Lyapunov-based neural network model predictive control using metaheuristic optimization approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39138275
PubMed Central
PMC11322548
DOI
10.1038/s41598-024-69365-9
PII: 10.1038/s41598-024-69365-9
Knihovny.cz E-zdroje
- Klíčová slova
- Constraints, DTBO, Lyapunov function, Metaheuristic, Model predictive control, Neural network, Nonlinear system, Squirrel cage induction motor,
- Publikační typ
- časopisecké články MeSH
This research introduces a new technique to control constrained nonlinear systems, named Lyapunov-based neural network model predictive control using a metaheuristic optimization approach. This controller utilizes a feedforward neural network model as a prediction model and employs the driving training based optimization algorithm to resolve the related constrained optimization problem. The proposed controller relies on the simplicity and accuracy of the feedforward neural network model and the convergence speed of the driving training based optimization algorithm. The closed-loop stability of the developed controller is ensured by including the Lyapunov function as a constraint in the cost function. The efficiency of the suggested controller is illustrated by controlling the angular speed of three-phase squirrel cage induction motor. The reached results are contrasted to those of other methods, specifically the fuzzy logic controller optimized by teaching learning-based optimization algorithm, the optimized PID with particle swarm optimization algorithm, the neural network model predictive controller based on particle swarm optimization algorithm, and the neural network model predictive controller using driving training based optimization algorithm. This comparative study showcase that the suggested controller provides good accuracy, quickness and robustness due to the obtained values of the mean absolute error, mean square error root mean square error, enhancement percentage, and computing time in the different simulation cases, and it can be efficiently utilized to control constrained nonlinear systems with fast dynamics.
Department of Electrical Engineering Graphic Era Dehradun 248002 India
Graphic Era Hill University Dehradun 248002 India
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman Jordan
Laboratory of Electrical Systems and Remote Control Blida1 University Blida Ouled Yaïch Algeria
Robotics Laboratory Parallelism and Embedded Systems USTHB University Algiers Algeria
Zobrazit více v PubMed
Schwenzer, M., Ay, M., Bergs, T. & Abel, D. Review on model predictive control: An engineering perspective. DOI
Ahmed, A. A., Koh, B. K. & Il Lee, Y. A comparison of finite control set and continuous control set model predictive control schemes for speed control of induction motors. DOI
Wang, Y., Sun, R., Cheng, Q. & Ochieng, W. Y. Measurement quality control aided multisensor system for improved vehicle navigation in urban areas. DOI
Djouadi, H. DOI
Xu, B. & Guo, Y. A novel DVL calibration method based on Robust invariant extended Kalman filter. DOI
Belkhier, Y. DOI
Zhang, J., Chen, Y., Gao, Y., Wang, Z. & Peng, G. Cascade ADRC speed control base on FCS-MPC for permanent magnet synchronous motor. DOI
Kasri, A. DOI
Zhang, J. DOI
Kasri, A., Ouari, K., Belkhier, Y., Bajaj, M. & Zaitsev, I. Optimizing electric vehicle powertrains peak performance with robust predictive direct torque control of induction motors: A practical approach and experimental validation. PubMed DOI PMC
Deng, Z. W., Zhao, Y. Q., Wang, B. H., Gao, W. & Kong, X. A preview driver model based on sliding-mode and fuzzy control for articulated heavy vehicle. DOI
Ouari, K. DOI
Mohammadzadeh, A. DOI
Luo, R., Peng, Z., Hu, J. & Ghosh, B. K. Adaptive optimal control of affine nonlinear systems via identifier–critic neural network approximation with relaxed PE conditions. PubMed DOI
Belkhier, Y. DOI
Guo, C., Hu, J., Wu, Y. & Čelikovský, S. Non-singular fixed-time tracking control of uncertain nonlinear pure-feedback systems with practical state constraints. DOI
Liu, X., Suo, Y., Zhang, Z., Song, X. & Zhou, J. A new model predictive current control strategy for hybrid energy storage system considering the SOC of the supercapacitor. DOI
Fang, L., Li, D. & Qu, R. Torque improvement of vernier permanent magnet machine with larger rotor pole pairs than stator teeth number. DOI
Dos Santos, T. B. DOI
Wang, Z., Wang, S., Wang, X. & Luo, X. Underwater moving object detection using superficial electromagnetic flow velometer array-based artificial lateral line system. DOI
Wu, W. DOI
Wang, Z., Wang, S., Wang, X. & Luo, X. Permanent magnet-based superficial flow velometer with ultralow output drift. DOI
Zhang, H., Wu, H., Jin, H. & Li, H. High-dynamic and low-cost sensorless control method of high-speed brushless DC motor. DOI
Richalet, J., Rault, A., Testud, J. L. & Papon, J. Model predictive heuristic control. DOI
Allgöwer, F., Badgwell, T. A., Qin, J. S., Rawlings, J. B. & Wright, S. J. Nonlinear predictive control and moving horizon estimation—an introductory overview. In
Kvasnica, M., Herceg, M., Čirka, Ľ & Fikar, M. Model predictive control of a CSTR: A hybrid modeling approach. DOI
Richalet, J. Industrial applications of model based predictive control. DOI
K. Nejadkazemi, A. Fakharian, Pressure control in gas oil pipeline: A supervisory model predictive control approach, In: 2016 4th International Conference on Control, Instrumentation, and Automation, IEEE, 2016: pp. 396–400. 10.1109/ICCIAutom.2016.7483195.
Wang, Y., Geng, Y., Yan, Y., Wang, J. & Fang, Z. Robust model predictive control of a micro machine tool for tracking a periodic force signal. DOI
Durmuş, B., Temurtaş, H., Yumuşak, N. & Temurtaş, F. A study on industrial robotic manipulator model using model based predictive controls. DOI
Holkar, K. S. & Waghmare, L. M. An overview of model predictive control.
Morari, M., Garcia, C. E. & Prett, D. M. Model predictive control: Theory and practice. DOI
C.R. cutler, dynamic matrix control: an optimal multivariable control algorithm with constraints, University of Houston ProQuest Dissertations & Theses, (1983).
Ydstie, B. E., Kemna, A. H. & Liu, L. K. Multivariable extended-horizon adaptive control. DOI
Clarke, D. W., Mohtadi, C. & Tuffs, P. S. Generalized predictive control—part II extensions and interpretations. DOI
Li, Z. & Wang, G. Generalized predictive control of linear time-varying systems. DOI
Clarke, D. W., Mohtadi, C. & Tuffs, P. S. Generalized predictive control—Part I The basic algorithm. DOI
Anis, K. & Tarek, G. An improved robust predictive control approach based on generalized 3rd order S-PARAFAC volterra model applied to a 2-DoF helicopter system. DOI
Kansha, Y. & Chiu, M.-S. Adaptive generalized predictive control based on JITL technique. DOI
Zhou, X., Lu, F., Zhou, W. & Huang, J. An improved multivariable generalized predictive control algorithm for direct performance control of gas turbine engine. DOI
Aufderheide, B. & Bequette, B. W. Extension of dynamic matrix control to multiple models. DOI
Qin, C. DOI
Bai, X., Xu, M., Li, Q. & Yu, L. Trajectory-battery integrated design and its application to orbital maneuvers with electric pump-fed engines. DOI
Yin, L. DOI
Conceição, A. S., Moreira, A. P. & Costa, P. J. A nonlinear model predictive control strategy for trajectory tracking of a four-wheeled omnidirectional mobile robot. DOI
Käpernick, B. & Graichen, K. Nonlinear model predictive control based on constraint transformation. DOI
Grüne, L. & Pannek, J.
Karak, T., Basak, S., Joseph, P. A. & Sengupta, S. Non-linear model predictive control based trajectory tracking of hand and wrist motion using functional electrical stimulation. DOI
Doyle, F. J., Ogunnaike, B. A. & Pearson, R. K. Nonlinear model-based control using second-order Volterra models. DOI
J.K. Gruber, D.R. Ramirez, T. Alamo, C. Bordons, Nonlinear Min-Max Model Predictive Control based on Volterra models. Application to a pilot plant, In: 2009 European Control Conference, IEEE, 2009: pp. 1112–1117. 10.23919/ECC.2009.7074554.
B.R. Maner, F.J. Doyle, B.A. Ogunnaike, R.K. Pearson, A nonlinear model predictive control scheme using second order Volterra models, In: Proceedings of 1994 American Control Conference - ACC ’94, IEEE, n.d.: pp. 3253–3257. 10.1109/ACC.1994.735176.
Hu, J., Liu, K. & Xia, Y. Output feedback fuzzy model predictive control with multiple objectives. DOI
Lu, Q., Shi, P., Lam, H.-K. & Zhao, Y. Interval type-2 fuzzy model predictive control of nonlinear networked control systems. DOI
Howlett, P. J. P. P. G.
Botto, M. A., Van Den Boom, T. J. J., Krijgsman, A. & Da Costa, J. S. Predictive control based on neural network models with I/O feedback linearization. DOI
Draeger, H. R. A. & Engell, S. Model predictive control using neural networks [25 years ago]. DOI
Lupu, D. & Necoara, I. Exact representation and efficient approximations of linear model predictive control laws via HardTanh type deep neural networks. DOI
Mazinan, A. H. & Sheikhan, M. On the practice of artificial intelligence based predictive control scheme: A case study. DOI
Patan, K. Two stage neural network modelling for robust model predictive control. PubMed DOI
Zhao, D., Cui, L. & Liu, D. Bearing weak fault feature extraction under time-varying speed conditions based on frequency matching demodulation transform. DOI
Wang, R. DOI
Allgöwer, Z. K. N. F. & Findeisen, R. Nonlinear model predictive control: From theory to application.
Silva, N. F., Dórea, C. E. T. & Maitelli, A. L. An iterative model predictive control algorithm for constrained nonlinear systems. DOI
Mayne, D. Nonlinear model predictive control: challenges and opportunities. In
Farina, M., Giulioni, L. & Scattolini, R. Stochastic linear model predictive control with chance constraints—a review. DOI
Kouvaritakis, B. & Cannon, M. Stochastic model predictive control. In
Ma, Y., Matusko, J. & Borrelli, F. Stochastic model predictive control for building HVAC systems: Complexity and conservatism. DOI
De Mendonca Mesquita, E., Sampaio, R. C., Ayala, H. V. H. & Llanos, C. H. Recent meta-heuristics improved by self-adaptation applied to nonlinear model-based predictive control. DOI
M.S. and Y.L. Q. Zou, J. Ji, S. Zhang, Model predictive control based on particle swarm optimization of greenhouse climate for saving energy consumption, in: 2010 World Automation Congress Kobe, Japan, 2010: pp. 123–128.
C. Stiti, K. Kara, M. Benrabah, A. Aouaichia, Neural Network Model Predictive Control Based on PSO Approach: Applied to DC Motor, In: 2023 2nd International Conference on Electronics, Energy and Measurement, IEEE, 2023: pp. 1–6. 10.1109/IC2EM59347.2023.10419476.
Zhang, Y., Zhao, D., He, L., Zhang, Y. & Huang, J. Research on prediction model of electric vehicle thermal management system based on particle swarm optimization- back propagation neural network. DOI
Ait Sahed, O., Kara, K., Benyoucef, A. & Hadjili, M. L. An efficient artificial bee colony algorithm with application to nonlinear predictive control. DOI
Sahed, O. A., Kara, K. & Benyoucef, A. Artificial bee colony-based predictive control for non-linear systems. DOI
Zimmer, A., Schmidt, A., Ostfeld, A. & Minsker, B. Evolutionary algorithm enhancement for model predictive control and real-time decision support. DOI
Rao, R. V., Savsani, V. J. & Vakharia, D. P. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. DOI
Benrabah, M., Kara, K., AitSahed, O. & Hadjili, M. L. Constrained nonlinear predictive control using neural networks and teaching–learning-based optimization. DOI
Aouaichia, A., Kara, K., Benrabah, M. & Hadjili, M. L. Constrained neural network model predictive controller based on Archimedes optimization algorithm with application to robot manipulators. DOI
and P.T. M. Dehghani, E. Trojovská, Driving Training-Based Optimization: A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems, 2022. PubMed PMC
Sun, Q., Lyu, G., Liu, X., Niu, F. & Gan, C. Virtual current compensation-based quasi-sinusoidal-wave excitation scheme for switched reluctance motor drives. DOI
Bai, X., He, Y. & Xu, M. Low-thrust reconfiguration strategy and optimization for formation flying using Jordan normal form. DOI
Dehghani, M., Trojovská, E. & Trojovský, P. A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. PubMed DOI PMC
Freitas, D., Lopes, L. G. & Morgado-Dias, F. Particle swarm optimisation: A historical review up to the current developments. PubMed DOI PMC
N.M. Sabri, M. Puteh, M.R. Mahmood, An overview of Gravitational Search Algorithm utilization in optimization problems, In: 2013 IEEE 3rd International Conference System Engineering Technology, IEEE, 2013: pp. 61–66. 10.1109/ICSEngT.2013.6650144.
Faris, H., Aljarah, I., Al-Betar, M. A. & Mirjalili, S. Grey wolf optimizer: A review of recent variants and applications. DOI
Mirjalili, S. & Lewis, A. The whale optimization algorithm. DOI
Abualigah, L., Elaziz, M. A., Sumari, P., Geem, Z. W. & Gandomi, A. H. Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer. DOI
Mhaskar, P., El-Farra, N. H. & Christofides, P. D. Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control. DOI
Luo, J. DOI
Gao, S. DOI
Wang, S. DOI
Babaghorbani, B., Beheshti, M. T. & Talebi, H. A. A Lyapunov-based model predictive control strategy in a permanent magnet synchronous generator wind turbine. DOI
Wang, R. & Bao, J. A differential Lyapunov-based tube MPC approach for continuous-time nonlinear processes. DOI
B. Mohamed, K. Kamel, Optimal Fuzzy Logic Controller Using Teaching Learning Based Optimization for asynchronous motor, In: 2022 19th International Multi-Conference Systems, Signals and Devices, IEEE, 2022: pp. 1478–1483. 10.1109/SSD54932.2022.9955752.
Wang, H., Sun, W., Jiang, D. & Qu, R. A MTPA and flux-weakening curve identification method based on physics-informed network without calibration. DOI
Li, J., Wu, X. & Wu, L. A computationally-efficient analytical model for SPM machines considering PM shaping and property distribution. DOI
Dorji, P. & Subba, B. D-Q mathematical modelling and simulation of three-phase induction motor for electrical fault analysis. DOI
Bhagyashree, M. S. & Adappa, M. R. Modelling and simulation of an induction machine. DOI