Lyapunov-based neural network model predictive control using metaheuristic optimization approach

. 2024 Aug 13 ; 14 (1) : 18760. [epub] 20240813

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39138275
Odkazy

PubMed 39138275
PubMed Central PMC11322548
DOI 10.1038/s41598-024-69365-9
PII: 10.1038/s41598-024-69365-9
Knihovny.cz E-zdroje

This research introduces a new technique to control constrained nonlinear systems, named Lyapunov-based neural network model predictive control using a metaheuristic optimization approach. This controller utilizes a feedforward neural network model as a prediction model and employs the driving training based optimization algorithm to resolve the related constrained optimization problem. The proposed controller relies on the simplicity and accuracy of the feedforward neural network model and the convergence speed of the driving training based optimization algorithm. The closed-loop stability of the developed controller is ensured by including the Lyapunov function as a constraint in the cost function. The efficiency of the suggested controller is illustrated by controlling the angular speed of three-phase squirrel cage induction motor. The reached results are contrasted to those of other methods, specifically the fuzzy logic controller optimized by teaching learning-based optimization algorithm, the optimized PID with particle swarm optimization algorithm, the neural network model predictive controller based on particle swarm optimization algorithm, and the neural network model predictive controller using driving training based optimization algorithm. This comparative study showcase that the suggested controller provides good accuracy, quickness and robustness due to the obtained values of the mean absolute error, mean square error root mean square error, enhancement percentage, and computing time in the different simulation cases, and it can be efficiently utilized to control constrained nonlinear systems with fast dynamics.

Zobrazit více v PubMed

Schwenzer, M., Ay, M., Bergs, T. & Abel, D. Review on model predictive control: An engineering perspective. Int. J. Adv. Manuf. Technol.117, 1327–1349. 10.1007/s00170-021-07682-3 (2021).10.1007/s00170-021-07682-3 DOI

Ahmed, A. A., Koh, B. K. & Il Lee, Y. A comparison of finite control set and continuous control set model predictive control schemes for speed control of induction motors. IEEE Trans. Ind. Inform.14, 1334–1346. 10.1109/TII.2017.2758393 (2018).10.1109/TII.2017.2758393 DOI

Wang, Y., Sun, R., Cheng, Q. & Ochieng, W. Y. Measurement quality control aided multisensor system for improved vehicle navigation in urban areas. IEEE Trans. Ind. Electron.71, 6407–6417. 10.1109/TIE.2023.3288188 (2024).10.1109/TIE.2023.3288188 DOI

Djouadi, H. et al. Non-linear multivariable permanent magnet synchronous machine control: A robust non-linear generalized predictive controller approach. IET Control Theory Appl.17, 1688–1702. 10.1049/cth2.12509 (2023).10.1049/cth2.12509 DOI

Xu, B. & Guo, Y. A novel DVL calibration method based on Robust invariant extended Kalman filter. IEEE Trans. Veh. Technol.71, 9422–9434. 10.1109/TVT.2022.3182017 (2022).10.1109/TVT.2022.3182017 DOI

Belkhier, Y. et al. Experimental analysis of passivity-based control theory for permanent magnet synchronous motor drive fed by grid power. IET Control Theory Appl.18, 495–510. 10.1049/cth2.12574 (2024).10.1049/cth2.12574 DOI

Zhang, J., Chen, Y., Gao, Y., Wang, Z. & Peng, G. Cascade ADRC speed control base on FCS-MPC for permanent magnet synchronous motor. J. Circuits Syst. Comput.10.1142/S0218126621502029 (2021).10.1142/S0218126621502029 DOI

Kasri, A. et al. Real-time and hardware in the loop validation of electric vehicle performance: Robust nonlinear predictive speed and currents control based on space vector modulation for PMSM. Results Eng.22, 102223. 10.1016/j.rineng.2024.102223 (2024).10.1016/j.rineng.2024.102223 DOI

Zhang, J. et al. Fractional order complementary non-singular terminal sliding mode control of PMSM based on neural network. Int. J. Automot. Technol.25, 213–224. 10.1007/s12239-024-00015-9 (2024).10.1007/s12239-024-00015-9 DOI

Kasri, A., Ouari, K., Belkhier, Y., Bajaj, M. & Zaitsev, I. Optimizing electric vehicle powertrains peak performance with robust predictive direct torque control of induction motors: A practical approach and experimental validation. Sci. Rep.14, 14977. 10.1038/s41598-024-65988-0 (2024). 10.1038/s41598-024-65988-0 PubMed DOI PMC

Deng, Z. W., Zhao, Y. Q., Wang, B. H., Gao, W. & Kong, X. A preview driver model based on sliding-mode and fuzzy control for articulated heavy vehicle. Meccanica57, 1853–1878. 10.1007/s11012-022-01532-6 (2022).10.1007/s11012-022-01532-6 DOI

Ouari, K. et al. Improved nonlinear generalized model predictive control for robustness and power enhancement of a DFIG-based wind energy converter. Front. Energy Res.10.3389/fenrg.2022.996206 (2022).10.3389/fenrg.2022.996206 DOI

Mohammadzadeh, A. et al. A non-linear fractional-order type-3 fuzzy control for enhanced path-tracking performance of autonomous cars. IET Control Theory Appl.18, 40–54. 10.1049/cth2.12538 (2024).10.1049/cth2.12538 DOI

Kakouche, K. et al. Model predictive direct torque control and fuzzy logic energy management for multi power source electric vehicles. Sensors22, 5669. 10.3390/s22155669 (2022). 10.3390/s22155669 PubMed DOI PMC

Luo, R., Peng, Z., Hu, J. & Ghosh, B. K. Adaptive optimal control of affine nonlinear systems via identifier–critic neural network approximation with relaxed PE conditions. Neural Netw.167, 588–600. 10.1016/j.neunet.2023.08.044 (2023). 10.1016/j.neunet.2023.08.044 PubMed DOI

Belkhier, Y. et al. Robust interconnection and damping assignment energy-based control for a permanent magnet synchronous motor using high order sliding mode approach and nonlinear observer. Energy Rep.8, 1731–1740. 10.1016/j.egyr.2021.12.075 (2022).10.1016/j.egyr.2021.12.075 DOI

Guo, C., Hu, J., Wu, Y. & Čelikovský, S. Non-singular fixed-time tracking control of uncertain nonlinear pure-feedback systems with practical state constraints. IEEE Trans. Circuits Syst. I Regul. Pap.70, 3746–3758. 10.1109/TCSI.2023.3291700 (2023).10.1109/TCSI.2023.3291700 DOI

Liu, X., Suo, Y., Zhang, Z., Song, X. & Zhou, J. A new model predictive current control strategy for hybrid energy storage system considering the SOC of the supercapacitor. IEEE J. Emerg. Sel. Top. Power Electron.11, 325–338. 10.1109/JESTPE.2022.3159665 (2023).10.1109/JESTPE.2022.3159665 DOI

Fang, L., Li, D. & Qu, R. Torque improvement of vernier permanent magnet machine with larger rotor pole pairs than stator teeth number. IEEE Trans. Ind. Electron.70, 12648–12659. 10.1109/TIE.2022.3232651 (2023).10.1109/TIE.2022.3232651 DOI

Dos Santos, T. B. et al. Robust finite control set model predictive current control for induction motor using deadbeat approach in stationary frame. IEEE Access11, 13067–13078. 10.1109/ACCESS.2022.3223385 (2023).10.1109/ACCESS.2022.3223385 DOI

Wang, Z., Wang, S., Wang, X. & Luo, X. Underwater moving object detection using superficial electromagnetic flow velometer array-based artificial lateral line system. IEEE Sens. J.24, 12104–12121. 10.1109/JSEN.2024.3370259 (2024).10.1109/JSEN.2024.3370259 DOI

Wu, W. et al. Data-driven finite control-set model predictive control for modular multilevel converter. IEEE J. Emerg. Sel. Top. Power Electron.11, 523–531. 10.1109/JESTPE.2022.3207454 (2023).10.1109/JESTPE.2022.3207454 DOI

Wang, Z., Wang, S., Wang, X. & Luo, X. Permanent magnet-based superficial flow velometer with ultralow output drift. IEEE Trans. Instrum. Meas.72, 1–12. 10.1109/TIM.2023.3304692 (2023). 10.1109/TIM.2023.3304692 PubMed DOI

Zhang, H., Wu, H., Jin, H. & Li, H. High-dynamic and low-cost sensorless control method of high-speed brushless DC motor. IEEE Trans. Ind. Inform.19, 5576–5584. 10.1109/TII.2022.3196358 (2023).10.1109/TII.2022.3196358 DOI

Richalet, J., Rault, A., Testud, J. L. & Papon, J. Model predictive heuristic control. Automatica14, 413–428. 10.1016/0005-1098(78)90001-8 (1978).10.1016/0005-1098(78)90001-8 DOI

Allgöwer, F., Badgwell, T. A., Qin, J. S., Rawlings, J. B. & Wright, S. J. Nonlinear predictive control and moving horizon estimation—an introductory overview. In Advances in Control (ed. Frank, Paul M.) 391–449 (Springer, London, 1999). 10.1007/978-1-4471-0853-5_19.

Kvasnica, M., Herceg, M., Čirka, Ľ & Fikar, M. Model predictive control of a CSTR: A hybrid modeling approach. Chem. Pap.10.2478/s11696-010-0008-8 (2010).10.2478/s11696-010-0008-8 DOI

Richalet, J. Industrial applications of model based predictive control. Automatica29, 1251–1274. 10.1016/0005-1098(93)90049-Y (1993).10.1016/0005-1098(93)90049-Y DOI

K. Nejadkazemi, A. Fakharian, Pressure control in gas oil pipeline: A supervisory model predictive control approach, In: 2016 4th International Conference on Control, Instrumentation, and Automation, IEEE, 2016: pp. 396–400. 10.1109/ICCIAutom.2016.7483195.

Wang, Y., Geng, Y., Yan, Y., Wang, J. & Fang, Z. Robust model predictive control of a micro machine tool for tracking a periodic force signal. Optim. Control Appl. Methods41, 2037–2047. 10.1002/oca.2642 (2020).10.1002/oca.2642 DOI

Durmuş, B., Temurtaş, H., Yumuşak, N. & Temurtaş, F. A study on industrial robotic manipulator model using model based predictive controls. J. Intell. Manuf.20, 233–241. 10.1007/s10845-008-0221-2 (2009).10.1007/s10845-008-0221-2 DOI

Holkar, K. S. & Waghmare, L. M. An overview of model predictive control. Int. J. Control Autom.3, 47–63 (2010).

Morari, M., Garcia, C. E. & Prett, D. M. Model predictive control: Theory and practice. IFAC Proc.21, 1–12. 10.1016/B978-0-08-035735-5.50006-1 (1988).10.1016/B978-0-08-035735-5.50006-1 DOI

C.R. cutler, dynamic matrix control: an optimal multivariable control algorithm with constraints, University of Houston ProQuest Dissertations & Theses, (1983).

Ydstie, B. E., Kemna, A. H. & Liu, L. K. Multivariable extended-horizon adaptive control. Comput. Chem. Eng.12, 733–743. 10.1016/0098-1354(88)80011-5 (1988).10.1016/0098-1354(88)80011-5 DOI

Clarke, D. W., Mohtadi, C. & Tuffs, P. S. Generalized predictive control—part II extensions and interpretations. Automatica23, 149–160. 10.1016/0005-1098(87)90088-4 (1987).10.1016/0005-1098(87)90088-4 DOI

Li, Z. & Wang, G. Generalized predictive control of linear time-varying systems. J. Frankl. Inst.354, 1819–1832. 10.1016/j.jfranklin.2016.10.021 (2017).10.1016/j.jfranklin.2016.10.021 DOI

Clarke, D. W., Mohtadi, C. & Tuffs, P. S. Generalized predictive control—Part I The basic algorithm. Automatica23, 137–148. 10.1016/0005-1098(87)90087-2 (1987).10.1016/0005-1098(87)90087-2 DOI

Anis, K. & Tarek, G. An improved robust predictive control approach based on generalized 3rd order S-PARAFAC volterra model applied to a 2-DoF helicopter system. Int. J. Control Autom. Syst.19, 1618–1632. 10.1007/s12555-019-0936-1 (2021).10.1007/s12555-019-0936-1 DOI

Kansha, Y. & Chiu, M.-S. Adaptive generalized predictive control based on JITL technique. J. Process Control19, 1067–1072. 10.1016/j.jprocont.2009.04.002 (2009).10.1016/j.jprocont.2009.04.002 DOI

Zhou, X., Lu, F., Zhou, W. & Huang, J. An improved multivariable generalized predictive control algorithm for direct performance control of gas turbine engine. Aerosp. Sci. Technol.99, 105576. 10.1016/j.ast.2019.105576 (2020).10.1016/j.ast.2019.105576 DOI

Lee, J. B. et al. Enhanced model predictive control (eMPC) strategy for automated glucose control. Ind. Eng. Chem. Res.55, 11857–11868. 10.1021/acs.iecr.6b02718 (2016). 10.1021/acs.iecr.6b02718 PubMed DOI PMC

Aufderheide, B. & Bequette, B. W. Extension of dynamic matrix control to multiple models. Comput. Chem. Eng.27, 1079–1096. 10.1016/S0098-1354(03)00038-3 (2003).10.1016/S0098-1354(03)00038-3 DOI

Qin, C. et al. RCLSTMNet: A residual-convolutional-LSTM neural network for forecasting cutterhead torque in shield machine. Int. J. Control Autom. Syst.22, 705–721. 10.1007/s12555-022-0104-x (2024).10.1007/s12555-022-0104-x DOI

Bai, X., Xu, M., Li, Q. & Yu, L. Trajectory-battery integrated design and its application to orbital maneuvers with electric pump-fed engines. Adv. Space Res.70, 825–841. 10.1016/j.asr.2022.05.014 (2022).10.1016/j.asr.2022.05.014 DOI

Yin, L. et al. AFBNet: A lightweight adaptive feature fusion module for super-resolution algorithms. Comput. Model Eng. Sci.10.32604/cmes.2024.050853 (2024).10.32604/cmes.2024.050853 DOI

Conceição, A. S., Moreira, A. P. & Costa, P. J. A nonlinear model predictive control strategy for trajectory tracking of a four-wheeled omnidirectional mobile robot. Optim. Control Appl. Methods29, 335–352. 10.1002/oca.827 (2008).10.1002/oca.827 DOI

Käpernick, B. & Graichen, K. Nonlinear model predictive control based on constraint transformation. Optim. Control Appl. Methods37, 807–828. 10.1002/oca.2215 (2016).10.1002/oca.2215 DOI

Grüne, L. & Pannek, J. Nonlinear Model Predictive Control (Springer London, 2011). 10.1007/978-0-85729-501-9.

Karak, T., Basak, S., Joseph, P. A. & Sengupta, S. Non-linear model predictive control based trajectory tracking of hand and wrist motion using functional electrical stimulation. Control Eng. Pract.146, 105895. 10.1016/j.conengprac.2024.105895 (2024).10.1016/j.conengprac.2024.105895 DOI

Doyle, F. J., Ogunnaike, B. A. & Pearson, R. K. Nonlinear model-based control using second-order Volterra models. Automatica31, 697–714. 10.1016/0005-1098(94)00150-H (1995).10.1016/0005-1098(94)00150-H DOI

J.K. Gruber, D.R. Ramirez, T. Alamo, C. Bordons, Nonlinear Min-Max Model Predictive Control based on Volterra models. Application to a pilot plant, In: 2009 European Control Conference, IEEE, 2009: pp. 1112–1117. 10.23919/ECC.2009.7074554.

B.R. Maner, F.J. Doyle, B.A. Ogunnaike, R.K. Pearson, A nonlinear model predictive control scheme using second order Volterra models, In: Proceedings of 1994 American Control Conference - ACC ’94, IEEE, n.d.: pp. 3253–3257. 10.1109/ACC.1994.735176.

Hu, J., Liu, K. & Xia, Y. Output feedback fuzzy model predictive control with multiple objectives. J. Frankl. Inst.361, 32–45. 10.1016/j.jfranklin.2023.11.026 (2024).10.1016/j.jfranklin.2023.11.026 DOI

Lu, Q., Shi, P., Lam, H.-K. & Zhao, Y. Interval type-2 fuzzy model predictive control of nonlinear networked control systems. IEEE Trans. Fuzzy Syst.23, 2317–2328. 10.1109/TFUZZ.2015.2417975 (2015).10.1109/TFUZZ.2015.2417975 DOI

Howlett, P. J. P. P. G. Advances in Industrial Control (Springer International Publishing, 2006). 10.1007/978-3-319-21021-6.

Botto, M. A., Van Den Boom, T. J. J., Krijgsman, A. & Da Costa, J. S. Predictive control based on neural network models with I/O feedback linearization. Int. J. Control72, 1538–1554. 10.1080/002071799220038 (1999).10.1080/002071799220038 DOI

Draeger, H. R. A. & Engell, S. Model predictive control using neural networks [25 years ago]. IEEE Control Syst.40, 11–12. 10.1109/MCS.2020.3005008 (2020).10.1109/MCS.2020.3005008 DOI

Lupu, D. & Necoara, I. Exact representation and efficient approximations of linear model predictive control laws via HardTanh type deep neural networks. Syst. Control Lett.186, 105742. 10.1016/j.sysconle.2024.105742 (2024).10.1016/j.sysconle.2024.105742 DOI

Mazinan, A. H. & Sheikhan, M. On the practice of artificial intelligence based predictive control scheme: A case study. Appl. Intell.36, 178–189. 10.1007/s10489-010-0253-0 (2012).10.1007/s10489-010-0253-0 DOI

Patan, K. Two stage neural network modelling for robust model predictive control. ISA Trans.72, 56–65. 10.1016/j.isatra.2017.10.011 (2018). 10.1016/j.isatra.2017.10.011 PubMed DOI

Zhao, D., Cui, L. & Liu, D. Bearing weak fault feature extraction under time-varying speed conditions based on frequency matching demodulation transform. IEEE/ASME Trans. Mechatron.28, 1627–1637. 10.1109/TMECH.2022.3215545 (2023).10.1109/TMECH.2022.3215545 DOI

Wang, R. et al. FI-NPI: Exploring optimal control in parallel platform systems. Electronics13, 1168. 10.3390/electronics13071168 (2024).10.3390/electronics13071168 DOI

Allgöwer, Z. K. N. F. & Findeisen, R. Nonlinear model predictive control: From theory to application. J. Chin. Inst. Chem. Eng.35, 299–315 (2004).

Silva, N. F., Dórea, C. E. T. & Maitelli, A. L. An iterative model predictive control algorithm for constrained nonlinear systems. Asian J. Control21, 2193–2207. 10.1002/asjc.1815 (2019).10.1002/asjc.1815 DOI

Mayne, D. Nonlinear model predictive control: challenges and opportunities. In Nonlinear Model Predictive Control (ed. Mayne, D.) 23–44 (Birkhäuser Basel, 2000).

Farina, M., Giulioni, L. & Scattolini, R. Stochastic linear model predictive control with chance constraints—a review. J. Process Control44, 53–67. 10.1016/j.jprocont.2016.03.005 (2016).10.1016/j.jprocont.2016.03.005 DOI

Kouvaritakis, B. & Cannon, M. Stochastic model predictive control. In Encyclopedia of Systems and Control (eds Kouvaritakis, B. & Cannon, M.) 1–9 (Springer London, 2014). 10.1007/978-1-4471-5102-9_7-1.

Ma, Y., Matusko, J. & Borrelli, F. Stochastic model predictive control for building HVAC systems: Complexity and conservatism. IEEE Trans. Control Syst. Technol.23, 101–116. 10.1109/TCST.2014.2313736 (2015).10.1109/TCST.2014.2313736 DOI

De Mendonca Mesquita, E., Sampaio, R. C., Ayala, H. V. H. & Llanos, C. H. Recent meta-heuristics improved by self-adaptation applied to nonlinear model-based predictive control. IEEE Access8, 118841–118852. 10.1109/ACCESS.2020.3005318 (2020).10.1109/ACCESS.2020.3005318 DOI

M.S. and Y.L. Q. Zou, J. Ji, S. Zhang, Model predictive control based on particle swarm optimization of greenhouse climate for saving energy consumption, in: 2010 World Automation Congress Kobe, Japan, 2010: pp. 123–128.

C. Stiti, K. Kara, M. Benrabah, A. Aouaichia, Neural Network Model Predictive Control Based on PSO Approach: Applied to DC Motor, In: 2023 2nd International Conference on Electronics, Energy and Measurement, IEEE, 2023: pp. 1–6. 10.1109/IC2EM59347.2023.10419476.

Zhang, Y., Zhao, D., He, L., Zhang, Y. & Huang, J. Research on prediction model of electric vehicle thermal management system based on particle swarm optimization- back propagation neural network. Therm. Sci. Eng. Prog.47, 102281. 10.1016/j.tsep.2023.102281 (2024).10.1016/j.tsep.2023.102281 DOI

Ait Sahed, O., Kara, K., Benyoucef, A. & Hadjili, M. L. An efficient artificial bee colony algorithm with application to nonlinear predictive control. Int. J. Gen. Syst.45, 393–417. 10.1080/03081079.2015.1086344 (2016).10.1080/03081079.2015.1086344 DOI

Sahed, O. A., Kara, K. & Benyoucef, A. Artificial bee colony-based predictive control for non-linear systems. Trans. Inst. Meas. Control37, 780–792. 10.1177/0142331214546796 (2015).10.1177/0142331214546796 DOI

Zimmer, A., Schmidt, A., Ostfeld, A. & Minsker, B. Evolutionary algorithm enhancement for model predictive control and real-time decision support. Environ. Model. Softw.69, 330–341. 10.1016/j.envsoft.2015.03.005 (2015).10.1016/j.envsoft.2015.03.005 DOI

Rao, R. V., Savsani, V. J. & Vakharia, D. P. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Des.43, 303–315. 10.1016/j.cad.2010.12.015 (2011).10.1016/j.cad.2010.12.015 DOI

Benrabah, M., Kara, K., AitSahed, O. & Hadjili, M. L. Constrained nonlinear predictive control using neural networks and teaching–learning-based optimization. J. Control Autom. Electr. Syst.32, 1228–1243. 10.1007/s40313-021-00755-4 (2021).10.1007/s40313-021-00755-4 DOI

Aouaichia, A., Kara, K., Benrabah, M. & Hadjili, M. L. Constrained neural network model predictive controller based on Archimedes optimization algorithm with application to robot manipulators. J. Control Autom. Electr. Syst.34, 1159–1178. 10.1007/s40313-023-01033-1 (2023).10.1007/s40313-023-01033-1 DOI

and P.T. M. Dehghani, E. Trojovská, Driving Training-Based Optimization: A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems, 2022. PubMed PMC

Sun, Q., Lyu, G., Liu, X., Niu, F. & Gan, C. Virtual current compensation-based quasi-sinusoidal-wave excitation scheme for switched reluctance motor drives. IEEE Trans. Ind. Electron.71, 10162–10172. 10.1109/TIE.2023.3333056 (2024).10.1109/TIE.2023.3333056 DOI

Bai, X., He, Y. & Xu, M. Low-thrust reconfiguration strategy and optimization for formation flying using Jordan normal form. IEEE Trans. Aerosp. Electron. Syst.57, 3279–3295. 10.1109/TAES.2021.3074204 (2021).10.1109/TAES.2021.3074204 DOI

Dehghani, M., Trojovská, E. & Trojovský, P. A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. Sci. Rep.12, 9924. 10.1038/s41598-022-14225-7 (2022). 10.1038/s41598-022-14225-7 PubMed DOI PMC

Freitas, D., Lopes, L. G. & Morgado-Dias, F. Particle swarm optimisation: A historical review up to the current developments. Entropy22, 362. 10.3390/e22030362 (2020). 10.3390/e22030362 PubMed DOI PMC

N.M. Sabri, M. Puteh, M.R. Mahmood, An overview of Gravitational Search Algorithm utilization in optimization problems, In: 2013 IEEE 3rd International Conference System Engineering Technology, IEEE, 2013: pp. 61–66. 10.1109/ICSEngT.2013.6650144.

Faris, H., Aljarah, I., Al-Betar, M. A. & Mirjalili, S. Grey wolf optimizer: A review of recent variants and applications. Neural Comput. Appl.30, 413–435. 10.1007/s00521-017-3272-5 (2018).10.1007/s00521-017-3272-5 DOI

Mirjalili, S. & Lewis, A. The whale optimization algorithm. Adv. Eng. Softw.95, 51–67. 10.1016/j.advengsoft.2016.01.008 (2016).10.1016/j.advengsoft.2016.01.008 DOI

Abualigah, L., Elaziz, M. A., Sumari, P., Geem, Z. W. & Gandomi, A. H. Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl.191, 116158. 10.1016/j.eswa.2021.116158 (2022).10.1016/j.eswa.2021.116158 DOI

Mhaskar, P., El-Farra, N. H. & Christofides, P. D. Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control. Syst. Control Lett.55, 650–659. 10.1016/j.sysconle.2005.09.014 (2006).10.1016/j.sysconle.2005.09.014 DOI

Luo, J. et al. Lyapunov based nonlinear model predictive control of wind power generation system with external disturbances. IEEE Access12, 5103–5116. 10.1109/ACCESS.2024.3350204 (2024).10.1109/ACCESS.2024.3350204 DOI

Gao, S. et al. Extremely compact and lightweight triboelectric nanogenerator for spacecraft flywheel system health monitoring. Nano Energy122, 109330. 10.1016/j.nanoen.2024.109330 (2024).10.1016/j.nanoen.2024.109330 DOI

Wang, S. et al. Tooth backlash inspired comb-shaped single-electrode triboelectric nanogenerator for self-powered condition monitoring of gear transmission. Nano Energy123, 109429. 10.1016/j.nanoen.2024.109429 (2024).10.1016/j.nanoen.2024.109429 DOI

Ouabi, O.-L. et al. Learning the propagation properties of rectangular metal plates for Lamb wave-based mapping. Ultrasonics123, 106705. 10.1016/j.ultras.2022.106705 (2022). 10.1016/j.ultras.2022.106705 PubMed DOI

Babaghorbani, B., Beheshti, M. T. & Talebi, H. A. A Lyapunov-based model predictive control strategy in a permanent magnet synchronous generator wind turbine. Int. J. Electr. Power Energy Syst.130, 106972. 10.1016/j.ijepes.2021.106972 (2021).10.1016/j.ijepes.2021.106972 DOI

Wang, R. & Bao, J. A differential Lyapunov-based tube MPC approach for continuous-time nonlinear processes. J. Process Control83, 155–163. 10.1016/j.jprocont.2018.11.006 (2019).10.1016/j.jprocont.2018.11.006 DOI

B. Mohamed, K. Kamel, Optimal Fuzzy Logic Controller Using Teaching Learning Based Optimization for asynchronous motor, In: 2022 19th International Multi-Conference Systems, Signals and Devices, IEEE, 2022: pp. 1478–1483. 10.1109/SSD54932.2022.9955752.

Wang, H., Sun, W., Jiang, D. & Qu, R. A MTPA and flux-weakening curve identification method based on physics-informed network without calibration. IEEE Trans. Power Electron.38, 12370–12375. 10.1109/TPEL.2023.3295913 (2023).10.1109/TPEL.2023.3295913 DOI

Li, J., Wu, X. & Wu, L. A computationally-efficient analytical model for SPM machines considering PM shaping and property distribution. IEEE Trans. Energy Convers.39, 1034–1046. 10.1109/TEC.2024.3352577 (2024).10.1109/TEC.2024.3352577 DOI

Dorji, P. & Subba, B. D-Q mathematical modelling and simulation of three-phase induction motor for electrical fault analysis. IARJSET7, 38–46. 10.17148/IARJSET.2020.7909 (2020).10.17148/IARJSET.2020.7909 DOI

Bhagyashree, M. S. & Adappa, M. R. Modelling and simulation of an induction machine. IJIREEICE4, 119–123. 10.17148/IJIREEICE/NCAEE.2016.24 (2016).10.17148/IJIREEICE/NCAEE.2016.24 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...