Optimized image segmentation using an improved reptile search algorithm with Gbest operator for multi-level thresholding
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
40223138
PubMed Central
PMC11994826
DOI
10.1038/s41598-025-96429-1
PII: 10.1038/s41598-025-96429-1
Knihovny.cz E-zdroje
- Klíčová slova
- Image segmentation, Medical images, Multi-level threshold, Otsu method, Kapur method, Reptile search algorithm,
- MeSH
- algoritmy * MeSH
- COVID-19 * diagnostické zobrazování virologie MeSH
- lidé MeSH
- počítačové zpracování obrazu * metody MeSH
- poměr signál - šum MeSH
- SARS-CoV-2 izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Image segmentation using bi-level thresholds works well for straightforward scenarios; however, dealing with complex images that contain multiple objects or colors presents considerable computational difficulties. Multi-level thresholding is crucial for these situations, but it also introduces a challenging optimization problem. This paper presents an improved Reptile Search Algorithm (RSA) that includes a Gbest operator to enhance its performance. The proposed method determines optimal threshold values for both grayscale and color images, utilizing entropy-based objective functions derived from the Otsu and Kapur techniques. Experiments were carried out on 16 benchmark images, which included COVID-19 scans along with standard color and grayscale images. A thorough evaluation was conducted using metrics such as the fitness function, peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and the Friedman ranking test. The results indicate that the proposed algorithm seems to surpass existing state-of-the-art methods, demonstrating its effectiveness and robustness in multi-level thresholding tasks.
Computer Science Department Al Al Bayt University Mafraq 25113 Jordan
Computer Technologies Engineering Mazaya University College Nasiriyah Iraq
Department of Computer Science College of Science for Women University of Baghdad Baghdad Iraq
Faculty of Educational Sciences Al Ahliyya Amman University Amman 19328 Jordan
Faculty of Information Technology Jadara University Irbid 21110 Jordan
Zobrazit více v PubMed
Zhu, Q. Research on road traffic situation awareness system based on image big data. IEEE Intell. Syst.35, 18–26 (2019).
Smith, J. et al. Robust resource allocation in a cluster based imaging system. Parallel Comput.35, 389–400 (2009).
Čuš-Babič, N., Rebolj, D., Nekrep-Perc, M. & Podbreznik, P. Supply-chain transparency within industrialized construction projects. Comput. Ind.65, 345–353 (2014).
Liu, L., Lu, C., Xiao, F., Liu, R. & Xiong, N. N. A practical, integrated multi-criteria decision-making scheme for choosing cloud services in cloud systems. IEEE Access9, 88391–88404 (2021).
Pham, H. S. T. & Khanh, C. N. T. Ecotourism intention: the roles of environmental concern, time perspective and destination image. Tourism Review76, 1141–1153 (2021).
Parenti, M., Fossa, M. & Delucchi, L. A model for energy predictions and diagnostics of large-scale photovoltaic systems based on electric data and thermal imaging of the PV fields. Renew. Sustain. Energy Rev.206, 114858 (2024).
Mall, P. K. et al. A comprehensive review of deep neural networks for medical image processing: Recent developments and future opportunities. Healthcare Analytics1, 100216 (2023).
Windhager, J. et al. An end-to-end workflow for multiplexed image processing and analysis. Nat. Protoc.18, 3565–3613 (2023). PubMed
Pham, M.-V., Ha, Y.-S. & Kim, Y.-T. Automatic detection and measurement of ground crack propagation using deep learning networks and an image processing technique. Measurement215, 112832 (2023).
Sherif, K. et al. Revolutionizing oil spill detection: A machine learning approach for satellite image classification. In 2024 International Telecommunications Conference (ITC-Egypt) 245–250 (2024).
Thalji, N. et al. Segmented X-ray image data for diagnosing dental periapical diseases using deep learning. Data Brief54, 110539 (2024). PubMed PMC
Otair, M. et al. Adapted arithmetic optimization algorithm for multi-level thresholding image segmentation: a case study of chest x-ray images. Multimedia Tools and Applications83, 41051–41081 (2024).
Wang, R. et al. Medical image segmentation using deep learning: A survey. IET Image Proc.16, 1243–1267 (2022).
Chouhan, S. S., Kaul, A. & Singh, U. P. Image segmentation using computational intelligence techniques. Archives of Computational Methods in Engineering26, 533–596 (2019).
Feng, Y. et al. GCFormer: Multi-scale feature plays a crucial role in medical images segmentation. Knowl.-Based Syst.300, 112170 (2024).
Liu, Y., Zhang, Z., Liu, X., Wang, L. & Xia, X. Efficient image segmentation based on deep learning for mineral image classification. Adv. Powder Technol.32, 3885–3903 (2021).
Chouhan, S. S., Kaul, A. & Singh, U. P. Soft computing approaches for image segmentation: a survey. Multimedia Tools and Applications77, 28483–28537 (2018).
Olugbara, O. O., Adetiba, E. & Oyewole, S. A. Pixel intensity clustering algorithm for multilevel image segmentation. Math. Probl. Eng.2015, 649802 (2015).
Bhargavi, K. & Jyothi, S. A survey on threshold based segmentation technique in image processing. International Journal of Innovative Research and Development3, 234–239 (2014).
Bugeau, A. & Pérez, P. Detection and segmentation of moving objects in complex scenes. Comput. Vis. Image Underst.113, 459–476 (2009).
Peng, A., Zhang, L. & Zhang, D. A survey of graph theoretical approaches to image segmentation. Pattern Recogn.46, 1020–1038 (2013).
Wu, Z. & Leahy, R. An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell.15, 1101–1113 (1993).
Jardim, S., António, J. & Mora, C. Image thresholding approaches for medical image segmentation-short literature review. Procedia Computer Science219, 1485–1492 (2023).
Zhang, Y.-J. A survey on evaluation methods for image segmentation. Pattern Recogn.29, 1335–1346 (1996).
R. B. Oliveira, E. Mercedes Filho, Z. Ma, J. P. Papa, A. S. Pereira, and J. M. R. Tavares, “Computational methods for the image segmentation of pigmented skin lesions: a review,” Computer Methods and Programs in Biomedicine, 131, 127–141, 2016. PubMed
Pare, S., Kumar, A., Singh, G. K. & Bajaj, V. Image segmentation using multilevel thresholding: a research review. Iranian Journal of Science and Technology, Transactions of Electrical Engineering44, 1–29 (2020).
Tobias, O. J. & Seara, R. Image segmentation by histogram thresholding using fuzzy sets. IEEE Trans. Image Process.11, 1457–1465 (2002). PubMed
Sezan, M. I. A peak detection algorithm and its application to histogram-based image data reduction. Computer Vision, Graphics, and Image Processing49, 36–51 (1990).
Nakib, A., Oulhadj, H. & Siarry, P. Image histogram thresholding based on multiobjective optimization. Signal Process.87, 2516–2534 (2007).
Sen, D. & Pal, S. K. Gradient histogram: Thresholding in a region of interest for edge detection. Image Vis. Comput.28, 677–695 (2010).
Sarkar, S. & Das, S. Multilevel image thresholding based on 2D histogram and maximum Tsallis entropy—a differential evolution approach. IEEE Trans. Image Process.22, 4788–4797 (2013). PubMed
Sahoo, P. K., Soltani, S. & Wong, A. K. A survey of thresholding techniques. Computer Vision, Graphics, and Image Processing41, 233–260 (1988).
N. V. Lopes, P. A. M. do Couto, H. Bustince, and P. Melo-Pinto, “Automatic histogram threshold using fuzzy measures,” IEEE Transactions on Image Processing, 19, 199–204, 2009. PubMed
Chouikhi, N., Ammar, B., Hussain, A. & Alimi, A. M. Bi-level multi-objective evolution of a multi-layered echo-state network autoencoder for data representations. Neurocomputing341, 195–211 (2019).
Al Aqrabi, H. et al. A multi-layer hierarchical inter-cloud connectivity model for sequential packet inspection of tenant sessions accessing BI as a service. In 2014 IEEE Intl Conf on High Performance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS) 498–505 (2014).
Abualigah, L., Al-Okbi, N. K., Awwad, E. M., Sharaf, M. & Daoud, M. S. Boosted aquila arithmetic optimization algorithm for multi-level thresholding image segmentation. Evol. Syst.1, 1–28 (2024).
Otair, M., Alrawi, A. F., Abualigah, L., Jia, H. & Altalhi, M. Enhancing the quality of compressed images using rounding intensity followed by novel dividing technique. Multimedia Tools and Applications83, 1753–1786 (2024).
Qadri, A. M., Raza, A., Eid, F. & Abualigah, L. A novel transfer learning-based model for diagnosing malaria from parasitized and uninfected red blood cell images. Decis. Anal. J.9, 100352 (2023).
Su, H. et al. Multilevel threshold image segmentation for COVID-19 chest radiography: A framework using horizontal and vertical multiverse optimization. Comput. Biol. Med.146, 105618 (2022). PubMed PMC
Kurugollu, F., Sankur, B. & Harmanci, A. E. Color image segmentation using histogram multithresholding and fusion. Image Vis. Comput.19, 915–928 (2001).
Celik, T. Two-dimensional histogram equalization and contrast enhancement. Pattern Recogn.45, 3810–3824 (2012).
Liu, Q., Li, N., Jia, H., Qi, Q. & Abualigah, L. A chimp-inspired remora optimization algorithm for multilevel thresholding image segmentation using cross entropy. Artif. Intell. Rev.56, 159–216 (2023).
Chatzikoumi, E. How to evaluate machine translation: A review of automated and human metrics. Nat. Lang. Eng.26, 137–161 (2020).
Wang, H., Wu, H., He, Z., Huang, L. & Church, K. W. Progress in machine translation. Engineering18, 143–153 (2022).
Delon, J., Desolneux, A., Lisani, J.-L. & Petro, A. B. A nonparametric approach for histogram segmentation. IEEE Trans. Image Process.16, 253–261 (2006). PubMed
Reddy, T. A. & Henze, G. P. Parametric and non-parametric regression methods. In Applied Data Analysis and Modeling for Energy Engineers and Scientists 355–407 (Springer, 2023).
Goh, T. Y., Basah, S. N., Yazid, H., Safar, M. J. A. & Saad, F. S. A. Performance analysis of image thresholding: Otsu technique. Measurement114, 298–307 (2018).
Manic, K. S., Priya, R. K. & Rajinikanth, V. Image multithresholding based on Kapur/Tsallis entropy and firefly algorithm. Indian J. Sci. Technol.9, 89949 (2016).
De Albuquerque, M. P., Esquef, I. A. & Mello, A. G. Image thresholding using Tsallis entropy. Pattern Recogn. Lett.25, 1059–1065 (2004).
Razzak, M. I. et al. Deep learning for medical image processing: Overview, challenges and the future. In Classification in BioApps: Automation of Decision Making 323–350 (2018).
Burke, M., Driscoll, A., Lobell, D. B. & Ermon, S. Using satellite imagery to understand and promote sustainable development. Science371, 8628 (2021). PubMed
El-Darymli, K., Gill, E. W., Mcguire, P., Power, D. & Moloney, C. Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review. IEEE Access4, 6014–6058 (2016).
Feng, D., Wenkang, S., Liangzhou, C., Yong, D. & Zhenfu, Z. Infrared image segmentation with 2-D maximum entropy method based on particle swarm optimization (PSO). Pattern Recogn. Lett.26, 597–603 (2005).
Abualigah, L. et al. Improved reptile search algorithm by salp swarm algorithm for medical image segmentation. J. Bionic Eng.20, 1766–1790 (2023). PubMed PMC
Liu, D. & Yu, J. Otsu method and K-means. In 2009 Ninth International Conference on Hybrid Intelligent Systems 344–349 (2009).
Sharma, A., Chaturvedi, R., Dwivedi, U., Kumar, S. & Reddy, S. Firefly algorithm based effective gray scale image segmentation using multilevel thresholding and entropy function. Int. J. Pure Appl. Math.118, 437–443 (2018).
Sneddon, R. The Tsallis entropy of natural information. Physica A386, 101–118 (2007).
Ss, V. C. & Hs, A. Nature inspired meta heuristic algorithms for optimization problems. Computing104, 251–269 (2022).
Hussain, K., Mohd Salleh, M. N., Cheng, S. & Shi, Y. Metaheuristic research: A comprehensive survey. Artif. Intell. Rev.52, 2191–2233 (2019).
Sharma, M. & Kaur, P. A comprehensive analysis of nature-inspired meta-heuristic techniques for feature selection problem. Arch. Comput. Methods Eng.28, 1103–1127 (2021).
Kar, A. K. Bio inspired computing–a review of algorithms and scope of applications. Expert Syst. Appl.59, 20–32 (2016).
El-Kenawy, E.-S.M. et al. Novel meta-heuristic algorithm for feature selection, unconstrained functions and engineering problems. IEEE Access10, 40536–40555 (2022).
Črepinšek, M., Liu, S.-H. & Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey. ACM Comput. Surv.45, 1–33 (2013).
Chen, J., Xin, B., Peng, Z., Dou, L. & Zhang, J. Optimal contraction theorem for exploration–exploitation tradeoff in search and optimization. IEEE Trans. Syst. Man Cybern. A Syst. Hum.39, 680–691 (2009).
Blekos, K. et al. A review on quantum approximate optimization algorithm and its variants. Phys. Rep.1068, 1–66 (2024).
Lateef Haroon, A. et al. An optimized system for sensor ontology meta-matching using swarm intelligent algorithm. Internet Technol. Lett.1, e498 (2024).
Dehghani, M., Trojovská, E. & Trojovský, P. A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. Sci. Rep.12, 9924 (2022). PubMed PMC
Bäck, T. & Schwefel, H.-P. An overview of evolutionary algorithms for parameter optimization. Evol. Comput.1, 1–23 (1993).
Lambora, A. et al. Genetic algorithm—A literature review. In 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon) 380–384 (2019).
Gandomi, A. H. & Alavi, A. H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul.17, 4831–4845 (2012).
Črepinšek, M., Liu, S.-H. & Mernik, L. A note on teaching–learning-based optimization algorithm. Inf. Sci.212, 79–93 (2012).
Rashedi, E., Nezamabadi-Pour, H. & Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci.179, 2232–2248 (2009).
Bingley, W. J. et al. Enlarging the model of the human at the heart of human-centered AI: A social self-determination model of AI system impact. New Ideas Psychol.70, 101025 (2023).
Abualigah, L., Abd Elaziz, M., Sumari, P., Geem, Z. W. & Gandomi, A. H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl.191, 116158 (2022).
Žeger, I., Grgic, S., Vuković, J. & Šišul, G. Grayscale image colorization methods: Overview and evaluation. IEEE Access9, 113326–113346 (2021).
Banerji, S., Sinha, A. & Liu, C. New image descriptors based on color, texture, shape, and wavelets for object and scene image classification. Neurocomputing117, 173–185 (2013).
Guo, Q. & Peng, H. A novel multilevel color image segmentation technique based on an improved firefly algorithm and energy curve. Evol. Syst.14, 685–733 (2023).
Wu, B., Zhou, J., Ji, X., Yin, Y. & Shen, X. An ameliorated teaching–learning-based optimization algorithm based study of image segmentation for multilevel thresholding using Kapur’s entropy and Otsu’s between class variance. Inf. Sci.533, 72–107 (2020).
Houssein, E. H., Abdalkarim, N., Hussain, K. & Mohamed, E. Accurate multilevel thresholding image segmentation via oppositional snake optimization algorithm: Real cases with liver disease. Comput. Biol. Med.169, 107922 (2024). PubMed
Panda, R., Samantaray, L., Das, A., Agrawal, S. & Abraham, A. A novel evolutionary row class entropy based optimal multi-level thresholding technique for brain MR images. Expert Syst. Appl.168, 114426 (2021).
Khehra, B. S. & Pharwaha, A. P. S. Digital mammogram enhancement using Kapur measure of entropy and mathematical morphology. Biomed. Eng. Appl. Basis Commun.25, 1350029 (2013).
Sathya, P., Kalyani, R. & Sakthivel, V. Color image segmentation using Kapur, Otsu and minimum cross entropy functions based on exchange market algorithm. Expert Syst. Appl.172, 114636 (2021).
Emam, M. M., Houssein, E. H. & Ghoniem, R. M. A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images. Comput. Biol. Med.152, 106404 (2023). PubMed
Sasmal, B., Hussien, A. G., Das, A., Dhal, K. G. & Saha, R. Reptile search algorithm: Theory, variants, applications, and performance evaluation. Arch. Comput. Methods Eng.31, 521–549 (2024).
Yuan, Q., Zhang, Y., Dai, X. & Zhang, S. A modified reptile search algorithm for numerical optimization problems. Comput. Intell. Neurosci.2022, 9752003 (2022). PubMed PMC
Abualigah, L. & Diabat, A. Chaotic binary reptile search algorithm and its feature selection applications. J. Ambient. Intell. Humaniz. Comput.14, 13931–13947 (2023).
Chauhan, S., Vashishtha, G. & Kumar, A. Approximating parameters of photovoltaic models using an amended reptile search algorithm. J. Ambient. Intell. Humaniz. Comput.14, 9073–9088 (2023).
Barrera-García, J. et al. Enhancing reptile search algorithm performance for the knapsack problem with integration of chaotic map. In Mexican International Conference on Artificial Intelligence 70–81 (2024).
Elashry, S. S., Abohamama, A., Abdul-Kader, H. M., Rashad, M. & Ali, A. F. A chaotic reptile search algorithm for energy consumption optimization in wireless sensor networks. IEEE Access1, 1 (2024).
Couceiro, M. et al. Particle Swarm Optimization (Springer, 2016).
Zhu, H., Wang, Y., Wang, K. & Chen, Y. Particle swarm optimization (PSO) for the constrained portfolio optimization problem. Expert Syst. Appl.38, 10161–10169 (2011).
Marini, F. & Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst.149, 153–165 (2015).
Shami, T. M. et al. Particle swarm optimization: A comprehensive survey. IEEE Access10, 10031–10061 (2022).
Jiang, Y., Hu, T., Huang, C. & Wu, X. An improved particle swarm optimization algorithm. Appl. Math. Comput.193, 231–239 (2007).
Abdel-Basset, M., Mohamed, R. & Abouhawwash, M. Hybrid marine predators algorithm for image segmentation: Analysis and validations. Artif. Intell. Rev.55, 3315–3367 (2022). PubMed PMC
Salgotra, R., Singh, U., Singh, S., Singh, G. & Mittal, N. Self-adaptive salp swarm algorithm for engineering optimization problems. Appl. Math. Model.89, 188–207 (2021).
Ma, G. & Yue, X. An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method. Eng. Appl. Artif. Intell.113, 104960 (2022).
Omran, M. G., Salman, A. & Engelbrecht, A. P. Dynamic clustering using particle swarm optimization with application in image segmentation. Pattern Anal. Appl.8, 332–344 (2006).
Subha, B., Jeyakumar, V. & Deepa, S. Gaussian aquila optimizer based dual convolutional neural networks for identification and grading of osteoarthritis using knee joint images. Sci. Rep.14, 7225 (2024). PubMed PMC
Horé, A. & Ziou, D. Is there a relationship between peak-signal-to-noise ratio and structural similarity index measure?. IET Image Proc.7, 12–24 (2013).
Bakurov, I., Buzzelli, M., Schettini, R., Castelli, M. & Vanneschi, L. Structural similarity index (SSIM) revisited: A data-driven approach. Expert Syst. Appl.189, 116087 (2022).
López-Vázquez, A. & Hochsztain, E. Extended and updated tables for the Friedman rank test. Commun. Stat. Theory Methods48, 268–281 (2019).