The elicitin β-cryptogein's activity in tomato is mediated by jasmonic acid and ethylene signalling pathways independently of elicitin-sterol interactions
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P501-12-0590
Grantová Agentura České Republiky
PubMed
30374914
DOI
10.1007/s00425-018-3036-1
PII: 10.1007/s00425-018-3036-1
Knihovny.cz E-zdroje
- Klíčová slova
- Defence-related genes, Elicitins, Pseudoidium neolycopersici, Resistance, Signalling, Sterol binding,
- MeSH
- cyklopentany metabolismus MeSH
- ethyleny metabolismus MeSH
- fungální proteiny metabolismus MeSH
- interakce hostitele a patogenu MeSH
- kyselina salicylová metabolismus MeSH
- listy rostlin metabolismus mikrobiologie MeSH
- nemoci rostlin mikrobiologie MeSH
- oxylipiny metabolismus MeSH
- peroxid vodíku metabolismus MeSH
- Phytophthora MeSH
- Pythium MeSH
- reaktivní formy kyslíku metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- signální transdukce * MeSH
- Solanum lycopersicum metabolismus mikrobiologie fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cryptogein protein, Phytophthora cryptogea MeSH Prohlížeč
- cyklopentany MeSH
- ethylene MeSH Prohlížeč
- ethyleny MeSH
- fungální proteiny MeSH
- jasmonic acid MeSH Prohlížeč
- kyselina salicylová MeSH
- oxylipiny MeSH
- peroxid vodíku MeSH
- reaktivní formy kyslíku MeSH
- regulátory růstu rostlin MeSH
The level of resistance induced in different tomato genotypes after β-CRY treatment correlated with the upregulation of defence genes, but not sterol binding and involved ethylene and jasmonic acid signalling. Elicitins, a family of small proteins secreted by Phytophthora and Pythium spp., are the most well-known microbe-associated molecular patterns of oomycetes, a lineage of fungus-like organisms that include many economically significant crop pathogens. The responses of tomato plants to elicitin INF1 produced by Phytophthora infestans have been studied extensively. Here, we present studies on the responses of three tomato genotypes to β-cryptogein (β-CRY), a potent elicitin secreted by Phytophthora cryptogea that induces hypersensitive response (HR) cell death in tobacco plants and confers greater resistance to oomycete infection than acidic elicitins like INF1. We also studied β-CRY mutants impaired in sterol binding (Val84Phe) and interaction with the binding site on tobacco plasma membrane (Leu41Phe), because sterol binding was suggested to be important in INF1-induced resistance. Treatment with β-CRY or the Val84Phe mutant induced resistance to powdery mildew caused by the pathogen Pseudoidium neolycopersici, but not the HR cell death observed in tobacco and potato plants. The level of resistance induced in different tomato genotypes correlated with the upregulation of defence genes including defensins, β-1,3-glucanases, heveins, chitinases, osmotins, and PR1 proteins. Treatment with the Leu41Phe mutant did not induce this upregulation, suggesting similar elicitin recognition in tomato and tobacco. However, here β-CRY activated ethylene and jasmonic acid signalling, but not salicylic acid signalling, demonstrating that elicitins activate different downstream signalling processes in different plant species. This could potentially be exploited to enhance the resistance of Phytophthora-susceptible crops.
Zobrazit více v PubMed
Plant Physiol. 2000 Sep;124(1):379-95 PubMed
Cell Mol Life Sci. 1999 Dec;56(11-12):1020-47 PubMed
Mol Biol Cell. 2001 Sep;12(9):2825-34 PubMed
Plant Physiol. 1996 Feb;110(2):365-376 PubMed
Mol Genet Genomics. 2003 Aug;269(5):583-91 PubMed
J Chem Inf Comput Sci. 2004 Nov-Dec;44(6):2126-32 PubMed
Biochemistry. 2005 May 3;44(17):6565-72 PubMed
J Exp Bot. 2005 Nov;56(421):2907-14 PubMed
J Agric Food Chem. 2006 Jan 11;54(1):65-71 PubMed
Phytochemistry. 2006 Feb;67(4):395-401 PubMed
Int J Plant Genomics. 2007;2007:64358 PubMed
BMC Plant Biol. 2008 Dec 22;8:131 PubMed
Mol Plant Pathol. 2006 Sep;7(5):325-39 PubMed
Plant Physiol Biochem. 2012 Feb;51:1-9 PubMed
J Exp Bot. 2012 Mar;63(5):2203-15 PubMed
PLoS Genet. 2012 Jun;8(6):e1002767 PubMed
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):10010-5 PubMed
Plant J. 2014 Jan;77(2):222-34 PubMed
PLoS One. 2013 Nov 18;8(11):e80816 PubMed
FEBS J. 2014 Apr;281(8):2051-60 PubMed
Mol Plant Pathol. 2015 Apr;16(3):238-50 PubMed
Mol Plant Microbe Interact. 2015 Aug;28(8):913-26 PubMed
BMC Plant Biol. 2015 Jun 06;15:132 PubMed
Front Plant Sci. 2016 Feb 05;7:59 PubMed
Nat Plants. 2015 Mar 30;1(4):15034 PubMed
J Exp Bot. 2016 Sep;67(17):5173-85 PubMed
Ann Bot. 2017 Mar 1;119(5):829-840 PubMed
Eur J Biochem. 1989 Aug 15;183(3):555-63 PubMed
Mol Plant Microbe Interact. 2018 Aug;31(8):795-802 PubMed
Structure. 1996 Dec 15;4(12):1429-39 PubMed
Mol Plant Microbe Interact. 1997 Nov;10(8):1028-30 PubMed
FEBS Lett. 1997 Oct 20;416(2):190-2 PubMed