A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2210/2023-2024
Univerzita Hradec Králové
PubMed
37258630
PubMed Central
PMC10232466
DOI
10.1038/s41598-023-35863-5
PII: 10.1038/s41598-023-35863-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation steps are mathematically modeled in three phases exploration, migration, and exploitation. Sixty-eight standard benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, CEC 2015 test suite, and CEC 2017 test suite are employed to evaluate WaOA performance in optimization applications. The optimization results of unimodal functions indicate the exploitation ability of WaOA, the optimization results of multimodal functions indicate the exploration ability of WaOA, and the optimization results of CEC 2015 and CEC 2017 test suites indicate the high ability of WaOA in balancing exploration and exploitation during the search process. The performance of WaOA is compared with the results of ten well-known metaheuristic algorithms. The results of the simulations demonstrate that WaOA, due to its excellent ability to balance exploration and exploitation, and its capacity to deliver superior results for most of the benchmark functions, has exhibited a remarkably competitive and superior performance in contrast to other comparable algorithms. In addition, the use of WaOA in addressing four design engineering issues and twenty-two real-world optimization problems from the CEC 2011 test suite demonstrates the apparent effectiveness of WaOA in real-world applications. The MATLAB codes of WaOA are available in https://uk.mathworks.com/matlabcentral/profile/authors/13903104 .
Zobrazit více v PubMed
Gill PE, Murray W, Wright MH. Practical Optimization. SIAM; 2019.
Kvasov DE, Mukhametzhanov MS. Metaheuristic vs. deterministic global optimization algorithms: The univariate case. Appl. Math. Comput. 2018;318:245–259.
Cavazzuti M. Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics. Springer; 2013. pp. 77–102.
Dehghani, M., Hubálovský, Š. & Trojovský, P. Tasmanian devil optimization: A new bio-inspired optimization algorithm for solving optimization algorithm. IEEE Access (2022).
Cervone G, Franzese P, Keesee AP. Algorithm quasi-optimal (AQ) learning. Wiley Interdiscipl. Rev. Comput. Stat. 2010;2:218–236. doi: 10.1002/wics.78. DOI
Osuna-Enciso V, Cuevas E, Castañeda BM. A diversity metric for population-based metaheuristic algorithms. Inf. Sci. 2022;586:192–208. doi: 10.1016/j.ins.2021.11.073. DOI
Gharehchopogh FS, Maleki I, Dizaji ZA. Chaotic vortex search algorithm: metaheuristic algorithm for feature selection. Evol. Intel. 2022;15:1777–1808. doi: 10.1007/s12065-021-00590-1. DOI
Mohammadzadeh H, Gharehchopogh FS. A multi-agent system based for solving high-dimensional optimization problems: A case study on email spam detection. Int. J. Commun. Syst. 2021;34:e4670. doi: 10.1002/dac.4670. DOI
Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997;1:67–82. doi: 10.1109/4235.585893. DOI
Goldberg DE, Holland JH. Genetic algorithms and machine learning. Mach. Learn. 1988;3:95–99. doi: 10.1023/A:1022602019183. DOI
Storn R, Price K. Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997;11:341–359. doi: 10.1023/A:1008202821328. DOI
Kennedy, J. & Eberhart, R. in Proceedings of ICNN'95: International Conference on Neural Networks, vol.1944, 1942–1948 (IEEE, 2023).
Zaman HRR, Gharehchopogh FS. An improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problems. Eng. Comput. 2021;1:1–35.
Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B. 1996;26:29–41. doi: 10.1109/3477.484436. PubMed DOI
Mirjalili S, Mirjalili SM, Lewis A. Grey Wolf optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI
Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH. Marine predators algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020;152:113377. doi: 10.1016/j.eswa.2020.113377. DOI
Kaur S, Awasthi LK, Sangal AL, Dhiman G. Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020;90:103541. doi: 10.1016/j.engappai.2020.103541. DOI
Braik M, Hammouri A, Atwan J, Al-Betar MA, Awadallah MA. White shark optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl. Based Syst. 2022;243:108457. doi: 10.1016/j.knosys.2022.108457. DOI
Abualigah L, Abd Elaziz M, Sumari P, Geem ZW, Gandomi AH. Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022;191:116158. doi: 10.1016/j.eswa.2021.116158. DOI
Koohi SZ, Hamid NAWA, Othman M, Ibragimov G. Raccoon optimization algorithm. IEEE Access. 2018;7:5383–5399. doi: 10.1109/ACCESS.2018.2882568. DOI
Abdollahzadeh B, Gharehchopogh FS, Mirjalili S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021;158:107408. doi: 10.1016/j.cie.2021.107408. DOI
Shayanfar H, Gharehchopogh FS. Farmland fertility: A new metaheuristic algorithm for solving continuous optimization problems. Appl. Soft Comput. 2018;71:728–746. doi: 10.1016/j.asoc.2018.07.033. DOI
Gharehchopogh FS, Ucan A, Ibrikci T, Arasteh B, Isik G. Slime mould algorithm: A comprehensive survey of its variants and applications. Arch. Comput. Methods Eng. 2023;1:1–41. PubMed PMC
Abdollahzadeh B, Gharehchopogh FS, Khodadadi N, Mirjalili S. Mountain gazelle optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems. Adv. Eng. Softw. 2022;174:103282. doi: 10.1016/j.advengsoft.2022.103282. DOI
Gharehchopogh FS, Namazi M, Ebrahimi L, Abdollahzadeh B. Advances in sparrow search algorithm: A comprehensive survey. Arch. Computat. Methods Eng. 2023;30:427–455. doi: 10.1007/s11831-022-09804-w. PubMed DOI PMC
Shen Y, Zhang C, Gharehchopogh FS, Mirjalili S. An improved whale optimization algorithm based on multi-population evolution for global optimization and engineering design problems. Expert Syst. Appl. 2023;215:119269. doi: 10.1016/j.eswa.2022.119269. DOI
Abdollahzadeh B, Soleimanian Gharehchopogh F, Mirjalili S. Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems. Int. J. Intell. Syst. 2021;36:5887–5958. doi: 10.1002/int.22535. DOI
Trojovský P, Dehghani M. Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications. Sensors. 2022;22:855. doi: 10.3390/s22030855. PubMed DOI PMC
Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220:671–680. doi: 10.1126/science.220.4598.671. PubMed DOI
Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: A gravitational search algorithm. Inf. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. DOI
Mirjalili S, Mirjalili SM, Hatamlou A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016;27:495–513. doi: 10.1007/s00521-015-1870-7. DOI
Eskandar H, Sadollah A, Bahreininejad A, Hamdi M. Water cycle algorithm: A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012;110:151–166. doi: 10.1016/j.compstruc.2012.07.010. DOI
Dehghani M, et al. A spring search algorithm applied to engineering optimization problems. Appl. Sci. 2020;10:6173. doi: 10.3390/app10186173. DOI
Zhao W, Wang L, Zhang Z. Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl. Based Syst. 2019;163:283–304. doi: 10.1016/j.knosys.2018.08.030. DOI
Gharehchopogh FS. Quantum-inspired metaheuristic algorithms: Comprehensive survey and classification. Artif. Intell. Rev. 2022;56:5479–5483. doi: 10.1007/s10462-022-10280-8. DOI
Dehghani M, Samet H. Momentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation law. SN Appl. Sci. 2020;2:1–15. doi: 10.1007/s42452-020-03511-6. DOI
Wei Z, Huang C, Wang X, Han T, Li Y. Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access. 2019;7:66084–66109. doi: 10.1109/ACCESS.2019.2918406. DOI
Rao RV, Savsani VJ, Vakharia D. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011;43:303–315. doi: 10.1016/j.cad.2010.12.015. DOI
Moosavi SHS, Bardsiri VK. Poor and rich optimization algorithm: A new human-based and multi populations algorithm. Eng. Appl. Artif. Intell. 2019;86:165–181. doi: 10.1016/j.engappai.2019.08.025. DOI
Zeidabadi F-A, et al. Archery algorithm: A novel stochastic optimization algorithm for solving optimization problems. Comput. Mater. Contin. 2022;72:399–416.
Shi, Y. Brain Storm Optimization Algorithm. International conference in swarm intelligence, 303–309 (Springer, 2011).
Dehghani M, et al. A new “doctor and patient” optimization algorithm: An application to energy commitment problem. Appl. Sci. 2020;10:5791. doi: 10.3390/app10175791. DOI
Ayyarao TL, et al. War strategy optimization algorithm: A new effective metaheuristic algorithm for global optimization. IEEE Access. 2022;10:25073. doi: 10.1109/ACCESS.2022.3153493. DOI
Dehghani M, Trojovský P. Teamwork optimization algorithm: A new optimization approach for function minimization/maximization. Sensors. 2021;21:4567. doi: 10.3390/s21134567. PubMed DOI PMC
Kaveh A, Zolghadr A. A novel meta-heuristic algorithm: Tug of war optimization. Iran Univ. Sci. Technol. 2016;6:469–492.
Moghdani R, Salimifard K. Volleyball premier league algorithm. Appl. Soft Comput. 2018;64:161–185. doi: 10.1016/j.asoc.2017.11.043. DOI
Zeidabadi FA, Dehghani M. POA: Puzzle optimization algorithm. Int. J. Intell. Eng. Syst. 2022;15:273–281.
Dehghani M, Montazeri Z, Malik OP, Ehsanifar A, Dehghani A. OSA: Orientation search algorithm. Int. J. Ind. Electron. Control Optim. 2019;2:99–112.
Doumari SA, Givi H, Dehghani M, Malik OP. Ring toss game-based optimization algorithm for solving various optimization problems. Int. J. Intell. Eng. Syst. 2021;14:545–554.
Dehghani M, Mardaneh M, Guerrero JM, Malik O, Kumar V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020;13:514–523.
Dehghani M, Montazeri Z, Malik OP. DGO: Dice game optimizer. Gazi Univ. J. Sci. 2019;32:871–882. doi: 10.35378/gujs.484643. DOI
Wilson DE, Reeder DM. Mammal Species of the World: A Taxonomic and Geographic Reference. JHU press; 2005.
Fay FH. Ecology and biology of the Pacific walrus, Odobenus rosmarus divergens Illiger. N. Am. Fauna. 1982;74:1–279. doi: 10.3996/nafa.74.0001. DOI
Fischbach, A. S., Kochnev, A. A., Garlich-Miller, J. L. & Jay, C. V. Pacific Walrus Coastal Haulout Database, 1852–2016—Background Report. Report No. 2331-1258 (US Geological Survey, 2016).
Jefferson TA, Stacey PJ, Baird RW. A review of killer whale interactions with other marine mammals: Predation to co-existence. Mamm. Rev. 1991;21:151–180. doi: 10.1111/j.1365-2907.1991.tb00291.x. DOI
Christman, B. NOAA Corps. https://www.upload.wikimedia.org/wikipedia/commons/c/ce/Noaa-walrus22.jpg.
Sheffield G, Fay FH, Feder H, Kelly BP. Laboratory digestion of prey and interpretation of walrus stomach contents. Mar. Mamm. Sci. 2001;17:310–330. doi: 10.1111/j.1748-7692.2001.tb01273.x. DOI
Levermann N, Galatius A, Ehlme G, Rysgaard S, Born EW. Feeding behaviour of free-ranging walruses with notes on apparent dextrality of flipper use. BMC Ecol. 2003;3:1–13. doi: 10.1186/1472-6785-3-9. PubMed DOI PMC
Wilcoxon F. Individual comparisons by ranking methods. Biometr. Bull. 1945;1:80–83. doi: 10.2307/3001968. DOI
Mirjalili S, Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI
Gandomi AH, Yang X-S. Computational Optimization, Methods and Algorithms. London: Springer; 2011. pp. 259–281.
Mezura-Montes, E. & Coello, C. A. C. Mexican International Conference On Artificial Intelligence, 652–662 (Springer, 2023).
Kannan B, Kramer SN. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994;116:405–411. doi: 10.1115/1.2919393. DOI
Das S, Suganthan PN. Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems. Jadavpur University; 2010. pp. 341–359.