A New Hybrid Particle Swarm Optimization-Teaching-Learning-Based Optimization for Solving Optimization Problems
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2104
Specific Research Project No 2104, FacSci, Univerzity of Hradec Kralove
PubMed
38248582
PubMed Central
PMC10813294
DOI
10.3390/biomimetics9010008
PII: biomimetics9010008
Knihovny.cz E-zdroje
- Klíčová slova
- exploitation, exploration, hybrid-based algorithm, metaheuristic, optimization, particle swarm optimization, teaching–learning-based optimization,
- Publikační typ
- časopisecké články MeSH
This research paper develops a novel hybrid approach, called hybrid particle swarm optimization-teaching-learning-based optimization (hPSO-TLBO), by combining two metaheuristic algorithms to solve optimization problems. The main idea in hPSO-TLBO design is to integrate the exploitation ability of PSO with the exploration ability of TLBO. The meaning of "exploitation capabilities of PSO" is the ability of PSO to manage local search with the aim of obtaining possible better solutions near the obtained solutions and promising areas of the problem-solving space. Also, "exploration abilities of TLBO" means the ability of TLBO to manage the global search with the aim of preventing the algorithm from getting stuck in inappropriate local optima. hPSO-TLBO design methodology is such that in the first step, the teacher phase in TLBO is combined with the speed equation in PSO. Then, in the second step, the learning phase of TLBO is improved based on each student learning from a selected better student that has a better value for the objective function against the corresponding student. The algorithm is presented in detail, accompanied by a comprehensive mathematical model. A group of benchmarks is used to evaluate the effectiveness of hPSO-TLBO, covering various types such as unimodal, high-dimensional multimodal, and fixed-dimensional multimodal. In addition, CEC 2017 benchmark problems are also utilized for evaluation purposes. The optimization results clearly demonstrate that hPSO-TLBO performs remarkably well in addressing the benchmark functions. It exhibits a remarkable ability to explore and exploit the search space while maintaining a balanced approach throughout the optimization process. Furthermore, a comparative analysis is conducted to evaluate the performance of hPSO-TLBO against twelve widely recognized metaheuristic algorithms. The evaluation of the experimental findings illustrates that hPSO-TLBO consistently outperforms the competing algorithms across various benchmark functions, showcasing its superior performance. The successful deployment of hPSO-TLBO in addressing four engineering challenges highlights its effectiveness in tackling real-world applications.
Zobrazit více v PubMed
Zhao S., Zhang T., Ma S., Chen M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Eng. Appl. Artif. Intell. 2022;114:105075. doi: 10.1016/j.engappai.2022.105075. DOI
Sergeyev Y.D., Kvasov D., Mukhametzhanov M. On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci. Rep. 2018;8:453. doi: 10.1038/s41598-017-18940-4. PubMed DOI PMC
Jahani E., Chizari M. Tackling global optimization problems with a novel algorithm—Mouth Brooding Fish algorithm. Appl. Soft Comput. 2018;62:987–1002. doi: 10.1016/j.asoc.2017.09.035. DOI
Liberti L., Kucherenko S. Comparison of deterministic and stochastic approaches to global optimization. Int. Trans. Oper. Res. 2005;12:263–285. doi: 10.1111/j.1475-3995.2005.00503.x. DOI
Zeidabadi F.-A., Dehghani M., Trojovský P., Hubálovský Š., Leiva V., Dhiman G. Archery Algorithm: A Novel Stochastic Optimization Algorithm for Solving Optimization Problems. Comput. Mater. Contin. 2022;72:399–416. doi: 10.32604/cmc.2022.024736. DOI
De Armas J., Lalla-Ruiz E., Tilahun S.L., Voß S. Similarity in metaheuristics: A gentle step towards a comparison methodology. Nat. Comput. 2022;21:265–287. doi: 10.1007/s11047-020-09837-9. DOI
Dehghani M., Montazeri Z., Dehghani A., Malik O.P., Morales-Menendez R., Dhiman G., Nouri N., Ehsanifar A., Guerrero J.M., Ramirez-Mendoza R.A. Binary spring search algorithm for solving various optimization problems. Appl. Sci. 2021;11:1286. doi: 10.3390/app11031286. DOI
Trojovská E., Dehghani M., Trojovský P. Zebra Optimization Algorithm: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm. IEEE Access. 2022;10:49445–49473. doi: 10.1109/ACCESS.2022.3172789. DOI
Wolpert D.H., Macready W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997;1:67–82. doi: 10.1109/4235.585893. DOI
Kennedy J., Eberhart R. Particle Swarm Optimization; Proceedings of the ICNN’95—International Conference on Neural Networks; Perth, WA, Australia. 27 November–1 December 1995; pp. 1942–1948.
Rao R.V., Savsani V.J., Vakharia D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput.-Aided Des. 2011;43:303–315. doi: 10.1016/j.cad.2010.12.015. DOI
Karaboga D., Basturk B. International Fuzzy Systems Association World Congress. Springer; Berlin/Heidelberg, Germany: 2007. Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems; pp. 789–798.
Dorigo M., Maniezzo V., Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B. 1996;26:29–41. doi: 10.1109/3477.484436. PubMed DOI
Yang X.-S. Firefly Algorithms for Multimodal Optimization; Proceedings of the International Symposium on Stochastic Algorithms; Sapporo, Japan. 26–28 October 2009; Berlin/Heidelberg, Germany: Springer; 2009. pp. 169–178.
Dehghani M., Montazeri Z., Trojovská E., Trojovský P. Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl.-Based Syst. 2023;259:110011. doi: 10.1016/j.knosys.2022.110011. DOI
Mirjalili S., Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI
Braik M., Hammouri A., Atwan J., Al-Betar M.A., Awadallah M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl.-Based Syst. 2022;243:108457. doi: 10.1016/j.knosys.2022.108457. DOI
Abualigah L., Abd Elaziz M., Sumari P., Geem Z.W., Gandomi A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022;191:116158. doi: 10.1016/j.eswa.2021.116158. DOI
Trojovský P., Dehghani M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications. Sensors. 2022;22:855. doi: 10.3390/s22030855. PubMed DOI PMC
Dehghani M., Montazeri Z., Bektemyssova G., Malik O.P., Dhiman G., Ahmed A.E. Kookaburra Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2023;8:470. doi: 10.3390/biomimetics8060470. PubMed DOI PMC
Mirjalili S., Mirjalili S.M., Lewis A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI
Trojovský P., Dehghani M. A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior. Sci. Rep. 2023;13:8775. doi: 10.1038/s41598-023-35863-5. PubMed DOI PMC
Chopra N., Ansari M.M. Golden Jackal Optimization: A Novel Nature-Inspired Optimizer for Engineering Applications. Expert Syst. Appl. 2022;198:116924. doi: 10.1016/j.eswa.2022.116924. DOI
Hashim F.A., Houssein E.H., Hussain K., Mabrouk M.S., Al-Atabany W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022;192:84–110. doi: 10.1016/j.matcom.2021.08.013. DOI
Dehghani M., Bektemyssova G., Montazeri Z., Shaikemelev G., Malik O.P., Dhiman G. Lyrebird Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2023;8:507. doi: 10.3390/biomimetics8060507. PubMed DOI PMC
Faramarzi A., Heidarinejad M., Mirjalili S., Gandomi A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020;152:113377. doi: 10.1016/j.eswa.2020.113377. DOI
Abdollahzadeh B., Gharehchopogh F.S., Mirjalili S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021;158:107408. doi: 10.1016/j.cie.2021.107408. DOI
Kaur S., Awasthi L.K., Sangal A.L., Dhiman G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020;90:103541. doi: 10.1016/j.engappai.2020.103541. DOI
Goldberg D.E., Holland J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988;3:95–99. doi: 10.1023/A:1022602019183. DOI
Storn R., Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997;11:341–359. doi: 10.1023/A:1008202821328. DOI
De Castro L.N., Timmis J.I. Artificial immune systems as a novel soft computing paradigm. Soft Comput. 2003;7:526–544. doi: 10.1007/s00500-002-0237-z. DOI
Kirkpatrick S., Gelatt C.D., Vecchi M.P. Optimization by simulated annealing. Science. 1983;220:671–680. doi: 10.1126/science.220.4598.671. PubMed DOI
Rashedi E., Nezamabadi-Pour H., Saryazdi S. GSA: A gravitational search algorithm. Inf. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. DOI
Dehghani M., Montazeri Z., Dhiman G., Malik O., Morales-Menendez R., Ramirez-Mendoza R.A., Dehghani A., Guerrero J.M., Parra-Arroyo L. A spring search algorithm applied to engineering optimization problems. Appl. Sci. 2020;10:6173. doi: 10.3390/app10186173. DOI
Dehghani M., Samet H. Momentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation law. SN Appl. Sci. 2020;2:1720. doi: 10.1007/s42452-020-03511-6. DOI
Eskandar H., Sadollah A., Bahreininejad A., Hamdi M. Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012;110:151–166. doi: 10.1016/j.compstruc.2012.07.010. DOI
Cuevas E., Oliva D., Zaldivar D., Pérez-Cisneros M., Sossa H. Circle detection using electro-magnetism optimization. Inf. Sci. 2012;182:40–55. doi: 10.1016/j.ins.2010.12.024. DOI
Hashim F.A., Hussain K., Houssein E.H., Mabrouk M.S., Al-Atabany W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021;51:1531–1551. doi: 10.1007/s10489-020-01893-z. DOI
Pereira J.L.J., Francisco M.B., Diniz C.A., Oliver G.A., Cunha S.S., Jr, Gomes G.F. Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization. Expert Syst. Appl. 2021;170:114522. doi: 10.1016/j.eswa.2020.114522. DOI
Faramarzi A., Heidarinejad M., Stephens B., Mirjalili S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based Syst. 2020;191:105190. doi: 10.1016/j.knosys.2019.105190. DOI
Hatamlou A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013;222:175–184. doi: 10.1016/j.ins.2012.08.023. DOI
Mirjalili S., Mirjalili S.M., Hatamlou A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016;27:495–513. doi: 10.1007/s00521-015-1870-7. DOI
Kaveh A., Dadras A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017;110:69–84. doi: 10.1016/j.advengsoft.2017.03.014. DOI
Dehghani M., Mardaneh M., Guerrero J.M., Malik O., Kumar V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020;13:514–523. doi: 10.22266/ijies2020.1031.45. DOI
Moghdani R., Salimifard K. Volleyball premier league algorithm. Appl. Soft Comput. 2018;64:161–185. doi: 10.1016/j.asoc.2017.11.043. DOI
Kaveh A., Zolghadr A. A Novel Meta-Heuristic Algorithm: Tug of War Optimization. Int. J. Optim. Civ. Eng. 2016;6:469–492.
Montazeri Z., Niknam T., Aghaei J., Malik O.P., Dehghani M., Dhiman G. Golf Optimization Algorithm: A New Game-Based Metaheuristic Algorithm and Its Application to Energy Commitment Problem Considering Resilience. Biomimetics. 2023;8:386. doi: 10.3390/biomimetics8050386. PubMed DOI PMC
Dehghani M., Montazeri Z., Saremi S., Dehghani A., Malik O.P., Al-Haddad K., Guerrero J.M. HOGO: Hide objects game optimization. Int. J. Intell. Eng. Syst. 2020;13:216–225. doi: 10.22266/ijies2020.0831.19. DOI
Dehghani M., Montazeri Z., Givi H., Guerrero J.M., Dhiman G. Darts game optimizer: A new optimization technique based on darts game. Int. J. Intell. Eng. Syst. 2020;13:286–294. doi: 10.22266/ijies2020.1031.26. DOI
Zeidabadi F.A., Dehghani M. POA: Puzzle Optimization Algorithm. Int. J. Intell. Eng. Syst. 2022;15:273–281.
Dehghani M., Mardaneh M., Guerrero J.M., Malik O.P., Ramirez-Mendoza R.A., Matas J., Vasquez J.C., Parra-Arroyo L. A new “Doctor and Patient” optimization algorithm: An application to energy commitment problem. Appl. Sci. 2020;10:5791. doi: 10.3390/app10175791. DOI
Dehghani M., Trojovský P. Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization. Sensors. 2021;21:4567. doi: 10.3390/s21134567. PubMed DOI PMC
Moosavi S.H.S., Bardsiri V.K. Poor and rich optimization algorithm: A new human-based and multi populations algorithm. Eng. Appl. Artif. Intell. 2019;86:165–181. doi: 10.1016/j.engappai.2019.08.025. DOI
Matoušová I., Trojovský P., Dehghani M., Trojovská E., Kostra J. Mother optimization algorithm: A new human-based metaheuristic approach for solving engineering optimization. Sci. Rep. 2023;13:10312. doi: 10.1038/s41598-023-37537-8. PubMed DOI PMC
Al-Betar M.A., Alyasseri Z.A.A., Awadallah M.A., Abu Doush I. Coronavirus herd immunity optimizer (CHIO) Neural Comput. Appl. 2021;33:5011–5042. doi: 10.1007/s00521-020-05296-6. PubMed DOI PMC
Dehghani M., Trojovská E., Trojovský P. A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. Sci. Rep. 2022;12:9924. doi: 10.1038/s41598-022-14225-7. PubMed DOI PMC
Braik M., Ryalat M.H., Al-Zoubi H. A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Comput. Appl. 2022;34:409–455. doi: 10.1007/s00521-021-06392-x. DOI
Trojovský P., Dehghani M. A new optimization algorithm based on mimicking the voting process for leader selection. PeerJ Comput. Sci. 2022;8:e976. doi: 10.7717/peerj-cs.976. PubMed DOI PMC
Trojovská E., Dehghani M. A new human-based metahurestic optimization method based on mimicking cooking training. Sci. Rep. 2022;12:14861. doi: 10.1038/s41598-022-19313-2. PubMed DOI PMC
Dehghani M., Trojovská E., Zuščák T. A new human-inspired metaheuristic algorithm for solving optimization problems based on mimicking sewing training. Sci. Rep. 2022;12:17387. doi: 10.1038/s41598-022-22458-9. PubMed DOI PMC
Trojovský P., Dehghani M., Trojovská E., Milkova E. The Language Education Optimization: A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems: Language Education Optimization. Comput. Model. Eng. Sci. 2022;136:1527–1573.
Mohamed A.W., Hadi A.A., Mohamed A.K. Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern. 2020;11:1501–1529. doi: 10.1007/s13042-019-01053-x. DOI
Ayyarao T.L., RamaKrishna N., Elavarasam R.M., Polumahanthi N., Rambabu M., Saini G., Khan B., Alatas B. War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization. IEEE Access. 2022;10:25073–25105. doi: 10.1109/ACCESS.2022.3153493. DOI
Talatahari S., Goodarzimehr V., Taghizadieh N. Hybrid teaching-learning-based optimization and harmony search for optimum design of space trusses. J. Optim. Ind. Eng. 2020;13:177–194.
Khatir A., Capozucca R., Khatir S., Magagnini E., Benaissa B., Le Thanh C., Wahab M.A. A new hybrid PSO-YUKI for double cracks identification in CFRP cantilever beam. Compos. Struct. 2023;311:116803. doi: 10.1016/j.compstruct.2023.116803. DOI
Al Thobiani F., Khatir S., Benaissa B., Ghandourah E., Mirjalili S., Wahab M.A. A hybrid PSO and Grey Wolf Optimization algorithm for static and dynamic crack identification. Theor. Appl. Fract. Mech. 2022;118:103213. doi: 10.1016/j.tafmec.2021.103213. DOI
Singh R., Chaudhary H., Singh A.K. A new hybrid teaching–learning particle swarm optimization algorithm for synthesis of linkages to generate path. Sādhanā. 2017;42:1851–1870. doi: 10.1007/s12046-017-0737-2. DOI
Wang H., Li Y. Hybrid teaching-learning-based PSO for trajectory optimisation. Electron. Lett. 2017;53:777–779. doi: 10.1049/el.2017.0729. DOI
Yun Y., Gen M., Erdene T.N. Applying GA-PSO-TLBO approach to engineering optimization problems. Math. Biosci. Eng. 2023;20:552–571. doi: 10.3934/mbe.2023025. PubMed DOI
Azad-Farsani E., Zare M., Azizipanah-Abarghooee R., Askarian-Abyaneh H. A new hybrid CPSO-TLBO optimization algorithm for distribution network reconfiguration. J. Intell. Fuzzy Syst. 2014;26:2175–2184. doi: 10.3233/IFS-130892. DOI
Shukla A.K., Singh P., Vardhan M. A new hybrid wrapper TLBO and SA with SVM approach for gene expression data. Inf. Sci. 2019;503:238–254. doi: 10.1016/j.ins.2019.06.063. DOI
Nenavath H., Jatoth R.K. Hybrid SCA–TLBO: A novel optimization algorithm for global optimization and visual tracking. Neural Comput. Appl. 2019;31:5497–5526. doi: 10.1007/s00521-018-3376-6. DOI
Sharma S.R., Singh B., Kaur M. Hybrid SFO and TLBO optimization for biodegradable classification. Soft Comput. 2021;25:15417–15443. doi: 10.1007/s00500-021-06196-0. DOI
Kundu T., Deepmala, Jain P. A hybrid salp swarm algorithm based on TLBO for reliability redundancy allocation problems. Appl. Intell. 2022;52:12630–12667. doi: 10.1007/s10489-021-02862-w. PubMed DOI PMC
Lin S., Liu A., Wang J., Kong X. An intelligence-based hybrid PSO-SA for mobile robot path planning in warehouse. J. Comput. Sci. 2023;67:101938. doi: 10.1016/j.jocs.2022.101938. DOI
Murugesan S., Suganyadevi M.V. Performance Analysis of Simplified Seven-Level Inverter using Hybrid HHO-PSO Algorithm for Renewable Energy Applications. Iran. J. Sci. Technol. Trans. Electr. Eng. 2023 doi: 10.1007/s40998-023-00676-9. DOI
Hosseini M., Navabi M.S. Hybrid PSO-GSA based approach for feature selection. J. Ind. Eng. Manag. Stud. 2023;10:1–15.
Bhandari A.S., Kumar A., Ram M. Reliability optimization and redundancy allocation for fire extinguisher drone using hybrid PSO–GWO. Soft Comput. 2023;27:14819–14833. doi: 10.1007/s00500-023-08560-8. DOI
Amirteimoori A., Mahdavi I., Solimanpur M., Ali S.S., Tirkolaee E.B. A parallel hybrid PSO-GA algorithm for the flexible flow-shop scheduling with transportation. Comput. Ind. Eng. 2022;173:108672. doi: 10.1016/j.cie.2022.108672. DOI
Koh J.S., Tan R.H., Lim W.H., Tan N.M. A Modified Particle Swarm Optimization for Efficient Maximum Power Point Tracking under Partial Shading Condition. IEEE Trans. Sustain. Energy. 2023;14:1822–1834. doi: 10.1109/TSTE.2023.3250710. DOI
Zare M., Akbari M.-A., Azizipanah-Abarghooee R., Malekpour M., Mirjalili S., Abualigah L. A modified Particle Swarm Optimization algorithm with enhanced search quality and population using Hummingbird Flight patterns. Decis. Anal. J. 2023;7:100251. doi: 10.1016/j.dajour.2023.100251. DOI
Cui G., Qin L., Liu S., Wang Y., Zhang X., Cao X. Modified PSO algorithm for solving planar graph coloring problem. Prog. Nat. Sci. 2008;18:353–357. doi: 10.1016/j.pnsc.2007.11.009. DOI
Lihong H., Nan Y., Jianhua W., Ying S., Jingjing D., Ying X. Application of Modified PSO in the Optimization of Reactive Power; Proceedings of the 2009 Chinese Control and Decision Conference; Guilin, China. 17–19 June 2009; pp. 3493–3496.
Krishnamurthy N.K., Sabhahit J.N., Jadoun V.K., Gaonkar D.N., Shrivastava A., Rao V.S., Kudva G. Optimal Placement and Sizing of Electric Vehicle Charging Infrastructure in a Grid-Tied DC Microgrid Using Modified TLBO Method. Energies. 2023;16:1781. doi: 10.3390/en16041781. DOI
Eirgash M.A., Toğan V., Dede T., Başağa H.B. Structures. Elsevier; Amsterdam, The Netherlands: 2023. Modified Dynamic Opposite Learning Assisted TLBO for Solving Time-Cost Optimization in Generalized Construction Projects; pp. 806–821.
Amiri H., Radfar N., Arab Solghar A., Mashayekhi M. Two ımproved teaching–learning-based optimization algorithms for the solution of ınverse boundary design problems. Soft Comput. 2023:1–22. doi: 10.1007/s00500-023-08415-2. DOI
Yaqoob M.T., Rahmat M.K., Maharum S.M.M. Modified teaching learning based optimization for selective harmonic elimination in multilevel inverters. Ain Shams Eng. J. 2022;13:101714. doi: 10.1016/j.asej.2022.101714. DOI
Yao X., Liu Y., Lin G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999;3:82–102.
Awad N., Ali M., Liang J., Qu B., Suganthan P., Definitions P. Evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technol. Rep. 2016
Bashir M.U., Paul W.U.H., Ahmad M., Ali D., Ali M.S. An Efficient Hybrid TLBO-PSO Approach for Congestion Management Employing Real Power Generation Rescheduling. Smart Grid Renew. Energy. 2021;12:113–135. doi: 10.4236/sgre.2021.128008. DOI
Wilcoxon F. Breakthroughs in Statistics. Springer; Berlin/Heidelberg, Germany: 1992. Individual comparisons by ranking methods; pp. 196–202.
Kannan B., Kramer S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994;116:405–411. doi: 10.1115/1.2919393. DOI
Gandomi A.H., Yang X.-S. Computational Optimization, Methods and Algorithms. Springer; Berlin/Heidelberg, Germany: 2011. Benchmark problems in structural optimization; pp. 259–281.
Mezura-Montes E., Coello C.A.C. Useful infeasible solutions in engineering optimization with evolutionary algorithms; Proceedings of the Mexican International Conference on Artificial Intelligence; Monterrey, Mexico. 14–18 November 2005; Berlin/Heidelberg, Germany: Springer; 2005. pp. 652–662.