Powdery Mildew Resistance Phenotypes of Wheat Gene Bank Accessions

. 2021 Aug 30 ; 10 (9) : . [epub] 20210830

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34571722

Grantová podpora
QK1710302 Ministerstvo Zemědělství
QK1710302 Ministerstvo Zemědělství

Powdery mildew (Blumeria graminis f. sp. tritici) is a common pathogen of bread wheat (Triticum aestivum L.), and genetic resistance is an effective and environmentally friendly method to reduce its adverse impact. The introgression of novel genes from wheat progenitors and related species can increase the diversity of disease resistance and accumulation of minor genes to improve the crop's resistance durability. To accomplish these two actions, host genotypes without major resistances should be preferably used. Therefore, the main aim of this study was to carry out seedling tests to detect such resistances in a set of wheat accessions from the Czech gene bank and to group the cultivars according to their phenotype. Ear progenies of 448 selected cultivars originating from 33 countries were inoculated with three isolates of the pathogen. Twenty-eight cultivars were heterogeneous, and 110 cultivars showed resistance to at least one isolate. Fifty-nine cultivars, mostly from Northwest Europe, were resistant to all three isolates were more than three times more frequently recorded in spring than in winter cultivars. Results will facilitate a rational and practical approach preferably using the set of cultivars without major resistances for both mentioned methods of breeding wheat cultivars resistant to powdery mildew.

Zobrazit více v PubMed

Bigini V., Camerlengo F., Botticella E., Sestili F., Savatin D. Biotechnological Resources to Increase Disease-Resistance by Improving Plant Immunity: A Sustainable Approach to Save Cereal Crop Production. Plants. 2021;10:1146. doi: 10.3390/plants10061146. PubMed DOI PMC

Savary S., Willocquet L., Pethybridge S.J., Esker P., McRoberts N., Nelson A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019;3:430–439. doi: 10.1038/s41559-018-0793-y. PubMed DOI

Dreiseitl A. Specific Resistance of Barley to Powdery Mildew, Its Use and Beyond. A Concise Critical Review. Genes. 2020;11:971. doi: 10.3390/genes11090971. PubMed DOI PMC

McDonald B.A., Linde C. Pathogen Population Genetics, Evolutionary Potential, and Durable Resistance. Annu. Rev. Phytopathol. 2002;40:349–379. doi: 10.1146/annurev.phyto.40.120501.101443. PubMed DOI

Dreiseitl A. Great pathotype diversity and reduced virulence complexity in a Central European population of Blumeria graminis f. sp. hordei in 2015–2017. Eur. J. Plant Pathol. 2019;153:801–811. doi: 10.1007/s10658-018-1593-6. DOI

Sánchez-Martín J., Keller B. Contribution of recent technological advances to future resistance breeding. Theor. Appl. Genet. 2019;132:713–732. doi: 10.1007/s00122-019-03297-1. PubMed DOI

Dvorak J., Wang L., Zhu T., Jorgensen C.M., Luo M.-C., Deal K.R., Gu Y.Q., Gill B.S., Distelfeld A., Devos K.M., et al. Reassessment of the evolution of wheat chromosomes 4A, 5A, and 7B. Theor. Appl. Genet. 2018;131:2451–2462. doi: 10.1007/s00122-018-3165-8. PubMed DOI PMC

Winfield M.O., Allen A.M., Burridge A., Barker G.L.A., Benbow H.R., Wilkinson P.A., Coghill J., Waterfall C., Davassi A., Scopes G., et al. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol. J. 2016;14:1195–1206. doi: 10.1111/pbi.12485. PubMed DOI PMC

Janáková E., Jakobson I., Peusha H., Abrouk M., Škopová M., Šimková H., Šafář J., Vrána J., Doležel J., Järve K., et al. Divergence between bread wheat and Triticum militinae in the powdery mildew resistance QPm.tut-4A locus and its implications for cloning of the resistance gene. Theor. Appl. Genet. 2018;132:1061–1072. doi: 10.1007/s00122-018-3259-3. PubMed DOI PMC

Schmolke M., Mohler V., Hartl L., Zeller F.J., Hsam S.L.K. A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum) Mol. Breed. 2011;29:449–456. doi: 10.1007/s11032-011-9561-2. DOI

Dreiseitl A. Genotype Heterogeneity in Accessions of a Winter Barley Core Collection Assessed on Postulated Specific Powdery Mildew Resistance Genes. Agronomy. 2021;11:513. doi: 10.3390/agronomy11030513. DOI

Torp J., Jensen H.P., Jørgensen J.H. Powdery Mildew Resistance Genes in 106 Northwest European Spring Barley Cultivars. Royal Veterinary and Agricultural University; Copenhagen, Denmark: 1978. pp. 75–102. Yearbook 1978.

Biffen R.H. Studies in the inheritance of Disease-Resistance. J. Agric. Sci. 1907;2:109–128. doi: 10.1017/S0021859600001234. DOI

Flor H.H. Current Status of the Gene-For-Gene Concept. Annu. Rev. Phytopathol. 1971;9:275–296. doi: 10.1146/annurev.py.09.090171.001423. DOI

Dreiseitl A. A novel way to identify specific powdery mildew resistance genes in hybrid barley cultivars. Sci. Rep. 2020;10:18930. doi: 10.1038/s41598-020-75978-7. PubMed DOI PMC

Gilmour J. Octal Notation for Designating Physiologic Races of Plant Pathogens. Nature. 1973;242:620. doi: 10.1038/242620a0. DOI

Limpert E., Clifeord B., Dreiseitl A., Johnson R., Müller K., Roelfs A., Wellings C. Systems of Designation of Pathotypes of Plant Pathogens. J. Phytopathol. 1994;140:359–362. doi: 10.1111/j.1439-0434.1994.tb00618.x. DOI

Dreiseitl A. Heterogeneity of Powdery Mildew Resistance Revealed in Accessions of the ICARDA Wild Barley Collection. Front. Plant Sci. 2017;8:202. doi: 10.3389/fpls.2017.00202. PubMed DOI PMC

Hsam S.L.K., Zeller F.J. Breeding for powdery mildew resistance in common wheat (Triticum aestivum L.) In: Bélanger R.R., Bushnell W.R., Dik A.J., Carver T.L.W., editors. The Powdery Mildews: A Comprehensive Treatise. APS; St. Paul, MN, USA: 2000. pp. 219–238.

Ma K., Li X., Li Y., Wang Z., Zhao B., Wang B., Li Q. Disease Resistance and Genes in 146 Wheat Cultivars (Lines) from the Huang-Huai-Hai Region of China. Agronomy. 2021;11:1025. doi: 10.3390/agronomy11061025. DOI

Mundt C.C. Pyramiding for Resistance Durability: Theory and Practice. Phytopathology. 2018;108:792–802. doi: 10.1094/PHYTO-12-17-0426-RVW. PubMed DOI

Jørgensen J.H., Wolfe M. Genetics of Powdery Mildew Resistance in Barley. Crit. Rev. Plant Sci. 1994;13:97–119. doi: 10.1080/07352689409701910. DOI

Poland J., Rutkoski J. Advances and Challenges in Genomic Selection for Disease Resistance. Annu. Rev. Phytopathol. 2016;54:79–98. doi: 10.1146/annurev-phyto-080615-100056. PubMed DOI

Müller M.C., Praz C.R., Sotiropoulos A.G., Menardo F., Kunz L., Schudel S., Oberhänsli S., Poretti M., Wehrli A., Bourras S., et al. A chromosome-scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew. New Phytol. 2018;221:2176–2189. doi: 10.1111/nph.15529. PubMed DOI PMC

Bourras S., Praz C.R., Spanu P.D., Keller B. Cereal powdery mildew effectors: A complex toolbox for an obligate pathogen. Curr. Opin. Microbiol. 2018;46:26–33. doi: 10.1016/j.mib.2018.01.018. PubMed DOI

Acevedo-Garcia J., Spencer D., Thieron H., Reinstädler A., Hammond-Kosack K., Phillips A.L., Panstruga R. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol. J. 2016;15:367–378. doi: 10.1111/pbi.12631. PubMed DOI PMC

Jørgensen I.H. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica. 1992;63:141–152. doi: 10.1007/BF00023919. DOI

Huerta-Espino J., Singh R., Herrera L.A.C., Villaseñor-Mir H.E., Rodriguez-Garcia M.F., Dreisigacker S., Barcenas-Santana D., Lagudah E. Adult Plant Slow Rusting Genes Confer High Levels of Resistance to Rusts in Bread Wheat Cultivars from Mexico. Front. Plant Sci. 2020;11:824. doi: 10.3389/fpls.2020.00824. PubMed DOI PMC

Niks R.E., Qi X., Marcel T.C. Quantitative Resistance to Biotrophic Filamentous Plant Pathogens: Concepts, Misconceptions, and Mechanisms. Annu. Rev. Phytopathol. 2015;53:445–470. doi: 10.1146/annurev-phyto-080614-115928. PubMed DOI

Cowger C., Brown J.K. Durability of Quantitative Resistance in Crops: Greater Than We Know? Annu. Rev. Phytopathol. 2019;57:253–277. doi: 10.1146/annurev-phyto-082718-100016. PubMed DOI

Kang Y., Zhou M., Merry A., Barry K. Mechanisms of powdery mildew resistance of wheat—A review of molecular breeding. Plant Pathol. 2020;69:601–617. doi: 10.1111/ppa.13166. DOI

Keller B., Wicker T., Krattinger S.G. Advances in Wheat and Pathogen Genomics: Implications for Disease Control. Annu. Rev. Phytopathol. 2018;56:67–87. doi: 10.1146/annurev-phyto-080516-035419. PubMed DOI

Krattinger S., Keller B. Molecular genetics and evolution of disease resistance in cereals. New Phytol. 2016;212:320–332. doi: 10.1111/nph.14097. PubMed DOI

Brown J.K. Durable Resistance of Crops to Disease: A Darwinian Perspective. Annu. Rev. Phytopathol. 2015;53:513–539. doi: 10.1146/annurev-phyto-102313-045914. PubMed DOI

Miedaner T., Boeven A.L.G.-C., Gaikpa D.S., Kistner M.B., Grote C.P. Genomics-Assisted Breeding for Quantitative Disease Resistances in Small-Grain Cereals and Maize. Int. J. Mol. Sci. 2020;21:9717. doi: 10.3390/ijms21249717. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...