Powdery Mildew Resistance Phenotypes of Wheat Gene Bank Accessions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1710302
Ministerstvo Zemědělství
QK1710302
Ministerstvo Zemědělství
PubMed
34571722
PubMed Central
PMC8470289
DOI
10.3390/biology10090846
PII: biology10090846
Knihovny.cz E-zdroje
- Klíčová slova
- Blumeria graminis f. sp. hordei, Blumeria graminis f. sp. tritici, infection response arrays, resistance postulation, single ear progenies,
- Publikační typ
- časopisecké články MeSH
Powdery mildew (Blumeria graminis f. sp. tritici) is a common pathogen of bread wheat (Triticum aestivum L.), and genetic resistance is an effective and environmentally friendly method to reduce its adverse impact. The introgression of novel genes from wheat progenitors and related species can increase the diversity of disease resistance and accumulation of minor genes to improve the crop's resistance durability. To accomplish these two actions, host genotypes without major resistances should be preferably used. Therefore, the main aim of this study was to carry out seedling tests to detect such resistances in a set of wheat accessions from the Czech gene bank and to group the cultivars according to their phenotype. Ear progenies of 448 selected cultivars originating from 33 countries were inoculated with three isolates of the pathogen. Twenty-eight cultivars were heterogeneous, and 110 cultivars showed resistance to at least one isolate. Fifty-nine cultivars, mostly from Northwest Europe, were resistant to all three isolates were more than three times more frequently recorded in spring than in winter cultivars. Results will facilitate a rational and practical approach preferably using the set of cultivars without major resistances for both mentioned methods of breeding wheat cultivars resistant to powdery mildew.
Zobrazit více v PubMed
Bigini V., Camerlengo F., Botticella E., Sestili F., Savatin D. Biotechnological Resources to Increase Disease-Resistance by Improving Plant Immunity: A Sustainable Approach to Save Cereal Crop Production. Plants. 2021;10:1146. doi: 10.3390/plants10061146. PubMed DOI PMC
Savary S., Willocquet L., Pethybridge S.J., Esker P., McRoberts N., Nelson A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019;3:430–439. doi: 10.1038/s41559-018-0793-y. PubMed DOI
Dreiseitl A. Specific Resistance of Barley to Powdery Mildew, Its Use and Beyond. A Concise Critical Review. Genes. 2020;11:971. doi: 10.3390/genes11090971. PubMed DOI PMC
McDonald B.A., Linde C. Pathogen Population Genetics, Evolutionary Potential, and Durable Resistance. Annu. Rev. Phytopathol. 2002;40:349–379. doi: 10.1146/annurev.phyto.40.120501.101443. PubMed DOI
Dreiseitl A. Great pathotype diversity and reduced virulence complexity in a Central European population of Blumeria graminis f. sp. hordei in 2015–2017. Eur. J. Plant Pathol. 2019;153:801–811. doi: 10.1007/s10658-018-1593-6. DOI
Sánchez-Martín J., Keller B. Contribution of recent technological advances to future resistance breeding. Theor. Appl. Genet. 2019;132:713–732. doi: 10.1007/s00122-019-03297-1. PubMed DOI
Dvorak J., Wang L., Zhu T., Jorgensen C.M., Luo M.-C., Deal K.R., Gu Y.Q., Gill B.S., Distelfeld A., Devos K.M., et al. Reassessment of the evolution of wheat chromosomes 4A, 5A, and 7B. Theor. Appl. Genet. 2018;131:2451–2462. doi: 10.1007/s00122-018-3165-8. PubMed DOI PMC
Winfield M.O., Allen A.M., Burridge A., Barker G.L.A., Benbow H.R., Wilkinson P.A., Coghill J., Waterfall C., Davassi A., Scopes G., et al. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol. J. 2016;14:1195–1206. doi: 10.1111/pbi.12485. PubMed DOI PMC
Janáková E., Jakobson I., Peusha H., Abrouk M., Škopová M., Šimková H., Šafář J., Vrána J., Doležel J., Järve K., et al. Divergence between bread wheat and Triticum militinae in the powdery mildew resistance QPm.tut-4A locus and its implications for cloning of the resistance gene. Theor. Appl. Genet. 2018;132:1061–1072. doi: 10.1007/s00122-018-3259-3. PubMed DOI PMC
Schmolke M., Mohler V., Hartl L., Zeller F.J., Hsam S.L.K. A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum) Mol. Breed. 2011;29:449–456. doi: 10.1007/s11032-011-9561-2. DOI
Dreiseitl A. Genotype Heterogeneity in Accessions of a Winter Barley Core Collection Assessed on Postulated Specific Powdery Mildew Resistance Genes. Agronomy. 2021;11:513. doi: 10.3390/agronomy11030513. DOI
Torp J., Jensen H.P., Jørgensen J.H. Powdery Mildew Resistance Genes in 106 Northwest European Spring Barley Cultivars. Royal Veterinary and Agricultural University; Copenhagen, Denmark: 1978. pp. 75–102. Yearbook 1978.
Biffen R.H. Studies in the inheritance of Disease-Resistance. J. Agric. Sci. 1907;2:109–128. doi: 10.1017/S0021859600001234. DOI
Flor H.H. Current Status of the Gene-For-Gene Concept. Annu. Rev. Phytopathol. 1971;9:275–296. doi: 10.1146/annurev.py.09.090171.001423. DOI
Dreiseitl A. A novel way to identify specific powdery mildew resistance genes in hybrid barley cultivars. Sci. Rep. 2020;10:18930. doi: 10.1038/s41598-020-75978-7. PubMed DOI PMC
Gilmour J. Octal Notation for Designating Physiologic Races of Plant Pathogens. Nature. 1973;242:620. doi: 10.1038/242620a0. DOI
Limpert E., Clifeord B., Dreiseitl A., Johnson R., Müller K., Roelfs A., Wellings C. Systems of Designation of Pathotypes of Plant Pathogens. J. Phytopathol. 1994;140:359–362. doi: 10.1111/j.1439-0434.1994.tb00618.x. DOI
Dreiseitl A. Heterogeneity of Powdery Mildew Resistance Revealed in Accessions of the ICARDA Wild Barley Collection. Front. Plant Sci. 2017;8:202. doi: 10.3389/fpls.2017.00202. PubMed DOI PMC
Hsam S.L.K., Zeller F.J. Breeding for powdery mildew resistance in common wheat (Triticum aestivum L.) In: Bélanger R.R., Bushnell W.R., Dik A.J., Carver T.L.W., editors. The Powdery Mildews: A Comprehensive Treatise. APS; St. Paul, MN, USA: 2000. pp. 219–238.
Ma K., Li X., Li Y., Wang Z., Zhao B., Wang B., Li Q. Disease Resistance and Genes in 146 Wheat Cultivars (Lines) from the Huang-Huai-Hai Region of China. Agronomy. 2021;11:1025. doi: 10.3390/agronomy11061025. DOI
Mundt C.C. Pyramiding for Resistance Durability: Theory and Practice. Phytopathology. 2018;108:792–802. doi: 10.1094/PHYTO-12-17-0426-RVW. PubMed DOI
Jørgensen J.H., Wolfe M. Genetics of Powdery Mildew Resistance in Barley. Crit. Rev. Plant Sci. 1994;13:97–119. doi: 10.1080/07352689409701910. DOI
Poland J., Rutkoski J. Advances and Challenges in Genomic Selection for Disease Resistance. Annu. Rev. Phytopathol. 2016;54:79–98. doi: 10.1146/annurev-phyto-080615-100056. PubMed DOI
Müller M.C., Praz C.R., Sotiropoulos A.G., Menardo F., Kunz L., Schudel S., Oberhänsli S., Poretti M., Wehrli A., Bourras S., et al. A chromosome-scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew. New Phytol. 2018;221:2176–2189. doi: 10.1111/nph.15529. PubMed DOI PMC
Bourras S., Praz C.R., Spanu P.D., Keller B. Cereal powdery mildew effectors: A complex toolbox for an obligate pathogen. Curr. Opin. Microbiol. 2018;46:26–33. doi: 10.1016/j.mib.2018.01.018. PubMed DOI
Acevedo-Garcia J., Spencer D., Thieron H., Reinstädler A., Hammond-Kosack K., Phillips A.L., Panstruga R. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol. J. 2016;15:367–378. doi: 10.1111/pbi.12631. PubMed DOI PMC
Jørgensen I.H. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica. 1992;63:141–152. doi: 10.1007/BF00023919. DOI
Huerta-Espino J., Singh R., Herrera L.A.C., Villaseñor-Mir H.E., Rodriguez-Garcia M.F., Dreisigacker S., Barcenas-Santana D., Lagudah E. Adult Plant Slow Rusting Genes Confer High Levels of Resistance to Rusts in Bread Wheat Cultivars from Mexico. Front. Plant Sci. 2020;11:824. doi: 10.3389/fpls.2020.00824. PubMed DOI PMC
Niks R.E., Qi X., Marcel T.C. Quantitative Resistance to Biotrophic Filamentous Plant Pathogens: Concepts, Misconceptions, and Mechanisms. Annu. Rev. Phytopathol. 2015;53:445–470. doi: 10.1146/annurev-phyto-080614-115928. PubMed DOI
Cowger C., Brown J.K. Durability of Quantitative Resistance in Crops: Greater Than We Know? Annu. Rev. Phytopathol. 2019;57:253–277. doi: 10.1146/annurev-phyto-082718-100016. PubMed DOI
Kang Y., Zhou M., Merry A., Barry K. Mechanisms of powdery mildew resistance of wheat—A review of molecular breeding. Plant Pathol. 2020;69:601–617. doi: 10.1111/ppa.13166. DOI
Keller B., Wicker T., Krattinger S.G. Advances in Wheat and Pathogen Genomics: Implications for Disease Control. Annu. Rev. Phytopathol. 2018;56:67–87. doi: 10.1146/annurev-phyto-080516-035419. PubMed DOI
Krattinger S., Keller B. Molecular genetics and evolution of disease resistance in cereals. New Phytol. 2016;212:320–332. doi: 10.1111/nph.14097. PubMed DOI
Brown J.K. Durable Resistance of Crops to Disease: A Darwinian Perspective. Annu. Rev. Phytopathol. 2015;53:513–539. doi: 10.1146/annurev-phyto-102313-045914. PubMed DOI
Miedaner T., Boeven A.L.G.-C., Gaikpa D.S., Kistner M.B., Grote C.P. Genomics-Assisted Breeding for Quantitative Disease Resistances in Small-Grain Cereals and Maize. Int. J. Mol. Sci. 2020;21:9717. doi: 10.3390/ijms21249717. PubMed DOI PMC
Non-Authenticity of Spring Barley Genotypes Revealed in Gene Bank Accessions