A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35705720
PubMed Central
PMC9200810
DOI
10.1038/s41598-022-14225-7
PII: 10.1038/s41598-022-14225-7
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- lidé MeSH
- počítačová simulace MeSH
- řešení problému MeSH
- řízení motorových vozidel * MeSH
- učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this paper, a new stochastic optimization algorithm is introduced, called Driving Training-Based Optimization (DTBO), which mimics the human activity of driving training. The fundamental inspiration behind the DTBO design is the learning process to drive in the driving school and the training of the driving instructor. DTBO is mathematically modeled in three phases: (1) training by the driving instructor, (2) patterning of students from instructor skills, and (3) practice. The performance of DTBO in optimization is evaluated on a set of 53 standard objective functions of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, and IEEE CEC2017 test functions types. The optimization results show that DTBO has been able to provide appropriate solutions to optimization problems by maintaining a proper balance between exploration and exploitation. The performance quality of DTBO is compared with the results of 11 well-known algorithms. The simulation results show that DTBO performs better compared to 11 competitor algorithms and is more efficient in optimization applications.
Zobrazit více v PubMed
Ray T, Liew KM. Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Trans. Evol. Comput. 2003;7:386–396. doi: 10.1109/TEVC.2003.814902. DOI
Kaidi W, Khishe M, Mohammadi M. Dynamic levy flight chimp optimization. Knowl. Based Syst. 2022;235:107625. doi: 10.1016/j.knosys.2021.107625. PubMed DOI
Sergeyev YD, Kvasov D, Mukhametzhanov M. On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci. Rep. 2018;8:1–9. doi: 10.1038/s41598-017-18940-4. PubMed DOI PMC
Iba K. Reactive power optimization by genetic algorithm. IEEE Trans. Power Syst. 1994;9:685–692. doi: 10.1109/59.317674. DOI
Wang J-S, Li S-X. An improved grey wolf optimizer based on differential evolution and elimination mechanism. Sci. Rep. 2019;9:1–21. doi: 10.1038/s41598-018-37186-2. PubMed DOI PMC
Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997;1:67–82. doi: 10.1109/4235.585893. DOI
Kennedy, J. & Eberhart, R. Particle swarm optimization. In Proceedings of International Conference on Neural Networks’95, 1942–1948 (IEEE, 1995).
Yang X-S. Stochastic Algorithms: Foundations and Applications. SAGA 2009. Springer; 2009. Firefly algorithms for multimodal optimization; pp. 169–178.
Karaboga, D. & Basturk, B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science, 789–798 (Springer, Berlin, 2007).
Dorigo M, Stützle T. Handbook of Metaheuristics, Chap. Ant Colony Optimization: Overview and Recent Advances. Springer; 2019. pp. 311–351.
Kaur S, Awasthi LK, Sangal AL, Dhiman G. Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020;90:103541. doi: 10.1016/j.engappai.2020.103541. DOI
Abualigah L, Elaziz MA, Sumari P, Geem ZW, Gandomi AH. Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022;191:116158. doi: 10.1016/j.eswa.2021.116158. DOI
Mirjalili S, Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI
Jiang Y, Wu Q, Zhu S, Zhang L. Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems. Expert Syst. Appl. 2022;188:116026. doi: 10.1016/j.eswa.2021.116026. DOI
Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH. Marine predators algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020;152:113377. doi: 10.1016/j.eswa.2020.113377. DOI
Trojovský P, Dehghani M. Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications. Sensors. 2022;22:855. doi: 10.3390/s22030855. PubMed DOI PMC
Coufal P, Hubálovský Š, Hubálovská M, Balogh Z. Snow leopard optimization algorithm: A new nature-based optimization algorithm for solving optimization problems. Mathematics. 2021;9:2832. doi: 10.3390/math9212832. DOI
Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv. Eng. Softw. 2016;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI
Abdollahzadeh B, Gharehchopogh FS, Mirjalili S. Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems. Int. J. Intell. Syst. 2021;36:5887–5958. doi: 10.1002/int.22535. DOI
Abdollahzadeh B, Gharehchopogh FS, Mirjalili S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021;158:107408. doi: 10.1016/j.cie.2021.107408. DOI
Shayanfar H, Gharehchopogh FS. Farmland fertility: A new metaheuristic algorithm for solving continuous optimization problems. Appl. Soft Comput. 2018;71:728–746. doi: 10.1016/j.asoc.2018.07.033. DOI
Ghafori S, Gharehchopogh FS. Advances in spotted hyena optimizer: A comprehensive survey. Arch. Comput. Methods Eng. 2022;Early Access:1–22.
Gharehchopogh FS. Advances in tree seed algorithm: A comprehensive survey. Arch. Comput. Methods Eng. 2022;Early Access:1–24. PubMed PMC
Goldberg DE, Holland JH. Genetic algorithms and machine learning. Mach. Learn. 1988;3:95–99. doi: 10.1023/A:1022602019183. DOI
Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 1997;11:341–359. doi: 10.1023/A:1008202821328. DOI
Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220:671–680. doi: 10.1126/science.220.4598.671. PubMed DOI
Rashedi E, Nezamabadi-Pour H, Saryazdi S. Gsa: A gravitational search algorithm. Inf. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. DOI
Eskandar H, Sadollah A, Bahreininejad A, Hamdi M. Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012;110:151–166. doi: 10.1016/j.compstruc.2012.07.010. DOI
Mirjalili S, Mirjalili SM, Hatamlou A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016;27:495–513. doi: 10.1007/s00521-015-1870-7. DOI
Tahani M, Babayan N. Flow regime algorithm (FRA): A physics-based meta-heuristics algorithm. Knowl. Inf. Syst. 2019;60:1001–1038. doi: 10.1007/s10115-018-1253-3. DOI
Wei Z, Huang C, Wang X, Han T, Li Y. Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access. 2019;7:66084–66109. doi: 10.1109/ACCESS.2019.2918406. DOI
Dehghani M, et al. A spring search algorithm applied to engineering optimization problems. Appl. Sci. 2020;10:6173. doi: 10.3390/app10186173. DOI
Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S. Equilibrium optimizer: A novel optimization algorithm. Knowl. Based Syst. 2020;191:105190. doi: 10.1016/j.knosys.2019.105190. DOI
Moghdani R, Salimifard K. Volleyball premier league algorithm. Appl. Soft Comput. 2018;64:161–185. doi: 10.1016/j.asoc.2017.11.043. DOI
Dehghani M, Mardaneh M, Guerrero JM, Malik O, Kumar V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020;13:514–523.
Zeidabadi FA, Dehghani M. Poa: Puzzle optimization algorithm. Int. J. Intell. Eng. Syst. 2022;15:273–281.
Kaveh A, Zolghadr A. A novel meta-heuristic algorithm: Tug of war optimization. Iran Univ. Sci. Technol. 2016;6:469–492.
Rao RV, Savsani VJ, Vakharia D. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011;43:469–492. doi: 10.1016/j.cad.2010.12.015. DOI
Moosavi SHS, Bardsiri VK. Poor and rich optimization algorithm: A new human-based and multi populations algorithm. Eng. Appl. Artif. Intell. 2019;86:165–181. doi: 10.1016/j.engappai.2019.08.025. DOI
Mousavirad SJ, Ebrahimpour-Komleh H. Human mental search: A new population-based metaheuristic optimization algorithm. Appl. Intell. 2017;47:850–887. doi: 10.1007/s10489-017-0903-6. DOI
Dehghani M, et al. A new doctor and patient optimization algorithm: An application to energy commitment problem. Appl. Sci. 2020;10:5791. doi: 10.3390/app10175791. DOI
Abdollahzadeh B, Gharehchopogh FS. A multi-objective optimization algorithm for feature selection problems. Eng. Comput. 2021;Early Access:1–19.
Benyamin A, Farhad SG, Saeid B. Discrete farmland fertility optimization algorithm with metropolis acceptance criterion for traveling salesman problems. Int. J. Intell. Syst. 2021;36:1270–1303. doi: 10.1002/int.22342. DOI
Mohmmadzadeh H, Gharehchopogh FS. An efficient binary chaotic symbiotic organisms search algorithm approaches for feature selection problems. J. Supercomput. 2021;77:9102–9144. doi: 10.1007/s11227-021-03626-6. DOI
Mohmmadzadeh H, Gharehchopogh FS. Feature selection with binary symbiotic organisms search algorithm for email spam detection. Int. J. Inf. Technol. Decis. Mak. 2021;20:469–515. doi: 10.1142/S0219622020500546. DOI
Zaman HRR, Gharehchopogh FS. An improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problems. Eng. Comput. 2021;Early Access:1–35.
Gharehchopogh FS, Farnad B, Alizadeh A. A modified farmland fertility algorithm for solving constrained engineering problems. Concurr. Comput. Pract. Exp. 2021;Early Access:e6310.
Gharehchopogh FS, Abdollahzadeh B. An efficient harris hawk optimization algorithm for solving the travelling salesman problem. Cluster Comput. 2021;Early Access:1–25.
Mohmmadzadeh H, Gharehchopogh FS. A multi-agent system based for solving high-dimensional optimization problems: A case study on email spam detection. Int. J. Commun. Syst. 2021;34:e4670.
Gharehchopogh FS. An improved tunicate swarm algorithm with best-random mutation strategy for global optimization problems. J. Bionic Eng. 2022;Early Access:1–26.
Goldanloo MJ, Gharehchopogh FS. A hybrid obl-based firefly algorithm with symbiotic organisms search algorithm for solving continuous optimization problems. J. Supercomput. 2022;78:3998–4031. doi: 10.1007/s11227-021-04015-9. DOI
Mohmmadzadeh H, Gharehchopogh FS. A novel hybrid whale optimization algorithm with flower pollination algorithm for feature selection: Case study email spam detection. Comput. Intell. 2021;37:176–209. doi: 10.1111/coin.12397. DOI
Yao X, Liu Y, Lin G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999;3:82–102. doi: 10.1109/4235.771163. DOI
Awad, N., Ali, M., Liang, J., Qu, B. & Suganthan, P. Evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization. Tech. Rep., Kyungpook National University: Daegu, South Korea (2016).
Wilcoxon F. Break throughs in Statistics, chap. Individual Comparisons by Ranking Methods. Springer; 1992. pp. 196–202.
Kannan B, Kramer SN. An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994;116:405–411. doi: 10.1115/1.2919393. DOI
Lyapunov-based neural network model predictive control using metaheuristic optimization approach
Drawer Algorithm: A New Metaheuristic Approach for Solving Optimization Problems in Engineering
Serval Optimization Algorithm: A New Bio-Inspired Approach for Solving Optimization Problems