Properties of titanium-alloyed DLC layers for medical applications
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
25093457
PubMed Central
PMC4138222
DOI
10.4161/biom.29505
PII: 29505
Knihovny.cz E-resources
- Keywords
- EIS, XPS, bioactivity, corrosion, titanium doped DLC,
- MeSH
- Coated Materials, Biocompatible chemistry MeSH
- Biomedical Technology MeSH
- Electric Impedance MeSH
- Phosphorus chemistry MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Surface Properties MeSH
- Alloys chemistry MeSH
- Body Fluids chemistry MeSH
- Materials Testing MeSH
- Titanium chemistry MeSH
- Carbon chemistry MeSH
- Calcium chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Coated Materials, Biocompatible MeSH
- Phosphorus MeSH
- Alloys MeSH
- Titanium MeSH
- titanium carbide MeSH Browser
- Carbon MeSH
- Calcium MeSH
DLC-type layers offer a good potential for application in medicine, due to their excellent tribological properties, chemical resistance, and bio-inert character. The presented study has verified the possibility of alloying DLC layers with titanium, with coatings containing three levels of titanium concentration prepared. Titanium was present on the surface mainly in the form of oxides. Its increasing concentration led to increased presence of titanium carbide as well. The behavior of the studied systems was stable during exposure in a physiological saline solution. Electrochemical impedance spectra practically did not change with time. Alloying, however, changed the electrochemical behavior of coated systems in a significant way: from inert surface mediating only exchange reactions of the environment in the case of unalloyed DLC layers to a response corresponding rather to a passive surface in the case of alloyed specimens. The effect of DLC layers alloying with titanium was tested by the interaction with a simulated body fluid, during which precipitation of a compound containing calcium and phosphorus--basic components of the bone apatite--occurred on all doped specimens, in contrast to pure DLC. The results of the specimens' surface colonization with cells test proved the positive effect of titanium in the case of specimens with a medium and highest content of this element.
Czech Technical University Prague; Faculty of Electrical Engineering; Prague Czech Republic
Masaryk University; Faculty of Medicine; Brno Czech Republic
See more in PubMed
Nalwa HS, ed. Handbook of Thin Film Materials, Volume 1. 2002.
Ma WJ, Ruys AJ, Mason RS, Martin PJ, Bendavid A, Liu Z, Ionescu M, Zreiqat H. DLC coatings: effects of physical and chemical properties on biological response. Biomaterials. 2007;28:1620–8. doi: 10.1016/j.biomaterials.2006.12.010. PubMed DOI
Roy RK, Lee K-R. Biomedical applications of diamond-like carbon coatings: a review. J Biomed Mater Res B Appl Biomater. 2007;83:72–84. doi: 10.1002/jbm.b.30768. PubMed DOI
Hauert R. A review of modified DLC coatings for biological applications. Diamond Related Materials. 2003;12:583–9. doi: 10.1016/S0925-9635(03)00081-5. DOI
Hauert R, Muller U. An overview on tailored tribological and biological behavior of diamond-like carbon. Diamond Related Materials. 2003;12:171–7. doi: 10.1016/S0925-9635(03)00019-0. DOI
Grill A. Diamond-like carbon coatings as biocompatible materials - an overview. Diamond Related Materials. 2003;12:166–70. doi: 10.1016/S0925-9635(03)00018-9. DOI
Cheng Y, Zheng YF. The corrosion behavior and hemocompatibility of TiNi alloys coated with DLC by plasma based ion implantation. Surf Coat Tech. 2006;200:4543–8. doi: 10.1016/j.surfcoat.2005.03.039. DOI
Kim H-G, Ahn S-H, Kim J-G, Park SJ, Lee K-R. Electrochemical behavior of diamond-like carbon films for biomedical applications. Thin Solid Films. 2005;475:291–7. doi: 10.1016/j.tsf.2004.07.052. DOI
Maguire PD, McLaughlin JA, Okpalugo TIT, Lemoine P, Papakonstantinou P, McAdams ET, et al. Mechanical stability, corrosion performance and bioresponse of amorphous diamond-like carbon for medical stents and guidewires. Diamond Related Materials. 2005;14:1277–88. doi: 10.1016/j.diamond.2004.12.023. DOI
Kwok SCH, Wang J, Chu PK. Surface energy, wettability, and blood compatibility phosphorus doped diamond-like carbon films. Diamond Related Materials. 2005;14:78–85. doi: 10.1016/j.diamond.2004.07.019. DOI
Schroeder A, Francz G, Bruinink A, Hauert R, Mayer J, Wintermantel E. Titanium containing amorphous hydrogenated carbon films (a-C: H/Ti): surface analysis and evaluation of cellular reactions using bone marrow cell cultures in vitro. Biomaterials. 2000;21:449–56. doi: 10.1016/S0142-9612(99)00135-0. PubMed DOI
Ji L, Li H, Zhao F, Chen J, Zhou H. Microstructure and mechanical properties of Mo/DLC nanocomposite films. Diamond Related Materials. 2008;17:1949–54. doi: 10.1016/j.diamond.2008.04.018. DOI
Dorner-Reisel A, Schurer C, Nischan C, Seidel O, Muller E. Diamond-like carbon: alteration of the biological acceptance due to Ca-O incorporation. Thin Solid Films. 2002;420-421:263–8. doi: 10.1016/S0040-6090(02)00745-9. DOI
Kao W-H. The tribological properties of Zr-C:H coatings deposited on AISI M2 substrate. Wear. 2007;264:368–73. doi: 10.1016/j.wear.2007.01.117. DOI
Anandan C, Mohan L, Babu PD. Electrochemical studies and growth of apatite on Molybdenum doped DLC coatings on titanium alloy β-21S. Appl Surf Sci. 2014 doi: 10.1016/j.apsusc.2014.01.049. DOI
Gayathri S, Kumar N, Krishnan R, Ravindran TR, Dash S, Tyagi AK, et al. Tribological properties of pulsed laser deposited DLC/TM (TM=Cr, Ag, Ti and Ni) multilayers. Tribol Int. 2012;53:87–97. doi: 10.1016/j.triboint.2012.04.015. DOI
Ma G, Gong S, Lin G, Zhang L, Sun G. A study of structure and properties of Ti-doped DLC film by reactive magnetron sputtering with ion implantation. Appl Surf Sci. 2012;258:3045–50. doi: 10.1016/j.apsusc.2011.11.034. DOI
Gayathri S, Krishnan R, Ravindran TR, Tripura Sundari S, Dash S, Tyagi AK, et al. Spectroscopic studies on DLC/TM (Cr, Ag, Ti, Ni) multilayers. Mater Res Bull. 2012;47:843–9. doi: 10.1016/j.materresbull.2011.11.042. DOI
Ma G, Lin G, Sun G, Zhang H, Wu H. Characteristics of DLC containing Ti and Zr films deposited by reactive magnetron sputtering. Physics Procedia. 2011;18:9–15. doi: 10.1016/j.phpro.2011.06.049. DOI
Pisarek M, Roguska A, Andrzejczuk M, Marcon L, Szunerits S, Lewandowska M, et al. Effect of two-step functionalization of Ti by chemical processes on protein adsorption. Appl Surf Sci. 2011;257:8196–204. doi: 10.1016/j.apsusc.2011.03.120. DOI
Chemical Kinetics Database NIST. Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.7, Data Version 2013.03 http://kinetics.nist.gov/janaf/html/C-107.html
NIST X-ray Photoelectron Spectroscopy Database. Version 4.0; http://srdata.nist.gov/xps2 National Institute of Standards and Technology, Gaithersburg, 2008.
Zehnder T, Patscheider J. Surf Coat Tech. 2000;138:2.
Zhang Q, Lin N, He Y. Effects of Mo additions on the corrosion behavior of WC–TiC–Ni hardmetals in acidic solutions. International Journal of Refractory Metals and Hard Materials. 2013;38:15. doi: 10.1016/j.ijrmhm.2012.12.003. DOI
Nurk G, Eskusson J, Jaaniso R, Lust E. Electrochemical properties of diamond-like carbon electrodes prepared by the pulsed laser deposition method. J Solid State Electrochem. 2003;7:421–34. doi: 10.1007/s10008-002-0338-8. DOI
Ratner B, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials Science - An Introduction to Materials in Medicine. Academic Press, 2004.
Grigal IP, Markeev AM, Gudkova SA, Chernikova AG, Mityaev AS, Alekhin AP. Correlation between bioactivity and structural properties of titanium dioxide coatings grown by atomic layer deposition. Appl Surf Sci. 2012;258:3415–9. doi: 10.1016/j.apsusc.2011.11.082. DOI
Vanzillotta PS, Sader MS, Bastos IN, Soares GdeA. Improvement of in vitro titanium bioactivity by three different surface treatments. Dent Mater. 2006;22:275–82. doi: 10.1016/j.dental.2005.03.012. PubMed DOI
Fawzy AS, Amer MA. An in vitro and in vivo evaluation of bioactive titanium implants following sodium removal treatment. Dent Mater. 2009;25:48–57. doi: 10.1016/j.dental.2008.05.007. PubMed DOI
Gemelli E, Camargo NHA. Low voltage anodization of titanium in nitric acid solution: A new method to bioactivate titanium. Mater Charact. 2011;62:938–42. doi: 10.1016/j.matchar.2011.07.004. DOI
Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15. doi: 10.1016/j.biomaterials.2006.01.017. PubMed DOI
Bell LC, Mika H, Kruger BJ. Synthetic hydroxyapatite-solubility product and stoichiometry of dissolution. Arch Oral Biol. 1978;23:329–36. doi: 10.1016/0003-9969(78)90089-4. PubMed DOI
Ishikawa K, Ducheyene P, Radin S. Determination of the Ca/P ratio in calciumdeficient hydroxyapatite using X-ray diffraction analysis. J Mater Sci Mater Med. 1993;•••:4.
Kim J-U, Jeong Y-H, Choe H-C. Morphology of hydroxyapatite coated nanotube surface of Ti–35Nb–xHf alloys for implant materials. Thin Solid Films. 2011;520:793–9. doi: 10.1016/j.tsf.2011.04.169. DOI
Gu YX, Du J, Zhao JM, Si MS, Mo JJ, Lai HC. Characterization and preosteoblastic behavior of hydroxyapatite-deposited nanotube surface of titanium prepared by anodization coupled with alternative immersion method. J Biomed Mater Res B Appl Biomater. 2012;100:2122–30. doi: 10.1002/jbm.b.32777. PubMed DOI
Barsoukov E, MacDonald R. Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd Edition. 2005.
Lasia A. Modern Aspects of Electrochemistry. In: Schlesinger M, ed. Modeling of Impedance of Porous Electrodes, 2009.
Wang CX, Wang M. Electrochemical impedance spectroscopy study of the nucleation and growth of apatite on chemically treated pure titanium. Mater Lett. 2002;54:30–6. doi: 10.1016/S0167-577X(01)00532-8. PubMed DOI
Wang CX, Wang M, Zhou X. Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedance spectroscopy study. Biomaterials. 2003;24:3069–77. doi: 10.1016/S0142-9612(03)00154-6. PubMed DOI