Lyapunov-based neural network model predictive control using metaheuristic optimization approach

. 2024 Aug 13 ; 14 (1) : 18760. [epub] 20240813

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39138275
Odkazy

PubMed 39138275
PubMed Central PMC11322548
DOI 10.1038/s41598-024-69365-9
PII: 10.1038/s41598-024-69365-9
Knihovny.cz E-zdroje

This research introduces a new technique to control constrained nonlinear systems, named Lyapunov-based neural network model predictive control using a metaheuristic optimization approach. This controller utilizes a feedforward neural network model as a prediction model and employs the driving training based optimization algorithm to resolve the related constrained optimization problem. The proposed controller relies on the simplicity and accuracy of the feedforward neural network model and the convergence speed of the driving training based optimization algorithm. The closed-loop stability of the developed controller is ensured by including the Lyapunov function as a constraint in the cost function. The efficiency of the suggested controller is illustrated by controlling the angular speed of three-phase squirrel cage induction motor. The reached results are contrasted to those of other methods, specifically the fuzzy logic controller optimized by teaching learning-based optimization algorithm, the optimized PID with particle swarm optimization algorithm, the neural network model predictive controller based on particle swarm optimization algorithm, and the neural network model predictive controller using driving training based optimization algorithm. This comparative study showcase that the suggested controller provides good accuracy, quickness and robustness due to the obtained values of the mean absolute error, mean square error root mean square error, enhancement percentage, and computing time in the different simulation cases, and it can be efficiently utilized to control constrained nonlinear systems with fast dynamics.

Zobrazit více v PubMed

Schwenzer, M., Ay, M., Bergs, T. & Abel, D. Review on model predictive control: An engineering perspective. DOI

Ahmed, A. A., Koh, B. K. & Il Lee, Y. A comparison of finite control set and continuous control set model predictive control schemes for speed control of induction motors. DOI

Wang, Y., Sun, R., Cheng, Q. & Ochieng, W. Y. Measurement quality control aided multisensor system for improved vehicle navigation in urban areas. DOI

Djouadi, H. DOI

Xu, B. & Guo, Y. A novel DVL calibration method based on Robust invariant extended Kalman filter. DOI

Belkhier, Y. DOI

Zhang, J., Chen, Y., Gao, Y., Wang, Z. & Peng, G. Cascade ADRC speed control base on FCS-MPC for permanent magnet synchronous motor. DOI

Kasri, A. DOI

Zhang, J. DOI

Kasri, A., Ouari, K., Belkhier, Y., Bajaj, M. & Zaitsev, I. Optimizing electric vehicle powertrains peak performance with robust predictive direct torque control of induction motors: A practical approach and experimental validation. PubMed DOI PMC

Deng, Z. W., Zhao, Y. Q., Wang, B. H., Gao, W. & Kong, X. A preview driver model based on sliding-mode and fuzzy control for articulated heavy vehicle. DOI

Ouari, K. DOI

Mohammadzadeh, A. DOI

Kakouche, K. PubMed DOI PMC

Luo, R., Peng, Z., Hu, J. & Ghosh, B. K. Adaptive optimal control of affine nonlinear systems via identifier–critic neural network approximation with relaxed PE conditions. PubMed DOI

Belkhier, Y. DOI

Guo, C., Hu, J., Wu, Y. & Čelikovský, S. Non-singular fixed-time tracking control of uncertain nonlinear pure-feedback systems with practical state constraints. DOI

Liu, X., Suo, Y., Zhang, Z., Song, X. & Zhou, J. A new model predictive current control strategy for hybrid energy storage system considering the SOC of the supercapacitor. DOI

Fang, L., Li, D. & Qu, R. Torque improvement of vernier permanent magnet machine with larger rotor pole pairs than stator teeth number. DOI

Dos Santos, T. B. DOI

Wang, Z., Wang, S., Wang, X. & Luo, X. Underwater moving object detection using superficial electromagnetic flow velometer array-based artificial lateral line system. DOI

Wu, W. DOI

Wang, Z., Wang, S., Wang, X. & Luo, X. Permanent magnet-based superficial flow velometer with ultralow output drift. DOI

Zhang, H., Wu, H., Jin, H. & Li, H. High-dynamic and low-cost sensorless control method of high-speed brushless DC motor. DOI

Richalet, J., Rault, A., Testud, J. L. & Papon, J. Model predictive heuristic control. DOI

Allgöwer, F., Badgwell, T. A., Qin, J. S., Rawlings, J. B. & Wright, S. J. Nonlinear predictive control and moving horizon estimation—an introductory overview. In

Kvasnica, M., Herceg, M., Čirka, Ľ & Fikar, M. Model predictive control of a CSTR: A hybrid modeling approach. DOI

Richalet, J. Industrial applications of model based predictive control. DOI

K. Nejadkazemi, A. Fakharian, Pressure control in gas oil pipeline: A supervisory model predictive control approach, In: 2016 4th International Conference on Control, Instrumentation, and Automation, IEEE, 2016: pp. 396–400. 10.1109/ICCIAutom.2016.7483195.

Wang, Y., Geng, Y., Yan, Y., Wang, J. & Fang, Z. Robust model predictive control of a micro machine tool for tracking a periodic force signal. DOI

Durmuş, B., Temurtaş, H., Yumuşak, N. & Temurtaş, F. A study on industrial robotic manipulator model using model based predictive controls. DOI

Holkar, K. S. & Waghmare, L. M. An overview of model predictive control.

Morari, M., Garcia, C. E. & Prett, D. M. Model predictive control: Theory and practice. DOI

C.R. cutler, dynamic matrix control: an optimal multivariable control algorithm with constraints, University of Houston ProQuest Dissertations & Theses, (1983).

Ydstie, B. E., Kemna, A. H. & Liu, L. K. Multivariable extended-horizon adaptive control. DOI

Clarke, D. W., Mohtadi, C. & Tuffs, P. S. Generalized predictive control—part II extensions and interpretations. DOI

Li, Z. & Wang, G. Generalized predictive control of linear time-varying systems. DOI

Clarke, D. W., Mohtadi, C. & Tuffs, P. S. Generalized predictive control—Part I The basic algorithm. DOI

Anis, K. & Tarek, G. An improved robust predictive control approach based on generalized 3rd order S-PARAFAC volterra model applied to a 2-DoF helicopter system. DOI

Kansha, Y. & Chiu, M.-S. Adaptive generalized predictive control based on JITL technique. DOI

Zhou, X., Lu, F., Zhou, W. & Huang, J. An improved multivariable generalized predictive control algorithm for direct performance control of gas turbine engine. DOI

Lee, J. B. PubMed DOI PMC

Aufderheide, B. & Bequette, B. W. Extension of dynamic matrix control to multiple models. DOI

Qin, C. DOI

Bai, X., Xu, M., Li, Q. & Yu, L. Trajectory-battery integrated design and its application to orbital maneuvers with electric pump-fed engines. DOI

Yin, L. DOI

Conceição, A. S., Moreira, A. P. & Costa, P. J. A nonlinear model predictive control strategy for trajectory tracking of a four-wheeled omnidirectional mobile robot. DOI

Käpernick, B. & Graichen, K. Nonlinear model predictive control based on constraint transformation. DOI

Grüne, L. & Pannek, J.

Karak, T., Basak, S., Joseph, P. A. & Sengupta, S. Non-linear model predictive control based trajectory tracking of hand and wrist motion using functional electrical stimulation. DOI

Doyle, F. J., Ogunnaike, B. A. & Pearson, R. K. Nonlinear model-based control using second-order Volterra models. DOI

J.K. Gruber, D.R. Ramirez, T. Alamo, C. Bordons, Nonlinear Min-Max Model Predictive Control based on Volterra models. Application to a pilot plant, In: 2009 European Control Conference, IEEE, 2009: pp. 1112–1117. 10.23919/ECC.2009.7074554.

B.R. Maner, F.J. Doyle, B.A. Ogunnaike, R.K. Pearson, A nonlinear model predictive control scheme using second order Volterra models, In: Proceedings of 1994 American Control Conference - ACC ’94, IEEE, n.d.: pp. 3253–3257. 10.1109/ACC.1994.735176.

Hu, J., Liu, K. & Xia, Y. Output feedback fuzzy model predictive control with multiple objectives. DOI

Lu, Q., Shi, P., Lam, H.-K. & Zhao, Y. Interval type-2 fuzzy model predictive control of nonlinear networked control systems. DOI

Howlett, P. J. P. P. G.

Botto, M. A., Van Den Boom, T. J. J., Krijgsman, A. & Da Costa, J. S. Predictive control based on neural network models with I/O feedback linearization. DOI

Draeger, H. R. A. & Engell, S. Model predictive control using neural networks [25 years ago]. DOI

Lupu, D. & Necoara, I. Exact representation and efficient approximations of linear model predictive control laws via HardTanh type deep neural networks. DOI

Mazinan, A. H. & Sheikhan, M. On the practice of artificial intelligence based predictive control scheme: A case study. DOI

Patan, K. Two stage neural network modelling for robust model predictive control. PubMed DOI

Zhao, D., Cui, L. & Liu, D. Bearing weak fault feature extraction under time-varying speed conditions based on frequency matching demodulation transform. DOI

Wang, R. DOI

Allgöwer, Z. K. N. F. & Findeisen, R. Nonlinear model predictive control: From theory to application.

Silva, N. F., Dórea, C. E. T. & Maitelli, A. L. An iterative model predictive control algorithm for constrained nonlinear systems. DOI

Mayne, D. Nonlinear model predictive control: challenges and opportunities. In

Farina, M., Giulioni, L. & Scattolini, R. Stochastic linear model predictive control with chance constraints—a review. DOI

Kouvaritakis, B. & Cannon, M. Stochastic model predictive control. In

Ma, Y., Matusko, J. & Borrelli, F. Stochastic model predictive control for building HVAC systems: Complexity and conservatism. DOI

De Mendonca Mesquita, E., Sampaio, R. C., Ayala, H. V. H. & Llanos, C. H. Recent meta-heuristics improved by self-adaptation applied to nonlinear model-based predictive control. DOI

M.S. and Y.L. Q. Zou, J. Ji, S. Zhang, Model predictive control based on particle swarm optimization of greenhouse climate for saving energy consumption, in: 2010 World Automation Congress Kobe, Japan, 2010: pp. 123–128.

C. Stiti, K. Kara, M. Benrabah, A. Aouaichia, Neural Network Model Predictive Control Based on PSO Approach: Applied to DC Motor, In: 2023 2nd International Conference on Electronics, Energy and Measurement, IEEE, 2023: pp. 1–6. 10.1109/IC2EM59347.2023.10419476.

Zhang, Y., Zhao, D., He, L., Zhang, Y. & Huang, J. Research on prediction model of electric vehicle thermal management system based on particle swarm optimization- back propagation neural network. DOI

Ait Sahed, O., Kara, K., Benyoucef, A. & Hadjili, M. L. An efficient artificial bee colony algorithm with application to nonlinear predictive control. DOI

Sahed, O. A., Kara, K. & Benyoucef, A. Artificial bee colony-based predictive control for non-linear systems. DOI

Zimmer, A., Schmidt, A., Ostfeld, A. & Minsker, B. Evolutionary algorithm enhancement for model predictive control and real-time decision support. DOI

Rao, R. V., Savsani, V. J. & Vakharia, D. P. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. DOI

Benrabah, M., Kara, K., AitSahed, O. & Hadjili, M. L. Constrained nonlinear predictive control using neural networks and teaching–learning-based optimization. DOI

Aouaichia, A., Kara, K., Benrabah, M. & Hadjili, M. L. Constrained neural network model predictive controller based on Archimedes optimization algorithm with application to robot manipulators. DOI

and P.T. M. Dehghani, E. Trojovská, Driving Training-Based Optimization: A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems, 2022. PubMed PMC

Sun, Q., Lyu, G., Liu, X., Niu, F. & Gan, C. Virtual current compensation-based quasi-sinusoidal-wave excitation scheme for switched reluctance motor drives. DOI

Bai, X., He, Y. & Xu, M. Low-thrust reconfiguration strategy and optimization for formation flying using Jordan normal form. DOI

Dehghani, M., Trojovská, E. & Trojovský, P. A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. PubMed DOI PMC

Freitas, D., Lopes, L. G. & Morgado-Dias, F. Particle swarm optimisation: A historical review up to the current developments. PubMed DOI PMC

N.M. Sabri, M. Puteh, M.R. Mahmood, An overview of Gravitational Search Algorithm utilization in optimization problems, In: 2013 IEEE 3rd International Conference System Engineering Technology, IEEE, 2013: pp. 61–66. 10.1109/ICSEngT.2013.6650144.

Faris, H., Aljarah, I., Al-Betar, M. A. & Mirjalili, S. Grey wolf optimizer: A review of recent variants and applications. DOI

Mirjalili, S. & Lewis, A. The whale optimization algorithm. DOI

Abualigah, L., Elaziz, M. A., Sumari, P., Geem, Z. W. & Gandomi, A. H. Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer. DOI

Mhaskar, P., El-Farra, N. H. & Christofides, P. D. Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control. DOI

Luo, J. DOI

Gao, S. DOI

Wang, S. DOI

Ouabi, O.-L. PubMed DOI

Babaghorbani, B., Beheshti, M. T. & Talebi, H. A. A Lyapunov-based model predictive control strategy in a permanent magnet synchronous generator wind turbine. DOI

Wang, R. & Bao, J. A differential Lyapunov-based tube MPC approach for continuous-time nonlinear processes. DOI

B. Mohamed, K. Kamel, Optimal Fuzzy Logic Controller Using Teaching Learning Based Optimization for asynchronous motor, In: 2022 19th International Multi-Conference Systems, Signals and Devices, IEEE, 2022: pp. 1478–1483. 10.1109/SSD54932.2022.9955752.

Wang, H., Sun, W., Jiang, D. & Qu, R. A MTPA and flux-weakening curve identification method based on physics-informed network without calibration. DOI

Li, J., Wu, X. & Wu, L. A computationally-efficient analytical model for SPM machines considering PM shaping and property distribution. DOI

Dorji, P. & Subba, B. D-Q mathematical modelling and simulation of three-phase induction motor for electrical fault analysis. DOI

Bhagyashree, M. S. & Adappa, M. R. Modelling and simulation of an induction machine. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...