Model Predictive Direct Torque Control and Fuzzy Logic Energy Management for Multi Power Source Electric Vehicles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TURSP 2020/34
Taif University Researchers Supporting Project
FV40411
Optimization of process intelligence of parking system for Smart City
TN01000007
National Centre for Energy
DGS/TEAM/2020-017 "Smart Control System for Energy Flow Optimization and Management in a Microgrid with V2H/V2G Technology"
Doctoral grant competition VSB-Technical University of Ostrava, reg. no. CZ.02.2.69/0.0/0.0/19 073/0016945 within the Operational Programme Research
PubMed
35957226
PubMed Central
PMC9371120
DOI
10.3390/s22155669
PII: s22155669
Knihovny.cz E-zdroje
- Klíčová slova
- battery, electric vehicle, fuel cell, fuzzy logic, model predictive direct torque control, permanent magnet synchronous motor,
- Publikační typ
- časopisecké články MeSH
This paper proposes a novel Fuzzy-MPDTC control applied to a fuel cell battery electric vehicle whose traction is ensured using a permanent magnet synchronous motor (PMSM). On the traction side, model predictive direct torque control (MPDTC) is used to control PMSM torque, and guarantee minimum torque and current ripples while ensuring satisfactory speed tracking. On the sources side, an energy management strategy (EMS) based on fuzzy logic is proposed, it aims to distribute power over energy sources rationally and satisfy the load power demand. To assess these techniques, a driving cycle under different operating modes, namely cruising, acceleration, idling and regenerative braking is proposed. Real-time simulation is developed using the RT LAB platform and the obtained results match those obtained in numerical simulation using MATLAB/Simulink. The results show a good performance of the whole system, where the proposed MPDTC minimized the torque and flux ripples with 54.54% and 77%, respectively, compared to the conventional DTC and reduced the THD of the PMSM current with 53.37%. Furthermore, the proposed EMS based on fuzzy logic shows good performance and keeps the battery SOC within safe limits under the proposed speed profile and international NYCC driving cycle. These aforementioned results confirm the robustness and effectiveness of the proposed control techniques.
Department of Electrical Engineering Graphic Era Dehradun 248002 India
Department of Electrical Engineering National Institute of Technology Delhi 110040 India
ENET Centre VSB Technical University of Ostrava 708 00 Ostrava Czech Republic
Zobrazit více v PubMed
Un-Noor F., Padmanaban S., Mihet-Popa L., Mollah M.N., Hossain E. A comprehensive study of key electric vehicle (EV) components, technologies, challenges, impacts, and future direction of development. Energies. 2017;10:1217. doi: 10.3390/en10081217. DOI
Mokrani Z., Rekioua D., Mebarki N., Rekioua T., Bacha S. Proposed energy management strategy in electric vehicle for recovering power excess produced by fuel cells. Int. J. Hydrogen Energy. 2017;42:19556–19575. doi: 10.1016/j.ijhydene.2017.06.106. DOI
Kim H. Personalization of Electric Vehicle Accelerating Behavior Based on Motor Torque Adjustment to Improve Individual Driving Satisfaction. Sensors. 2021;21:3951. doi: 10.3390/s21123951. PubMed DOI PMC
Chang C., Zhou Y., Lian J., Liang J. Control Method of the Dual-Winding Motor for Online High-Frequency Resistance Measurement in Fuel Cell Vehicle. Sensors. 2022;22:2051. doi: 10.3390/s22052051. PubMed DOI PMC
Zhang Y., Zhang C., Huang Z., Xu L., Liu Z., Liu M. Real-Time Energy Management Strategy for Fuel Cell Range Extender Vehicles Based on Nonlinear Control. IEEE Trans. Transp. Electrif. 2019;5:1294–1305. doi: 10.1109/TTE.2019.2958038. DOI
Kamal E., Adouane L. Optimized EMS and a Comparative Study of Hybrid Hydrogen Fuel Cell/Battery Vehicles. Energies. 2022;15:738. doi: 10.3390/en15030738. DOI
Wei H., Fan L., Ai Q., Zhao W., Huang T., Zhang Y. Optimal energy allocation strategy for electric vehicles based on the real-time model predictive control technology. Sustainable Energy Technol. Assess. 2022;50:101797. doi: 10.1016/j.seta.2021.101797. DOI
Djerioui A., Houari A., Zeghlache S., Saim A., Benkhoris M.F., Mesbahi T., Machmoum M. Energy management strategy of Supercapacitor/ Fuel Cell energy storage devices for vehicle applications. Int. J. Hydrogen Energy. 2019;44:23416–23428. doi: 10.1016/j.ijhydene.2019.07.060. DOI
Abdelshafy M.A., Hassan H., Jurasz J. Optimal design of a grid-connected desalination plant powered by renewable energy resources using a hybrid PSO-GWO approach. Energy Convers. Manag. 2018;173:331–347. doi: 10.1016/j.enconman.2018.07.083. DOI
Thounthong P., Raël S., Davat B. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications. J. Power Sources. 2009;193:376–385. doi: 10.1016/j.jpowsour.2008.12.120. DOI
Zhang X., Mi C.C., Masrur A., Daniszewski D. Wavelet-transform- based power management of hybrid vehicles with multiple on-board energy sources including fuel cell, battery and ultracapacitor. J. Power Sources. 2008;185:1533–1543. doi: 10.1016/j.jpowsour.2008.08.046. DOI
Departure C., Lhomme W., Sicard P., Bouscayrol A., Boulon L. Real-time backstepping control for fuel cell vehicle using supercapacitors. IEEE Trans. Veh. Technol. 2017;67:306–314. doi: 10.1109/TVT.2017.2728823. DOI
Benmouna A., Becherif M. Combined passivity based control and optimal control for energy management of fuel cell/battery hybrid system. Asian J. Control. 2019;21:1857–1868. doi: 10.1002/asjc.2133. DOI
Aouzellag H., Ghedamsi K., Aouzellag D. Energy management and fault tolerant control strategies for fuel cell/ultra capacitor hybrid electric vehicles to enhance autonomy, efficiency and life time of the fuel cell system. Int. J. Hydrogen Energy. 2015;40:7204–7213. doi: 10.1016/j.ijhydene.2015.03.132. DOI
Sankar K., Jana A.K. Nonlinear multivariable sliding mode control of a reversible PEM fuel cell integrated system. Energy Convers. Manag. 2018;171:541–565. doi: 10.1016/j.enconman.2018.05.079. DOI
Qi Z., Fu X.A. Neural Network Fuzzy Energy Management Strategy for Hybrid Electric Vehicles Based on Driving Cycle Recognition. Appl. Sci. 2020;10:696. doi: 10.3390/app10020696. DOI
Soumeur M.A., Gasbaoui B., Abdelkhalek O., Ghouili J., Toumi T., Chakar A. Comparative study of energy management strategies for hybrid proton exchange membrane fuel cell four wheel drive electric vehicle. J. Power Sources. 2020;462:228167. doi: 10.1016/j.jpowsour.2020.228167. DOI
Huang Z., Zhang C., Zeng T., Lv C., Chan S.H. Modeling and energy management of a photovoltaic-fuel cell-battery hybrid electric vehicle. Energy Storage. 2019;1:e61. doi: 10.1002/est2.61. DOI
Odeim F., Roes J., Wülbeck L., Heinzel A. Power management optimization of fuel cell/battery hybrid vehicles with experimental validation. J. Power Sources. 2014;252:333–343. doi: 10.1016/j.jpowsour.2013.12.012. DOI
Zhang X., Liu L., Dai Y., Lu T. Experimental investigation on the online fuzzy energy management of hybrid fuel cell/battery power system for UAVs. Int. J. Hydrogen Energy. 2018;43:10094–10103. doi: 10.1016/j.ijhydene.2018.04.075. DOI
Lin C., Luo W., Lan H., Hu C. Research on Multi-Objective Compound Energy Management Strategy Based on Fuzzy Control for FCHEV. Energies. 2022;15:1721. doi: 10.3390/en15051721. DOI
Valdez-Resendiz J.E., Rosas-Caro J.C., Mayo-Maldonado J.C., Claudio-Sanchez A., Ruiz-Martinez O., Sanchez V.M. Improvement of ultracapacitors-energy usage in fuel cell-based hybrid electric vehicle. Int. J. Hydrogen Energy. 2020;45:13746–13756. doi: 10.1016/j.ijhydene.2019.12.201. DOI
Urbanski K., Janiszewski D. Sensorless Control of the Permanent Magnet Synchronous Motor. Sensors. 2019;19:3546. doi: 10.3390/s19163546. PubMed DOI PMC
Oubelaid A., Taib N., Nikolovski S., Alharbi T.E.A., Rekioua T., Flah A., Ghoneim S.S.M. Intelligent Speed Control and Performance Investigation of a Vector Controlled Electric Vehicle Considering Driving Cycles. Electronics. 2022;11:1925. doi: 10.3390/electronics11131925. DOI
Alsofyani I.M., Idris N.R.N., Lee K.B. Dynamic Hysteresis Torque Band for Improving the Performance of Lookup-Table-Based DTC of Induction Machines. IEEE Trans. Power Electron. 2017;33:7959–7970. doi: 10.1109/TPEL.2017.2773129. DOI
Esparza Sola T., Chiu H.J., Liu Y.C., Rahman A.N. Extending DC Bus Utilization for Induction Motors with Stator Flux Oriented Direct Torque Control. Energies. 2022;15:374. doi: 10.3390/en15010374. DOI
Moati Y., Kouzi K., Iqbal A. Adaptive optimized DTC-SVM using metaheuristic Bat algorithm for DSIM fed by IMC based on robust synergetic speed controller. Int. Trans. Electr. Energy Syst. 2021;31:e12697. doi: 10.1002/2050-7038.12697. DOI
Tarusan S.A.A., Jidin A., Jamil M.L.M. The optimization of torque ripple reduction by using DTC-multilevel inverter. ISA Trans. 2022;121:365–379. doi: 10.1016/j.isatra.2021.04.005. PubMed DOI
Kakouche K., Guendouz W., Rekioua T., Mezani S., Lubin T. Application of fuzzy controller to minimize torque and flux ripples of PMSM; Proceedings of the International Conference on Advanced Electrical Engineering (ICAEE); Algiers, Algeria. 19–21 November 2019; DOI
Korkmaz F., Cakir M.F., Topaloglu I., Gurbuz R. Artificial Neural Network Based DTC Driver for PMSM. Int. J. Instrum. Control Syst. 2013;3:1–7. doi: 10.5121/ijics.2013.3101. DOI
Li G., Hu J., Li Y., Zhu J. An Improved Model Predictive Direct Torque Control Strategy for Reducing Harmonic Currents and Torque Ripples of Five-Phase Permanent Magnet Synchronous Motors. IEEE Trans. Ind. Electron. 2018;66:5820–5829. doi: 10.1109/TIE.2018.2870359. DOI
Elsherbiny H., Ahmed M.K., Elwany M. Comparative Evaluation for Torque Control Strategies of Interior Permanent Magnet Synchronous Motor for Electric Vehicles. Period. Polytech. Electr. Eng. Comput. Sci. 2021;65:244–261. doi: 10.3311/PPee.16672. DOI
Mesloub H., Benchouia M.H., Goléa A., Goléa N., Benbouzid M.E.H. Predictive DTC schemes with PI regulator and particle swarm optimization for PMSM drive: Comparative simulation and experimental study. Int. J. Adv. Manuf. Technol. 2016;86:3123–3134. doi: 10.1007/s00170-016-8406-x. DOI
Hassan M.R., Mossa M.A., Dousoky G.M. Evaluation of Electric Dynamic Performance of an Electric Vehicle System Using Different Control Techniques. Electronics. 2021;10:2586. doi: 10.3390/electronics10212586. DOI
Motapon S.N., Tremblay O., Dessaint L.A. Development of a generic fuel cell model: Application to a fuel cell vehicle simulation. Int. J. Power Electron. 2012;4:505–522. doi: 10.1504/IJPELEC.2012.052427. DOI
Motapon S.N., Dessaint L.A., Al-Haddad K. A comparative study of energy management schemes for a fuel-cell hybrid emergency power system of more-electric aircraft. IEEE Trans. Ind. Electron. 2013;61:1320–1334. doi: 10.1109/TIE.2013.2257152. DOI
Podder A.K., Chakraborty O., Islam S., Kumar N.M., Alhelou H.H. Control Strategies of Different Hybrid Energy Storage Systems for Electric Vehicles Applications. IEEE Access. 2021;9:51865–51895. doi: 10.1109/ACCESS.2021.3069593. DOI
Tremblay O., Dessaint L.A., Dekkiche A.I. A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles; Proceedings of the IEEE Conference on Vehicle Power and Propulsion (VPPC); Arlington, TX, USA. 9–12 September 2007; DOI
Zandi M., Payman A., Martin J.P., Pierfederici S., Davat B., Meibody-Taber F. Energy Management of a Fuel Cell/Supercapacitor/Battery Power Source for Electric Vehicular Applications. IEEE Trans. Veh. Technol. 2010;60:433–443. doi: 10.1109/TVT.2010.2091433. DOI
Ahmed A.A., Akl M.M., Rashad M.E.E. A comparative dynamic analysis between model predictive torque control and field-oriented torque control of IM drives for electric vehicles. Int. Trans. Electr. Energy Syst. 2021;31:e13089. doi: 10.1002/2050-7038.13089. DOI
Ban F., Lian G., Zhang J., Chen B., Gu G. Study on a Novel Predictive Torque Control Strategy Based on the Finite Control Set for PMSM. IEEE Trans. Appl. Supercond. 2019;29:3601206. doi: 10.1109/TASC.2019.2890837. DOI
Sandre-Hernandez O., Rangel-Magdaleno J., Morales-Caporal R. A Comparison on Finite-Set Model Predictive Torque Control Schemes for PMSMs. IEEE Trans. Power Electron. 2018;33:8838–8847. doi: 10.1109/TPEL.2017.2777973. DOI
Bechar M., Hazzab A., Habbab M., Sicard P., Slimi M. RT-LAB Platform for Real-Time Implementation of Luenberger Observer Based Speed Sensorless Control of Induction Motor. J. Autom. Mob. Robot. Intell. Syst. 2019;13:65–72. doi: 10.14313/JAMRIS/4-2019/39. DOI