Drawer Algorithm: A New Metaheuristic Approach for Solving Optimization Problems in Engineering
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2023
Pontificia Universidad Católica de Valparaíso
PubMed
37366834
PubMed Central
PMC10296661
DOI
10.3390/biomimetics8020239
PII: biomimetics8020239
Knihovny.cz E-zdroje
- Klíčová slova
- drawer, exploitation, exploration, human-inspired methods, optimization,
- Publikační typ
- časopisecké články MeSH
Metaheuristic optimization algorithms play an essential role in optimizing problems. In this article, a new metaheuristic approach called the drawer algorithm (DA) is developed to provide quasi-optimal solutions to optimization problems. The main inspiration for the DA is to simulate the selection of objects from different drawers to create an optimal combination. The optimization process involves a dresser with a given number of drawers, where similar items are placed in each drawer. The optimization is based on selecting suitable items, discarding unsuitable ones from different drawers, and assembling them into an appropriate combination. The DA is described, and its mathematical modeling is presented. The performance of the DA in optimization is tested by solving fifty-two objective functions of various unimodal and multimodal types and the CEC 2017 test suite. The results of the DA are compared to the performance of twelve well-known algorithms. The simulation results demonstrate that the DA, with a proper balance between exploration and exploitation, produces suitable solutions. Furthermore, comparing the performance of optimization algorithms shows that the DA is an effective approach for solving optimization problems and is much more competitive than the twelve algorithms against which it was compared to. Additionally, the implementation of the DA on twenty-two constrained problems from the CEC 2011 test suite demonstrates its high efficiency in handling optimization problems in real-world applications.
Zobrazit více v PubMed
Clerc M. Particle Swarm Optimization. Wiley-ISTE; London, UK: 2006.
Yang X.-S. Nature-Inspired Algorithms and Applied Optimization. Springer International Publishing AG; New York, NY, USA: 2017.
Iba K. Reactive power optimization by genetic algorithm. IEEE Trans. Power Syst. 1994;9:685–692. doi: 10.1109/59.317674. DOI
Mirjalili S., Sadiq A.S. Magnetic Optimization Algorithm for training Multi Layer Perceptron; Proceedings of the 2011 IEEE 3rd International Conference on Communication Software and Networks; Xi’an, China. 27–29 May 2011; pp. 42–46.
Mirjalili S., Hashim S.Z.M., Sardroudi H.M. Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl. Math. Comput. 2012;218:11125–11137. doi: 10.1016/j.amc.2012.04.069. DOI
Yi N., Xu J., Yan L., Huang L. Task optimization and scheduling of distributed cyber–physical system based on improved ant colony algorithm. Future Gener. Comput. Syst. 2020;109:134–148. doi: 10.1016/j.future.2020.03.051. DOI
Rezk H., Fathy A., Aly M., Ibrahim M.N.F. Energy management control strategy for renewable energy system based on spotted hyena optimizer. Comput. Mater. Contin. 2021;67:2271–2281. doi: 10.32604/cmc.2021.014590. DOI
Akbari E., Ghasemi M., Gil M., Rahimnejad A., Gadsden S.A. Optimal Power Flow via Teaching-Learning-Studying-Based Optimization Algorithm. Electr. Power Compon. Syst. 2021;49:584–601. doi: 10.1080/15325008.2021.1971331. DOI
Adhvaryyu P.K., Chattopadhyay P.K., Bhattacharjya A. Application of bio-inspired krill herd algorithm to combined heat and power economic dispatch; Proceedings of the 2014 IEEE Innovative Smart Grid Technologies—Asia (ISGT ASIA); Kuala Lumpur, Malaysia. 20–23 May 2014; pp. 338–343.
Panda M., Nayak Y.K. Impact analysis of renewable energy Distributed Generation in deregulated electricity markets: A context of Transmission Congestion Problem. Energy. 2022;254:124403. doi: 10.1016/j.energy.2022.124403. DOI
Kottath R., Singh P. Influencer buddy optimization: Algorithm and its application to electricity load and price forecasting problem. Energy. 2023;263:125641. doi: 10.1016/j.energy.2022.125641. PubMed DOI PMC
Xing Z., Zhu J., Zhang Z., Qin Y., Jia L. Energy consumption optimization of tramway operation based on improved PSO algorithm. Energy. 2022;258:124848. doi: 10.1016/j.energy.2022.124848. DOI
Montazeri Z., Niknam T. Optimal utilization of electrical energy from power plants based on final energy consumption using gravitational search algorithm. Electr. Eng. Electromechanics. 2018;4:70–73. doi: 10.20998/2074-272X.2018.4.12. DOI
Song Y.H., Xuan Q.Y. Combined heat and power economic dispatch using genetic algorithm based penalty function method. Electr. Mach. Power Syst. 1998;26:363–372. doi: 10.1080/07313569808955828. DOI
Premkumar M., Sowmya R., Jangir P., Nisar K.S., Aldhaifallah M. A new metaheuristic optimization algorithms for brushless direct current wheel motor design problem. CMC Comput. Mater. Contin. 2021;67:2227–2242. doi: 10.32604/cmc.2021.015565. DOI
Carbas S., Toktas A., Ustun D. Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Appzlications. Springer; New York, NY, USA: 2021.
Yang X.-S. Metaheuristics in Water, Geotechnical and Transport Engineering. Elsevier; Amsterdam, The Netherlands: 2013. Optimization and metaheuristic algorithms in engineering; pp. 1–23.
Kennedy J., Eberhart R. Particle swarm optimization; Proceedings of the ICNN’95—International Conference on Neural Networks; Perth, WA, Australia. 27 November–1 December 1995; pp. 1942–1948.
Dorigo M., Maniezzo V., Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B. 1996;26:29–41. doi: 10.1109/3477.484436. PubMed DOI
Karaboga D., Basturk B. A powerful and efficient algorithm for numerical functionoptimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007;39:459–471. doi: 10.1007/s10898-007-9149-x. DOI
Gandomi A.H., Alavi A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012;17:4831–4845. doi: 10.1016/j.cnsns.2012.05.010. DOI
Mirjalili S., Mirjalili S.M., Lewis A. Grey wolf optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI
Chen Z., Francis A., Li S., Liao B., Xiao D., Ha T.T., Li J., Ding L., Cao X. Egret Swarm Optimization Algorithm: An Evolutionary Computation Approach for Model Free Optimization. Biomimetics. 2022;7:144. doi: 10.3390/biomimetics7040144. PubMed DOI PMC
Khan A.H., Cao X., Xu B., Li S. Beetle antennae search: Using biomimetic foraging behaviour of beetles to fool a well-trained neuro-intelligent system. Biomimetics. 2022;7:84. doi: 10.3390/biomimetics7030084. PubMed DOI PMC
Dehghani M., Trojovský P. Serval Optimization Algorithm: A New Bio-Inspired Approach for Solving Optimization Problems. Biomimetics. 2022;7:204. doi: 10.3390/biomimetics7040204. PubMed DOI PMC
Trojovský P., Dehghani M. Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2023;8:149. doi: 10.3390/biomimetics8020149. PubMed DOI PMC
Faramarzi A., Heidarinejad M., Mirjalili S., Gandomi A.H. Marine predators algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020;152:113377. doi: 10.1016/j.eswa.2020.113377. DOI
Dehghani M., Montazeri Z., Trojovská E., Trojovský P. Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl. Based Syst. 2023;259:110011. doi: 10.1016/j.knosys.2022.110011. DOI
Kaur S., Awasthi L.K., Sangal A.L., Dhiman G. Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020;90:103541. doi: 10.1016/j.engappai.2020.103541. DOI
Kaveh M., Mesgari M.S., Saeidian B. Orchard Algorithm (OA): A new meta-heuristic algorithm for solving discrete and continuous optimization problems. Math. Comput. Simul. 2023;208:95–135. doi: 10.1016/j.matcom.2022.12.027. DOI
Cuevas E., Cienfuegos M., Zaldívar D., Pérez-Cisneros M. A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 2013;40:6374–6384. doi: 10.1016/j.eswa.2013.05.041. DOI
Dhiman G., Kumar V. Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowl. Based Syst. 2018;159:20–50. doi: 10.1016/j.knosys.2018.06.001. DOI
Yazdani M., Jolai F. Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 2016;3:24–36. doi: 10.1016/j.jcde.2015.06.003. DOI
Yang X.S., Deb S. Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 2010;1:330–343. doi: 10.1504/IJMMNO.2010.035430. DOI
Dehghani M., Trojovský P., Malik O.P. Green Anaconda Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2023;8:121. doi: 10.3390/biomimetics8010121. PubMed DOI PMC
Doumari S.A., Givi H., Dehghani M., Montazeri Z., Leiva V., Guerrero J.M. A new two-stage algorithm for solving optimization problems. Entropy. 2021;23:491. doi: 10.3390/e23040491. PubMed DOI PMC
Zhao W., Zhang Z., Wang L. Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications. Eng. Appl. Artif. Intell. 2020;87:103300. doi: 10.1016/j.engappai.2019.103300. DOI
Abdollahzadeh B., Gharehchopogh F.S., Khodadadi N., Mirjalili S. Mountain Gazelle Optimizer: A new Nature-inspired Metaheuristic Algorithm for Global Optimization Problems. Adv. Eng. Softw. 2022;174:103282. doi: 10.1016/j.advengsoft.2022.103282. DOI
Shen C., Zhang K. Two-stage improved Grey Wolf optimization algorithm for feature selection on high-dimensional classification. Complex Intell. Syst. 2022;8:2769–2789. doi: 10.1007/s40747-021-00452-4. DOI
Goldberg D.E., Holland J.H. Genetic algorithms and machine learning. Mach. Learn. 1988;3:95–99. doi: 10.1023/A:1022602019183. DOI
Beyer H.G., Schwefel H.P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002;1:3–52. doi: 10.1023/A:1015059928466. DOI
Simon D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008;12:702–713. doi: 10.1109/TEVC.2008.919004. DOI
Banzhaf W., Nordin P., Keller R.E., Francone F.D. Genetic Programming: An Introduction. Volume 1 Morgan Kaufmann Publishers; San Francisco, CA, USA: 1998.
Storn R., Price K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997;11:341–359. doi: 10.1023/A:1008202821328. DOI
Rashedi E., Nezamabadi-Pour H., Saryazdi S. GSA: A gravitational search algorithm. Inf. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. DOI
Ghasemi M., Davoudkhani I.F., Akbari E., Rahimnejad A., Ghavidel S., Li L. A novel and effective optimization algorithm for global optimization and its engineering applications: Turbulent Flow of Water-based Optimization (TFWO) Eng. Appl. Artif. Intell. 2022;92:103666. doi: 10.1016/j.engappai.2020.103666. DOI
Kaveh A., Dadras A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017;110:69–84. doi: 10.1016/j.advengsoft.2017.03.014. DOI
Shah-Hosseini H. Principal components analysis by the galaxy-based search algorithm: A novel metaheuristic for continuous optimisation. Int. J. Comput. Sci. Eng. 2011;6:132–140.
Hatamlou A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013;222:175–184. doi: 10.1016/j.ins.2012.08.023. DOI
Kaveh A., Khayatazad M. A new meta-heuristic method: Ray optimization. Comput. Struct. 2012;112–113:283–294. doi: 10.1016/j.compstruc.2012.09.003. DOI
Erol O.K., Eksin I. A new optimization method: Big Bang–Big Crunch. Adv. Eng. Softw. 2006;37:106–111. doi: 10.1016/j.advengsoft.2005.04.005. DOI
Du H., Wu X., Zhuang J. Small-world optimization algorithm for function optimization. In: Jiao L., Wang L., Gao X., Liu J., Wu F., editors. Advances in Natural Computation. Springer; Berlin/Heidelberg, Germany: 2006. pp. 264–273.
Tayarani-N M.H., Akbarzadeh-T M.R. Magnetic optimization algorithms a new synthesis; Proceedings of the Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence); Hong Kong, China. 1–6 June 2008; pp. 2659–2664.
Alatas B. ACROA: Artificial chemical reaction optimization algorithm for global optimization. Expert Syst. Appl. 2011;38:13170–13180. doi: 10.1016/j.eswa.2011.04.126. DOI
Kashan A.H. League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships. Appl. Soft Comput. 2014;16:171–200. doi: 10.1016/j.asoc.2013.12.005. DOI
Dehghani M., Mardaneh M., Guerrero J.M., Malik O., Kumar V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020;13:514–523. doi: 10.22266/ijies2020.1031.45. DOI
Moghdani R., Salimifard K. Volleyball Premier League Algorithm. Appl. Soft Comput. 2018;64:161–185. doi: 10.1016/j.asoc.2017.11.043. DOI
Subramaniyan S., Ramiah J. Improved football game optimization for state estimation and power quality enhancement. Comput. Electr. Eng. 2020;81:106547. doi: 10.1016/j.compeleceng.2019.106547. DOI
Ma B., Hu Y., Pengmin Lu P., Liu Y. Running city game optimizer: A game-based metaheuristic optimization algorithm for global optimization. J. Comput. Des. Eng. 2023;10:65–107. doi: 10.1093/jcde/qwac131. DOI
Xu S., Chen H. Nash game based efficient global optimization for large-scale design problems. J. Glob. Optim. 2018;71:361–381. doi: 10.1007/s10898-018-0608-3. DOI
Srilakshmi K., Babu P.R., Venkatesan Y., Palanivelu A. Soccer league optimization for load flow analysis of power systems. Int. J. Numer. Model. Electron. Netw. Devices Fields. 2021;35:e2965. doi: 10.1002/jnm.2965. DOI
Rao R.V., Savsani V.J., Vakharia D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011;43:303–315. doi: 10.1016/j.cad.2010.12.015. DOI
Dehghani M., Mardaneh M., Guerrero J.M., Malik O.P., Ramirez-Mendoza R.A., Matas J., Vasquez J.C., Parra-Arroyo L. A new “Doctor and Patient” optimization algorithm: An application to energy commitment problem. Appl. Sci. 2020;10:5791. doi: 10.3390/app10175791. DOI
Trojovský P., Dehghani M. A new optimization algorithm based on mimicking the voting process for leader selection. PeerJ Comput. Sci. 2022;8:e976. doi: 10.7717/peerj-cs.976. PubMed DOI PMC
Dehghani M., Trojovský P. Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization. Sensors. 2021;21:4567. doi: 10.3390/s21134567. PubMed DOI PMC
Dehghani M., Trojovská E., Trojovský P. A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. Sci. Rep. 2022;12:9924. doi: 10.1038/s41598-022-14225-7. PubMed DOI PMC
Zeidabadi F.-A., Dehghani M., Trojovský P., Hubálovský Š., Leiva V., Dhiman G. Archery Algorithm: A Novel Stochastic Optimization Algorithm for Solving Optimization Problems. Comput. Mater. Contin. 2022;72:399–416. doi: 10.32604/cmc.2022.024736. DOI
Dehghani M., Montazeri Z., Dehghani A., Malik O.P. GO: Group optimization. Gazi Univ. J. Sci. 2020;33:381–392. doi: 10.35378/gujs.567472. DOI
Dehghani M., Mardaneh M., Malik O. FOA: ‘Following’Optimization Algorithm for solving Power engineering optimization problems. J. Oper. Autom. Power Eng. 2020;8:57–64.
Wolpert D.H., Macready W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997;1:67–82. doi: 10.1109/4235.585893. DOI
Awad N., Ali M., Liang J., Qu B., Suganthan P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. Nanyang Technological University; Singapore: 2016. Technical Report.
Wilcoxon F. Breakthroughs in Statistics. Springer; New York, NY, USA: 1992. Individual comparisons by ranking methods; pp. 196–202.
Das S., Suganthan P.N. Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems. 2010. [(accessed on 4 June 2023)]. Technical Reports. Available online: al-roomi.org/multimedia/CEC_Database/CEC2011/CEC2011_TechnicalReport.pdf.
OOBO: A New Metaheuristic Algorithm for Solving Optimization Problems