A new optimization algorithm based on mimicking the voting process for leader selection
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35634108
PubMed Central
PMC9138015
DOI
10.7717/peerj-cs.976
PII: cs-976
Knihovny.cz E-zdroje
- Klíčová slova
- Applied mathematics, Human-based metahurestic algorithm, Leader selection, Optimization, Optimization problem, Population matrix, Population-based algorithms, Recurring process, Stochastic algorithms, Voting process,
- Publikační typ
- časopisecké články MeSH
Stochastic-based optimization algorithms are effective approaches to addressing optimization challenges. In this article, a new optimization algorithm called the Election-Based Optimization Algorithm (EBOA) was developed that mimics the voting process to select the leader. The fundamental inspiration of EBOA was the voting process, the selection of the leader, and the impact of the public awareness level on the selection of the leader. The EBOA population is guided by the search space under the guidance of the elected leader. EBOA's process is mathematically modeled in two phases: exploration and exploitation. The efficiency of EBOA has been investigated in solving thirty-three objective functions of a variety of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, and CEC 2019 types. The implementation results of the EBOA on the objective functions show its high exploration ability in global search, its exploitation ability in local search, as well as the ability to strike the proper balance between global search and local search, which has led to the effective efficiency of the proposed EBOA approach in optimizing and providing appropriate solutions. Our analysis shows that EBOA provides an appropriate balance between exploration and exploitation and, therefore, has better and more competitive performance than the ten other algorithms to which it was compared.
Zobrazit více v PubMed
Abdullah JM, Ahmed T. Fitness dependent optimizer: inspired by the bee swarming reproductive process. IEEE Access. 2019;7:43473–43486. doi: 10.1109/ACCESS.2019.2907012. DOI
Akyol S, Alatas B. Plant intelligence based metaheuristic optimization algorithms. Artificial Intelligence Review. 2017;47(4):417–462. doi: 10.1007/s10462-016-9486-6. DOI
Alatas B. ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Systems with Applications. 2011;38(10):13170–13180. doi: 10.1016/j.eswa.2011.04.126. DOI
Arora S, Singh S. Butterfly optimization algorithm: a novel approach for global optimization. Soft Computing. 2019;23(3):715–734. doi: 10.1007/s00500-018-3102-4. DOI
Ayyarao TL, RamaKrishna N, Elavarasam RM, Polumahanthi N, Rambabu M, Saini G, Khan B, Alatas B. War strategy optimization algorithm: a new effective metaheuristic algorithm for global optimization. IEEE Access. 2022;10:25073–25105. doi: 10.1109/ACCESS.2022.3153493. DOI
Borji A, Hamidi M. A new approach to global optimization motivated by parliamentary political competitions. International Journal of Innovative Computing, Information and Control. 2009;5(6):1643–1653.
Boschetti MA, Maniezzo V, Roffilli M, Bolufé Röhler A. Matheuristics: optimization, simulation and control. International workshop on hybrid metaheuristics.2009.
Chuang C-L, Jiang J-A. Integrated radiation optimization: inspired by the gravitational radiation in the curvature of space–time. 2007 IEEE congress on evolutionary computation; Piscataway: IEEE; 2007.
Curtis FE, Robinson DP. Exploiting negative curvature in deterministic and stochastic optimization. Mathematical Programming. 2019;176(1):69–94. doi: 10.1007/s10107-018-1335-8. DOI
Dehghani M, Mardaneh M, Malik O. FOA: ‘Following’ Optimization Algorithm for solving Power engineering optimization problems. Journal of Operation and Automation in Power Engineering. 2020;8(1):57–64.
Dehghani M, Montazeri Z, Dhiman G, Malik O, Morales-Menendez R, Ramirez-Mendoza RA, Dehghani A, Guerrero JM, Parra-Arroyo L. A spring search algorithm applied to engineering optimization problems. Applied Sciences. 2020a;10(18):6173. doi: 10.3390/app10186173. DOI
Dehghani M, Montazeri Z, Saremi S, Dehghani A, Malik OP, Al-Haddad K, Guerrero JM. HOGO: Hide objects game optimization. International Journal of Intelligent Engineering and Systems. 2020b;13(4):216–225. doi: 10.22266/ijies2020.0831.19. DOI
Dehghani M, Samet H. Momentum search algorithm: a new meta-heuristic optimization algorithm inspired by momentum conservation law. SN Applied Sciences. 2020;2(10):1–15. doi: 10.1007/s42452-019-1685-8. DOI
Dehghani M, Trojovský P. Teamwork optimization algorithm: a new optimization approach for function minimization/maximization. Sensors. 2021;21(13):4567. doi: 10.3390/s21134567. PubMed DOI PMC
Dhiman G. SSC: a hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications. Knowledge-Based Systems. 2021;222(35):106926. doi: 10.1016/j.knosys.2021.106926. DOI
Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 1996;26(1):29–41. doi: 10.1109/3477.484436. PubMed DOI
Erol OK, Eksin I. A new optimization method: big bang–big crunch. Advances in Engineering Software. 2006;37(2):106–111. doi: 10.1016/j.advengsoft.2005.04.005. DOI
Eskandar H, Sadollah A, Bahreininejad A, Hamdi M. Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures. 2012;110:151–166.
Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization algorithm: harmony search. Simulation. 2001;76(2):60–68. doi: 10.1177/003754970107600201. DOI
Goldberg DE, Holland JH. Genetic algorithms and machine learning. Machine Learning. 1988;3(2):95–99. doi: 10.1023/A:1022602019183. DOI
Gonzalez M, López-Espín JJ, Aparicio J, Talbi E-G. A hyper-matheuristic approach for solving mixed integer linear optimization models in the context of data envelopment analysis. PeerJ Computer Science. 2022;8:e828. doi: 10.7717/peerj-cs.828. PubMed DOI PMC
Hofmeyr SA, Forrest S. Architecture for an artificial immune system. Evolutionary Computation. 2000;8(4):443–473. doi: 10.1162/106365600568257. PubMed DOI
Karaboga D, Basturk B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. International fuzzy systems association world congress.2007.
Kaur S, Awasthi LK, Sangal AL, Dhiman G. Tunicate Swarm Algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Engineering Applications of Artificial Intelligence. 2020;90:103541. doi: 10.1016/j.engappai.2020.103541. DOI
Kaveh A, Talatahari S. Size optimization of space trusses using Big Bang–Big Crunch algorithm. Computers & Structures. 2009;87(17–18):1129–1140. doi: 10.1016/j.compstruc.2009.04.011. DOI
Kaveh A, Zolghadr A. A novel meta-heuristic algorithm: tug of war optimization. Iran University of Science & Technology. 2016;6(4):469–492.
Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN’95—international conference on neural networks, Perth, WA, Australia.1995.
Khishe M, Mosavi MR. Chimp optimization algorithm. Expert Systems with Applications. 2020;149:113338. doi: 10.1016/j.eswa.2020.113338. PubMed DOI PMC
Kim TK. T test as a parametric statistic. Korean Journal of Anesthesiology. 2015;68(6):540. doi: 10.4097/kjae.2015.68.6.540. PubMed DOI PMC
Kozlov K, Samsonov AM, Samsonova M. A software for parameter optimization with Differential Evolution Entirely Parallel method. PeerJ Computer Science. 2016;2:e74. doi: 10.7717/peerj-cs.74. DOI
Lam AY, Li VO. Chemical-reaction-inspired metaheuristic for optimization. IEEE Transactions on Evolutionary Computation. 2009;14(3):381–399.
Mahajan S, Abualigah L, Pandit AK, Altalhi M. Hybrid Aquila optimizer with arithmetic optimization algorithm for global optimization tasks. Soft Computing. 2022;26:4863–4881. doi: 10.1007/s00500-022-06873-8. DOI
Mejahed S, Elshrkawey M. A multi-objective algorithm for virtual machine placement in cloud environments using a hybrid of particle swarm optimization and flower pollination optimization. PeerJ Computer Science. 2022;8:e834. doi: 10.7717/peerj-cs.834. PubMed DOI PMC
Mirjalili S, Lewis A. The whale optimization algorithm. Advances in Engineering Software. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI
Mirjalili S, Mirjalili SM, Hatamlou A. Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Computing and Applications. 2016;27(2):495–513. doi: 10.1007/s00521-015-1870-7. DOI
Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances in Engineering Software. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI
Moosavi SHS, Bardsiri VK. Poor and rich optimization algorithm: a new human-based and multi populations algorithm. Engineering Applications of Artificial Intelligence. 2019;86:165–181. doi: 10.1016/j.engappai.2019.08.025. DOI
Price KV, Awad NH, Ali MZ, Suganthan PN. Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Retrieved from Singapore 2018.
Rahman CM, Rashid TA. A new evolutionary algorithm: learner performance based behavior algorithm. Egyptian Informatics Journal. 2021;22(2):213–223. doi: 10.1016/j.eij.2020.08.003. DOI
Rao RV, Savsani VJ, Vakharia D. Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design. 2011;43(3):303–315. doi: 10.1016/j.cad.2010.12.015. DOI
Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search algorithm. Information Sciences. 2009;179(13):2232–2248. doi: 10.1016/j.ins.2009.03.004. DOI
Ray T, Liew K-M. Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Transactions on Evolutionary Computation. 2003;7(4):386–396. doi: 10.1109/TEVC.2003.814902. DOI
Salem SA. BOA: a novel optimization algorithm. 2012 international conference on engineering and technology (ICET).2012.
Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization. 1997;11(4):341–359. doi: 10.1023/A:1008202821328. DOI
Toloueiashtian M, Golsorkhtabaramiri M, Rad SYB. An improved whale optimization algorithm solving the point coverage problem in wireless sensor networks. Telecommunication Systems. 2022;79(02):1–20. doi: 10.1007/s11235-022-00880-8. DOI
Trojovský P, Dehghani M. Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications. Sensors. 2022;22(3):855. doi: 10.3390/s22030855. PubMed DOI PMC
Van Laarhoven PJ, Aarts EH. Simulated annealing: theory and applications. Dordrecht: Springer; 1987. Simulated annealing; pp. 7–15. DOI
Veysari EF. A new optimization algorithm inspired by the quest for the evolution of human society: human felicity algorithm. Expert Systems with Applications. 2022;193:116468. doi: 10.1016/j.eswa.2021.116468. DOI
Wilcoxon F. Breakthroughs in statistics. Springer; New York: 1992. Individual comparisons by ranking methods; pp. 196–202.
Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation. 1997;1(1):67–82. doi: 10.1109/4235.585893. DOI
Yu C, Semeraro Q, Matta A. A genetic algorithm for the hybrid flow shop scheduling with unrelated machines and machine eligibility. Computers & Operations Research. 2018;100:211–229. doi: 10.1016/j.cor.2018.07.025. DOI
Zeidabadi FA, Dehghani M. POA: puzzle optimization algorithm. International Journal of Intelligent Engineering and Systems. 2022;15(1):273–281.
Drawer Algorithm: A New Metaheuristic Approach for Solving Optimization Problems in Engineering