Elicitin-Induced Distal Systemic Resistance in Plants is Mediated Through the Protein-Protein Interactions Influenced by Selected Lysine Residues
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26904041
PubMed Central
PMC4742723
DOI
10.3389/fpls.2016.00059
Knihovny.cz E-zdroje
- Klíčová slova
- cryptogein, dimerization, lipid transfer proteins, lysine residues, movement, resistance,
- Publikační typ
- časopisecké články MeSH
Elicitins are a family of small proteins with sterol-binding activity that are secreted by Phytophthora and Pythium sp. classified as oomycete PAMPs. Although α- and β-elicitins bind with the same affinity to one high affinity binding site on the plasma membrane, β-elicitins (possessing 6-7 lysine residues) are generally 50- to 100-fold more active at inducing distal HR and systemic resistance than the α-isoforms (with only 1-3 lysine residues). To examine the role of lysine residues in elicitin biological activity, we employed site-directed mutagenesis to prepare a series of β-elicitin cryptogein variants with mutations on specific lysine residues. In contrast to direct infiltration of protein into leaves, application to the stem revealed a rough correlation between protein's charge and biological activity, resulting in protection against Phytophthora parasitica. A detailed analysis of proteins' movement in plants showed no substantial differences in distribution through phloem indicating differences in consequent apoplastic or symplastic transport. In this process, an important role of homodimer formation together with the ability to form a heterodimer with potential partner represented by endogenous plants LTPs is suggested. Our work demonstrates a key role of selected lysine residues in these interactions and stresses the importance of processes preceding elicitin recognition responsible for induction of distal systemic resistance.
Zobrazit více v PubMed
Blein J. P., Coutos-Thevenot P., Marion D., Ponchet M. (2002). From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends Plant Sci. 7 293–296. 10.1016/S1360-1385(02)02284-7 PubMed DOI
Boissy G., O’Donohue M., Gaudemer O., Perez V., Pernollet J. C., Brunie S. (1999). The 2.1 angstrom structure of an elicitin-ergosterol complex: a recent addition to the sterol carrier protein family. Protein Sci. 8 1191–1199. 10.1110/ps.8.6.1191 PubMed DOI PMC
Boller T., Felix G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60 379–406. 10.1146/annurev.arplant.57.032905.105346 PubMed DOI
Bourque S., Binet M. N., Ponchet M., Pugin A., Lebrun-Garcia A. (1999). Characterization of the cryptogein binding sites on plant plasma membranes. J. Biol. Chem. 274 34699–34705. 10.1074/jbc.274.49.34699 PubMed DOI
Bourque S., Ponchet M., Binet M. N., Ricci P., Pugin A., Lebrun-Garcia A. (1998). Comparison of binding properties and early biological effects of elicitins in tobacco cells. Plant Physiol. 118 1317–1326. 10.1104/pp.118.4.1317 PubMed DOI PMC
Brummer M., Arend M., Fromm J., Schlenzig A., Osswald W. F. (2002). Ultrastructural changes and immunocytochemical localization of the elicitin quercinin in Quercus robur L. roots infected with Phytophthora quercina. Physiol. Mol. Plant Pathol. 61 109–120. 10.1006/pmpp.2002.0419 DOI
Carvalho A. O., Gomes V. M. (2007). Role of plant lipid transfer proteins in plant cell physiology—a concise review. Peptides 28 1144–1153. 10.1016/j.peptides.2007.03.004 PubMed DOI
Champigny M. J., Isaacs M., Carella P., Faubert J., Fobert P. R., Cameron R. K. (2013). Long distance movement of DIR1 and investigation of the role of DIR1-like during systemic acquired resistance in Arabidopsis. Front. Plant Sci. 4:230 10.3389/fpls.2013.00230 PubMed DOI PMC
Devergne J. C., Bonnet P., Panabieres F., Blein J. P., Ricci P. (1992). Migration of the fungal protein cryptogein within tobacco plants. Plant Physiol. 99 843–847. 10.1104/pp.99.3.843 PubMed DOI PMC
Dokladal L., Oboril M., Stejskal K., Zdrahal Z., Ptackova N., Chaloupkova R., et al. (2012). Physiological and proteomic approaches to evaluate the role of sterol binding in elicitin-induced resistance. J. Exp. Bot. 63 2203–2215. 10.1093/jxb/err427 PubMed DOI PMC
Dorey S., Baillieul F., Pierrel M. A., Saindrenan P., Fritig B., Kauffmann S. (1997). Spatial and temporal induction of cell death, defense genes, and accumulation of salicylic acid in tobacco leaves reacting hypersensitively to a fungal glycoprotein elicitor. Mol. Plant Microbe Interact. 10 646–655. 10.1094/MPMI.1997.10.5.646 DOI
Du J., Verzaux E., Chaparro-Garcia A., Bijsterbosch G., Keizer L. C. P., Zhou J., et al. (2015). Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat. Plants 1 15034 10.1038/nplants.2015.34 PubMed DOI
Galiana E., Bonnet P., Conrod S., Keller H., Panabieres F., Ponchet M., et al. (1997). RNase activity prevents the growth of a fungal pathogen in tobacco leaves and increases upon induction of systemic acquired resistance with elicitin. Plant Physiol. 115 1557–1567. 10.1104/pp.115.4.1557 PubMed DOI PMC
Gooley P. R., Keniry M. A., Dimitrov R. A., Marsh D. E., Keizer D. W., Gayler K. R., et al. (1998). The NMR solution structure and characterization of pH dependent chemical shifts of the beta-elicitin, cryptogein. J. Biomol. NMR 12 523–534. 10.1023/A:1008395001008 PubMed DOI
Hugot K., Aime S., Conrod S., Poupet A., Galiana E. (1999). Developmental regulated mechanisms affect the ability of a fungal pathogen to infect and colonize tobacco leaves. Plant J. 20 163–170. 10.1046/j.1365-313x.1999.00587.x PubMed DOI
Jones J. D. G., Dangl J. L. (2006). The plant immune system. Nature 444 323–329. 10.1038/nature05286 PubMed DOI
Kamoun S., Klucher K. M., Coffey M. D., Tyler B. M. (1993). A gene encoding a host-specific elicitor protein of Phytophthora parasitica. Mol. Plant Microbe Interact. 6 573–581. 10.1094/MPMI-6-573 PubMed DOI
Kamoun S., Lindqvist H., Govers F. (1997). A novel class of elicitin-like genes from Phytophthora infestans. Mol. Plant Microbe Interact. 10 1028–1030. 10.1094/MPMI.1997.10.8.1028 PubMed DOI
Kanzaki H., Saitoh H., Takahashi Y., Berberich T., Ito A., Kamoun S., et al. (2008). NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta 228 977–987. 10.1007/s00425-008-0797-y PubMed DOI
Keller H., Bonnet P., Galiana E., Pruvot L., Friedrich L., Ryals J., et al. (1996). Salicylic acid mediates elicitin-induced systemic acquired resistance, but not necrosis in tobacco. Mol. Plant Microbe Interact. 9 696–703. 10.1094/MPMI-9-0696 DOI
Leborgne-Castel N., Lherminier J., Der C., Fromentin J., Houot V., Simon-Plas F. (2008). The plant defense elicitor cryptogein stimulates clathrin-mediated endocytosis correlated with reactive oxygen species production in Bright Yellow-2 tobacco cells. Plant Physiol. 146 1255–1266. 10.1104/pp.107.111716 PubMed DOI PMC
Mikes V., Milat M. L., Ponchet M., Panabieres F., Ricci P., Blein J. P. (1998). Elicitins, proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins. Biochem. Biophys. Res. Commun. 245 133–139. 10.1006/bbrc.1998.8341 PubMed DOI
Nettleship J. E., Brown J., Groves M. R., Geerlof A. (2008). Methods for protein characterization by mass spectrometry, thermal shift (ThermoFluor) assay, and multiangle or static light scattering. Methods Mol. Biol. 426 299–318. 10.1007/978-1-60327-058-8_19 PubMed DOI
Nicot N., Hausman J. F., Hoffmann L., Evers D. (2005). Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J. Exp. Bot. 56 2907–2914. 10.1093/jxb/eri285 PubMed DOI
Niu C., Smith N., Garteiser P., Towner R., Verchot J. (2011). Comparative analysis of protein transport in the N. benthamiana vasculature reveals different destinations. Plant Signal. Behav. 6 1793–1808. 10.4161/psb.6.11.17896 PubMed DOI PMC
Nürnberger T., Brunner F., Kemmerling B., Piater L. (2004). Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198 249–266. 10.1111/j.0105-2896.2004.0119.x PubMed DOI
Osman H., Vauthrin S., Mikes V., Milat M. L., Panabieres F., Marais A., et al. (2001). Mediation of elicitin activity on tobacco is assumed by elicitin-sterol complexes. Mol. Biol. Cell 12 2825–2834. 10.1091/mbc.12.9.2825 PubMed DOI PMC
Panabieres F., Marais A., Le Berre J. Y., Penot I., Fournier D., Ricci P. (1995). Characterization of a gene cluster of Phytophthora cryptogea which codes for elicitins, proteins inducing a hypersensitive-like response in tobacco. Mol. Plant Microbe Interact. 8 996–1003. 10.1094/MPMI-8-0996 PubMed DOI
Pernollet J. C., Sallantin M., Salletourne M., Huet J. C. (1993). Elicitin Isoforms from 7 Phytophthora species – comparison of their physicochemical properties and toxicity to tobacco and other plant-species. Physiol. Mol. Plant Pathol. 42 53–67. 10.1006/pmpp.1993.1005 DOI
Picard K., Ponchet M., Blein J. P., Rey P., Tirilly Y., Benhamou N. (2000). Oligandrin. A proteinaceous molecule produced by the mycoparasite Pythium oligandrum induces resistance to Phytophthora parasitica infection in tomato plants. Plant Physiol. 124 379–395. 10.1104/pp.124.1.379 PubMed DOI PMC
Pleskova V., Kasparovsky T., Oboril M., Ptackova N., Chaloupkova R., Ladislav D., et al. (2011). Elicitin-membrane interaction is driven by a positive charge on the protein surface: role of Lys13 residue in lipids loading and resistance induction. Plant Physiol. Biochem. 49 321–328. 10.1016/j.plaphy.2011.01.008 PubMed DOI
Ponchet M., Panabieres F., Milat M. L., Mikes V., Montillet J. L., Suty L., et al. (1999). Are elicitins cryptograms in plant-Oomycete communications? Cell. Mol. Life Sci. 56 1020–1047. 10.1007/s000180050491 PubMed DOI PMC
Ricci P., Bonnet P., Huet J. C., Sallantin M., Beauvais-Cante F., Bruneteau M., et al. (1989). Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur. J. Biochem. 183 555–563. 10.1111/j.1432-1033.1989.tb21084.x PubMed DOI
Robatzek S. (2007). Vesicle trafficking in plant immune responses. Cell. Microbiol. 9 1–8. 10.1111/j.1462-5822.2006.00829.x PubMed DOI
Rodrigues M. L., Archer M., Martel P., Miranda S., Thomaz M., Enguita F. J., et al. (2006). Crystal structures of the free and sterol-bound forms of beta-cinnamomin. Biochim. Biophys. Acta 1764 110–121. 10.1016/j.bbapap.2005.09.008 PubMed DOI
Skladal P. (2003). Piezoelectric quartz crystal sensors applied for bioanalytical assays and characterization of affinity interactions. J. Braz. Chem. Soc. 14 491–502. 10.1590/S0103-50532003000400002 DOI
Svozilová Z., Kašparovský T., Skládal P., Lochman J. (2009). Interaction of cryptogein with its binding sites in tobacco plasma membrane studied using the piezoelectric biosensor. Anal. Biochem. 390 115–120. 10.1016/j.ab.2009.04.012 PubMed DOI
Takenaka S., Yamaguchi K., Masunaka A., Hase S., Inoue T., Takahashi H. (2011). Implications of oligomeric forms of POD-1 and POD-2 proteins isolated from cell walls of the biocontrol agent Pythium oligandrum in relation to their ability to induce defense reactions in tomato. J. Plant Physiol. 168 1972–1979. 10.1016/j.jplph.2011.05.011 PubMed DOI
van’t Slot K. A. E., Gierlich A., Knogge W. (2007). A single binding site mediates resistance– and disease-associated activities of the effector protein NIP1 from the barley pathogen Rhynchosporium secalis. Plant Physiol. 144 1654–1666. 10.1104/pp.106.094912 PubMed DOI PMC
Wood M. J., Komives E. A. (1999). Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation. J. Biomol. NMR 13 149–159. 10.1023/A:1008398313350 PubMed DOI
Wulff B. B. H., Chakrabarti A., Jones D. A. (2009). Recognitional specificity and evolution in the tomato-Cladosporium fulvum Pathosystem. Mol. Plant Microbe Interact. 22 1191–1202. 10.1094/MPMI-22-10-1191 PubMed DOI
Zipfel C., Robatzek S., Navarro L., Oakeley E. J., Jones J. D., Felix G., et al. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428 764–767. 10.1038/nature02485 PubMed DOI