.P. Optimization by simulated annealing. Science. 1983;220:671–680. doi: 10.1126/science.220.4598.671. PubMed DOI
Rashedi E., Nezamabadi-Pour H., Saryazdi S. GSA: A gravitational search algorithm. Inf. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. DOI
Dehghani M., Mardaneh M., Guerrero J.M., Malik O., Kumar V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020;13:514–523. doi: 10.22266/ijies2020.1031.45. DOI
Kaveh A., Zolghadr A. A novel meta-heuristic algorithm: Tug of war optimization. Iran Univ. Sci. Technol. 2016;6:469–492.
Louchart A., Tourment N., Carrier J. The earliest known pelican reveals 30 million years of evolutionary stasis in beak morphology. J. Ornithol. 2010;152:15–20. doi: 10.1007/s10336-010-0537-5. DOI
Marchant S. Handbook of Australian, New Zealand & Antarctic Birds: Australian Pelican to Ducks. Oxford University Press; Melbourne, Australia: 1990.
Perrins C.M., Middleton A.L. The Encyclopaedia of Birds. Guild Publishing; London, UK: 1985. pp. 53–54.
Anderson J.G. Foraging behavior of the American white pelican (Pelecanus erythrorhyncos) in western Nevada. Colonial Waterbirds. 1991;14:166–172. doi: 10.2307/1521506. DOI
Wilcoxon F. Breakthroughs in Statistics. Springer; New York, NY, USA: 1992. Individual comparisons by ranking methods; pp. 196–202.
Kannan B., Kramer S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994;116:405–411. doi: 10.1115/1.2919393. DOI
Gandomi A.H., Yang X.-S. Computational Optimization, Methods and Algorithms. Springer; Berlin/Heidelberg, Germany: 2011. Benchmark problems in structural optimization; pp. 259–281.
Mezura-Montes E., Coello C.A.C. Useful Infeasible Solutions in Engineering Optimization with Evolutionary Algorithms; Proceedings of the Mexican International Conference on Artificial Intelligence; Monterrey, Mexico. 14–18 November 2005; Berlin/Heidelberg, Germany: Springer; 2005. pp. 652–662.
A comparative evaluation of nature-inspired algorithms for feature selection problems
OOBO: A New Metaheuristic Algorithm for Solving Optimization Problems
A new optimization algorithm based on mimicking the voting process for leader selection
Selecting Some Variables to Update-Based Algorithm for Solving Optimization Problems