Identification, High-Density Mapping, and Characterization of New Major Powdery Mildew Resistance Loci From the Emmer Wheat Landrace GZ1
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35646009
PubMed Central
PMC9141293
DOI
10.3389/fpls.2022.897697
Knihovny.cz E-zdroje
- Klíčová slova
- GZ1, QTL mapping, emmer, powdery mildew (Blumeria graminis D. C. f. sp. tritici), resistance, wheat,
- Publikační typ
- časopisecké články MeSH
Powdery mildew is one of the most devastating diseases of wheat which significantly decreases yield and quality. Identification of new sources of resistance and their implementation in breeding programs is the most effective way of disease control. Two major powdery mildew resistance loci conferring resistance to all races in seedling and adult plant stages were identified in the emmer wheat landrace GZ1. Their positions, effects, and transferability were verified using two linkage maps (1,510 codominant SNP markers) constructed from two mapping populations (276 lines in total) based on the resistant GZ1 line. The dominant resistance locus QPm.GZ1-7A was located in a 90 cM interval of chromosome 7AL and explains up to 20% of the trait variation. The recessive locus QPm.GZ1-2A, which provides total resistance, explains up to 40% of the trait variation and was located in the distal part of chromosome 2AL. The locus was saturated with 14 PCR-based markers and delimited to a 0.99 cM region which corresponds to 4.3 Mb of the cv. Zavitan reference genome and comprises 55 predicted genes with no apparent candidate for the QPm.GZ1-2A resistance gene. No recessive resistance gene or allele was located at the locus before, suggesting the presence of a new powdery mildew resistance gene in the GZ1. The mapping data and markers could be used for the implementation of the locus in breeding. Moreover, they are an ideal base for cloning and study of host-pathogen interaction pathways determined by the resistance genes.
Department of Computer Science Faculty of Science Palacký University Olomouc Olomouc Czechia
Faculty of Natural Sciences Comenius University in Bratislava Bratislava Slovakia
Institute of Plant Genetics Polish Academy of Sciences Poznań Poland
Institute of Plant Physiology and Genetics Bulgarian Academy of Sciences Sofia Bulgaria
Zobrazit více v PubMed
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mole. Biol. 215 403–410. 10.1016/s0022-2836(05)80360-2 PubMed DOI
Avni R., Nave M., Barad O., Baruch K., Twardziok S. O., Gundlach H., et al. (2017). Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357 93–97. 10.1126/science.aan0032 PubMed DOI
Bansal M., Adamski N. M., Toor P. I., Kaur S., Molnár I., Holušová K., et al. (2020). Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing. Theoret. Appl. Genet. 133 903–915. 10.1007/s00122-019-03514-x PubMed DOI
Bayles C. J., Ghemawat M. S., Aist J. R. (1990). Inhibition by 2-deoxy-D-glucose of callose formation, papilla deposition, and resistance to powdery mildew in an ml-o barley mutant. Physiol. Mole. Plant Pathol. 36 63–72. 10.1016/0885-5765(90)90092-c DOI
Ben-David R., Xie W., Peleg Z., Saranga Y., Dinoor A., Fahima T. (2010). Identification and mapping of PmG16, a powdery mildew resistance gene derived from wild emmer wheat. Theoret. Appl. Genet. 121 499–510. 10.1007/s00122-010-1326-5 PubMed DOI
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Briggle L. W. (1966). Transfer of Resistance to Erysiphe graminis f. sp. tritici from Khapli emmer and Yuma durum to hexaploid wheat. Crop Sci. 6 459–461. 10.2135/cropsci1966.0011183x000600050020x DOI
Büschges R., Hollricher K., Panstruga R., Simons G., Wolter M., Frijters A., et al. (1997). The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88 695–705. 10.1016/s0092-8674(00)81912-1 PubMed DOI
Chapman J. A., Ho I., Sunkara S., Luo S., Schroth G. P., Rokhsar D. S. (2011). Meraculous: de novo genome assembly with short paired-end reads. PLoS One 6:e23501. 10.1371/journal.pone.0023501 PubMed DOI PMC
Chhuneja P., Kumar K., Stirnweis D., Hurni S., Keller B., Dhaliwal H. S., et al. (2011). Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L. Theoret. Appl. Genet. 124 1051–1058. 10.1007/s00122-011-1768-4 PubMed DOI
Chrpová J., Šíp V., Štoèková L., Stehno Z., Capouchová I. (2013). Evaluation of resistance to Fusarium head blight in spring wheat genotypes belonging to various Triticum species. Czech J. Genet. Plant Breed. 49 149–156. 10.17221/117/2013-cjgpb DOI
Desiderio F., Bourras S., Mazzucotelli E., Rubiales D., Keller B., Cattivelli L., et al. (2021). Characterization of the resistance to powdery mildew and leaf rust carried by the bread wheat cultivar Victo. Internat. J. Mole. Sci. 22:3109. 10.3390/ijms22063109 PubMed DOI PMC
Dreiseitl A. (2003). Adaptation of Blumeria graminis f.sp. hordei to barley resistance genes in the Czech Republic in 1971–2000. Plant, Soil Env. 49 241–248. 10.17221/4120-pse DOI
Dreiseitl A. (2011). Differences in powdery mildew epidemics in spring and winter barley based on 30-year variety trials. Ann. Appl. Biol. 159 49–57. 10.1111/j.1744-7348.2011.00474.x DOI
Dreiseitl A. (2021). Powdery mildew resistance phenotypes of wheat gene bank accessions. Biology 10:846. 10.3390/biology10090846 PubMed DOI PMC
Dreiseitl A. (2022). Postulation of specific disease resistance genes in cereals: a widely used method and its detailed description. Pathogens 11:284. 10.3390/pathogens11030284 PubMed DOI PMC
Feuillet C., Langridge P., Waugh R. (2008). Cereal breeding takes a walk on the wild side. Trends Genet. 24 24–32. 10.1016/j.tig.2007.11.001 PubMed DOI
Flor H. H. (1971). Current status of the gene-for-gene concept. Ann. Rev. Phytopathol. 9 275–296. 10.1146/annurev.py.09.090171.001423 DOI
Fu B., Chen Y., Li N., Ma H., Kong Z., Zhang L., et al. (2013). pmX: a recessive powdery mildew resistance gene at the Pm4 locus identified in wheat landrace Xiaohongpi. Theoret. Appl. Genet. 126 913–921. 10.1007/s00122-012-2025-1 PubMed DOI
Giorgi D., Farina A., Grosso V., Gennaro A., Ceoloni C., Lucretti S. (2013). FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 8:e57994. 10.1371/journal.pone.0057994 PubMed DOI PMC
Han J., Zhang L.-S., Li G.-Q., Zhang H.-T., Xie C.-J., Yang Z.-M., et al. (2009). Molecular mapping of powdery mildew resistance gene MlWE18 in wheat originated from wild emmer (Triticum turgidum var. dicoccoides). Acta Agronomi. Sin. 35 1791–1797. 10.3724/sp.j.1006.2009.01791 DOI
Hao Y., Liu A., Wang Y., Feng D., Gao J., Li X., et al. (2008). Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theoret. Appl. Genet. 117 1205–1212. 10.1007/s00122-008-0827-y PubMed DOI
Hsam S. L. K., Huang X. Q., Ernst F., Hartl L., Zeller F. J. (1998). Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 5. Alleles at the Pm1 locus. Theoret. Appl. Genet. 96 1129–1134. 10.1007/s001220050848 DOI
Hu T. (2008). Identification and molecular mapping of the powdery mildew resistance gene in wheat cultivar Yumai 66. Acta Agronom. Sin. 34 545–550. 10.3724/sp.j.1006.2008.00545 DOI
International Wheat Genome Sequencing Consortium (IWGSC) (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191. 10.1126/science.aar7191 PubMed DOI
Janáková E., Jakobson I., Peusha H., Abrouk M., Škopová M., Šimková H., et al. (2019). Divergence between bread wheat and Triticum militinae in the powdery mildew resistance QPm.tut-4A locus and its implications for cloning of the resistance gene. Theoret. Appl. Genet. 132 1061–1072. 10.1007/s00122-018-3259-3 PubMed DOI PMC
Ji X., Xie C., Ni Z., Yang T., Nevo E., Fahima T., et al. (2007). Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica 159 385–390. 10.1007/s10681-007-9540-1 DOI
Jørgensen I. H. (1992). Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63 141–152. 10.1007/bf00023919 DOI
Kao C.-H., Zeng Z.-B., Teasdale R. D. (1999). Multiple interval mapping for quantitative trait loci. Genetics 152 1203–1216. 10.1093/genetics/152.3.1203 PubMed DOI PMC
Koller T., Brunner S., Herren G., Hurni S., Keller B. (2018). Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field. Theoret. Appl. Genet. 131 861–871. 10.1007/s00122-017-3043-9 PubMed DOI PMC
Komáromi J., Jankovics T., Fábián A., Puskás K., Zhang Z., Zhang M., et al. (2016). Powdery mildew resistance in wheat cultivar Mv Hombár is conferred by a new gene, PmHo. Phytopathology 106 1326–1334. 10.1094/phyto-03-16-0152-r PubMed DOI
Korol A. B., Ronin Y. I., Itskovich A. M., Peng J., Nevo E. (2001). Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics 157 1789–1803. 10.1093/genetics/157.4.1789 PubMed DOI PMC
Kosambi D. D. (1943). The estimation of map distances from recombination values. Ann. Eugen. 12 172–175. 10.1111/j.1469-1809.1943.tb02321.x DOI
Kou Y., Wang S. (2010). Broad-spectrum and durability: understanding of quantitative disease resistance. Curr. Opin. Plant Biol. 13 181–185. 10.1016/j.pbi.2009.12.010 PubMed DOI
Krattinger S. G., Lagudah E. S., Spielmeyer W., Singh R. P., Huerta-Espino J., McFadden H., et al. (2009). A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323 1360–1363. 10.1126/science.1166453 PubMed DOI
Kubaláková M., Valárik M., Bartoš J., Vrána J., Cíhalíková J., Molnár-Láng M., et al. (2003). Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46 893–905. 10.1139/g03-054 PubMed DOI
Li G., Cowger C., Wang X., Carver B. F., Xu X. (2019). Characterization of Pm65, a new powdery mildew resistance gene on chromosome 2AL of a facultative wheat cultivar. Theoret. Appl. Genet. 132 2625–2632. 10.1007/s00122-019-03377-2 PubMed DOI
Li N., Wen Z., Wang J., Fu B., Liu J., Xu H., et al. (2013). Transfer and mapping of a gene conferring later-growth-stage powdery mildew resistance in a tetraploid wheat accession. Mole. Breed. 33 669–677. 10.1007/s11032-013-9983-0 DOI
Liang J., Fu B., Tang W., Khan N. U., Li N., Ma Z. (2016). Fine mapping of two wheat powdery mildew resistance genes located at the Pm1 cluster. Plant Gen. 9:0084. 10.3835/plantgenome2015.09.0084 PubMed DOI
Makepeace J. C., Oxley S. J. P., Havis N. D., Hackett R., Burke J. I., Brown J. K. M. (2007). Associations between fungal and abiotic leaf spotting and the presence of mlo alleles in barley. Plant Pathol. 56 934–942. 10.1111/j.1365-3059.2007.01680.x DOI
Maxwell J. J., Lyerly J. H., Cowger C., Marshall D., Brown-Guedira G., Murphy J. P. (2009). MlAG12: a Triticum timopheevii-derived powdery mildew resistance gene in common wheat on chromosome 7AL. Theoret. Appl. Genet. 119 1489–1495. 10.1007/s00122-009-1150-y PubMed DOI
McIntosh R. A., Dubcovsky J., Rogers W. J., Xia X. C., Raupp W. J. (2019). Catalogue of gene symbols for wheat: 2019 supplement. Available online at: https://wheat.pw.usda.gov/GG3/sites/default/files/Catalogue%20of%20Gene%20Symbols%20for%20Wheat%20-%20supplement2019.pdf
Miranda L. M., Perugini L., Srnić G., Brown-Guedira G., Marshall D., Leath S., et al. (2007). Genetic mapping of a Triticum monococcum-derived powdery mildew resistance gene in common wheat. Crop Sci. 47 2323–2329. 10.2135/cropsci2007.01.0053 DOI
Mohler V., Bauer C., Schweizer G., Kempf H., Hartl L. (2013). Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J. Appl. Genet. 54 259–263. 10.1007/s13353-013-0158-9 PubMed DOI
Niu J. S., Wang B. Q., Wang Y. H., Cao A. Z., Qi Z. J., Shen T. M. (2008). Chromosome location and microsatellite markers linked to a powdery mildew resistance gene in wheat line Lankao 90(6). Plant Breed. 127 346–349. 10.1111/j.1439-0523.2007.01480.x DOI
Ouyang S., Zhang D., Han J., Zhao X., Cui Y., Song W., et al. (2014). Fine physical and genetic mapping of powdery mildew resistance gene MlIW172 originating from wild emmer (Triticum dicoccoides). PLoS One 9:e100160. 10.1371/journal.pone.0100160 PubMed DOI PMC
Pearson K. (1900). X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Lond. Edinb. Dublin Philosoph. Mag. J. Sci. 50 157–175. 10.1080/14786440009463897 DOI
Peart J. R., Mestre P., Lu R., Malcuit I., Baulcombe D. C. (2005). NRG1, a CC-NB-LRR Protein, together with N, a TIR-NB-LRR Protein, Mediates Resistance against Tobacco Mosaic Virus. Curr. Biol. 15 968–973. 10.1016/j.cub.2005.04.053 PubMed DOI
Peleg Z., Saranga Y., Suprunova T., Ronin Y., Röder M. S., Kilian A., et al. (2008). High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theoret. Appl. Genet. 117 103–115. 10.1007/s00122-008-0756-9 PubMed DOI
Perugini L. D., Murphy J. P., Marshall D., Brown-Guedira G. (2007). Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theoret. Appl. Genet. 116 417–425. 10.1007/s00122-007-0679-x PubMed DOI
Peterhansel C., Freialdenhoven A., Kurth J., Kolsch R., Schulze-Lefert P. (1997). Interaction analyses of genes required for resistance responses to powdery mildew in barley reveal distinct pathways leading to leaf cell death. Plant Cell 9 1397–1409. 10.1105/tpc.9.8.1397 PubMed DOI PMC
Piffanelli P., Zhou F., Casais C., Orme J., Jarosch B., Schaffrath U., et al. (2002). The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol. 129 1076–1085. 10.1104/pp.010954 PubMed DOI PMC
Qiu Y. C., Zhou R. H., Kong X. Y., Zhang S. S., Jia J. Z. (2005). Microsatellite mapping of a Triticum urartu Tum. derived powdery mildew resistance gene transferred to common wheat (Triticum aestivum L.). Theoret. Appl. Genet. 111 1524–1531. 10.1007/s00122-005-0081-5 PubMed DOI
Ronin Y., Mester D., Minkov D., Korol A. (2010). Building reliable genetic maps: different mapping strategies may result in different maps. Nat. Sci. 02 576–589. 10.4236/ns.2010.26073 DOI
Ronin Y. I., Mester D. I., Minkov D. G., Akhunov E., Korol A. B. (2017). Building ultra-high-density linkage maps based on efficient filtering of trustable markers. Genetics 206 1285–1295. 10.1534/genetics.116.197491 PubMed DOI PMC
Sánchez-Martín J., Steuernagel B., Ghosh S., Herren G., Hurni S., Adamski N., et al. (2016). Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Gen. Biol. 17:1. 10.1186/s13059-016-1082-1 PubMed DOI PMC
Schmolke M., Mohler V., Hartl L., Zeller F. J., Hsam S. L. K. (2011). A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum). Mole. Breed. 29 449–456. 10.1007/s11032-011-9561-2 DOI
Schneider D. M., Heun M., Fischbeck G. (1991). Inheritance of the powdery mildew resistance gene Pm9 in relation to Pm1 and Pm2 of wheat. Plant Breed. 107 161–164. 10.1111/j.1439-0523.1991.tb00545.x DOI
Šimková H., Svensson J. T., Condamine P., Høibová E., Suchánková P., Bhat P. R., et al. (2008). Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Gen. 9:1. 10.1186/1471-2164-9-294 PubMed DOI PMC
Simons G., van der Lee T., Diergaarde P., van Daelen R., Groenendijk J., Frijters A., et al. (1997). AFLP-based fine mapping of the Mlo gene to a 30-kb DNA segment of the barley genome. Genomics 44 61–70. 10.1006/geno.1997.4844 PubMed DOI
Singrün C. H., Hsam S. L. K., Hartl L., Zeller F. J., Mohler V. (2003). Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell.). Theoret. Appl. Gen. 106 1420–1424. 10.1007/s00122-002-1187-7 PubMed DOI
Singrün C. H., Hsam S. L. K., Zeller F. J., Wenzel G., Mohler V. (2004). Localization of a novel recessive powdery mildew resistance gene from common wheat line RD30 in the terminal region of chromosome 7AL. Theoret. Appl. Genet. 109 210–214. 10.1007/s00122-004-1619-7 PubMed DOI
Srnić G., Murphy J. P., Lyerly J. H., Leath S., Marshall D. S. (2005). Inheritance and chromosomal assignment of powdery mildew resistance genes in two winter wheat germplasm lines. Crop Sci. 45 1578–1586. 10.2135/cropsci2004.0530 DOI
Tan C., Li G., Cowger C., Carver B. F., Xu X. (2018). Characterization of Pm59, a novel powdery mildew resistance gene in Afghanistan wheat landrace PI 181356. Theoret. Appl. Genet. 131 1145–1152. 10.1007/s00122-018-3067-9 PubMed DOI
The T., McIntosh R., Bennett F. (1979). Cytogenetical studies in wheat. IX. Monosomic analyses, telocentric mapping and linkage relationships of genes Sr21, Pm4 and Mle. Austral. J. Biol. Sci. 32 115–125. 10.1071/bi9790115 DOI
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., et al. (2012). Primer3—new capabilities and interfaces. Nucleic Acids Res. 40:e115. 10.1093/nar/gks596 PubMed DOI PMC
Van Der Plank J. E. (1963). Plant diseases: epidemics and control. New York, NY: Academic Press.
Voorrips R. E. (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93 77–78. 10.1093/jhered/93.1.77 PubMed DOI
Vrána J., Kubaláková M., Simková H., Číhalíková J., Lysák M. A., Dolezel J. (2000). Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156 2033–2041. 10.1093/genetics/156.4.2033 PubMed DOI PMC
Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., et al. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32 947–951. 10.1038/nbt.2969 PubMed DOI
Wolfe M. S., McDermott J. M. (1994). Population genetics of plant pathogen interactions: the example of the Erysiphe graminis-Hordeum vulgare pathosystem. Annu. Rev. Phytopathol. 32 89–113. 10.1146/annurev.py.32.090194.000513 DOI
Worthington M., Lyerly J., Petersen S., Brown-Guedira G., Marshall D., Cowger C., et al. (2014). MlUM15: an Aegilops neglecta-derived powdery mildew resistance gene in common wheat. Crop Sci. 54 1397–1406. 10.2135/cropsci2013.09.0634 DOI
Xu W., Li C., Hu L., Wang H., Dong H., Zhang J., et al. (2011). Identification and molecular mapping of PmHNK54: a novel powdery mildew resistance gene in common wheat. Plant Breed. 130 603–607. 10.1111/j.1439-0523.2011.01882.x DOI
Yao G., Zhang J., Yang L., Xu H., Jiang Y., Xiong L., et al. (2006). Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theoret. Appl. Genet. 114 351–358. 10.1007/s00122-006-0438-4 PubMed DOI
Zhu Z., Zhou R., Kong X., Dong Y., Jia J. (2005). Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome 48 585–590. 10.1139/g05-016 PubMed DOI