Fine physical and genetic mapping of powdery mildew resistance gene MlIW172 originating from wild emmer (Triticum dicoccoides)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24955773
PubMed Central
PMC4067302
DOI
10.1371/journal.pone.0100160
PII: PONE-D-14-04020
Knihovny.cz E-zdroje
- MeSH
- Ascomycota * MeSH
- mapování chromozomů * MeSH
- nemoci rostlin genetika mikrobiologie MeSH
- odolnost vůči nemocem genetika MeSH
- polyploidie MeSH
- pšenice genetika mikrobiologie MeSH
- rostlinné geny * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases in the world. In this study, a single dominant powdery mildew resistance gene MlIW172 was identified in the IW172 wild emmer accession and mapped to the distal region of chromosome arm 7AL (bin7AL-16-0.86-0.90) via molecular marker analysis. MlIW172 was closely linked with the RFLP probe Xpsr680-derived STS marker Xmag2185 and the EST markers BE405531 and BE637476. This suggested that MlIW172 might be allelic to the Pm1 locus or a new locus closely linked to Pm1. By screening genomic BAC library of durum wheat cv. Langdon and 7AL-specific BAC library of hexaploid wheat cv. Chinese Spring, and after analyzing genome scaffolds of Triticum urartu containing the marker sequences, additional markers were developed to construct a fine genetic linkage map on the MlIW172 locus region and to delineate the resistance gene within a 0.48 cM interval. Comparative genetics analyses using ESTs and RFLP probe sequences flanking the MlIW172 region against other grass species revealed a general co-linearity in this region with the orthologous genomic regions of rice chromosome 6, Brachypodium chromosome 1, and sorghum chromosome 10. However, orthologous resistance gene-like RGA sequences were only present in wheat and Brachypodium. The BAC contigs and sequence scaffolds that we have developed provide a framework for the physical mapping and map-based cloning of MlIW172.
Murdoch University Perth Western Australia Australia
USDA ARS West Regional Research Center Albany California United States of America
Zobrazit více v PubMed
Everts KL, Leath S, Finney PL (2001) Impact of powdery mildew and leaf rust on milling and baking quality of soft red winter wheat. Plant Dis 85: 423–429. PubMed
Mohler V, Bauer C, Schweizer G, Kempf H, Hartl L (2013) Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J Appl Genet 54: 259–263. PubMed
McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, et al. (2013) Catalogue of gene symbols for wheat. 12th International Wheat Genetics Symposium. Yokohama, Japan.
Xiao M, Song F, Jiao J, Wang X, Xu H, et al. (2013) Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet 126: 1397–1403. PubMed
Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement: population genetics, genetic resources, and genome organization of wheat's progenitor, Triticum dicoccoides. Springer, Berlin.
Ben-David R, Xie W, Peleg Z, Saranga Y, Dinoor A, et al. (2010) Identification and mapping of PmG16, a powdery mildew resistance gene derived from wild emmer wheat. Theor Appl Genet 121: 499–510. PubMed
Liu ZJ, Zhu J, Cui Y, Liang Y, Wu H, et al. (2012) Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides) on chromosome 2BS. Theor Appl Genet 124: 1041–1049. PubMed
Xie W, Ben-David R, Zeng B, Distelfeld A, Roder MS, et al. (2012) Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat, Triticum dicoccoides . Theor Appl Genet 124: 911–922. PubMed
Xue F, Ji W, Wang C, Zhang H, Yang B (2012) High-density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat (Triticum turgidum var. dicoccoides). Theor Appl Genet 124: 1549–1560. PubMed
Li N, Wen Z, Wang J, Fu BS, Liu J, et al. (2013) Transfer and mapping of a gene conferring powdery mildew resistance at later growth stages in a tetraploid wheat accession. Mol Breeding (Online 10.1007/s11032-013-9983-0)
Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, et al. (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168: 701–712. PubMed PMC
Goyal A, Bandopadhyay R, Sourdille P, Endo TR, Balyan HS, et al. (2005) Physical molecular maps of wheat chromosomes. Funct Integr Genomic 5: 260–263. PubMed
Gupta PK, Mir RR, Mohan A, Kumar J (2008) Wheat genomics: present status and future prospects. International Journal of Plant Genomics 2008: 896451. PubMed PMC
Peng JH, Lapitan NL (2005) Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomic 5: 80–96. PubMed
Brenchley R, Spannagl M, Pfeifer M, Barker GL, D'Amore R, et al. (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491: 705–710. PubMed PMC
Jia J, Zhao S, Kong X, Li Y, Zhao G, et al. (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496: 91–95. PubMed
Ling HQ, Zhao S, Liu D, Wang J, Sun H, et al. (2013) Draft genome of the wheat A-genome progenitor Triticum urartu . Nature 496: 87–90. PubMed
Philippe R, Choulet F, Paux E, van Oeveren J, Tang J, et al. (2012) Whole genome profiling provides a robust framework for physical mapping and sequencing in the highly complex and repetitive wheat genome. BMC Genomics 13: 47. PubMed PMC
Chantret N, Salse J, Sabot F, Bellec A, Laubin B, et al. (2008) Contrasted microcolinearity and gene evolution within a homoeologous region of wheat and barley species. J Mol Evol 66: 138–150. PubMed
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, et al. (2009a) The Sorghum bicolor genome and the diversification of grasses. Nature 457: 551–556. PubMed
Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, et al. (2011) Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). FunctIntegr Genomic 11: 71–83. PubMed
Salse J, Bolot S, Throude M, Jouffe V, Piegu B, et al. (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20: 11–24. PubMed PMC
Abrouk M, Murat F, Pont C, Messing J, Jackson S, et al. (2010) Palaeogenomics of plants: synteny-based modelling of extinct ancestors. Trends Plant Sci 15: 479–487. PubMed
International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436: 793–800. PubMed
International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon . Nature 463: 763–768. PubMed
Dong L, Huo N, Wang Y, Deal K, Luo MC, et al. (2012) Exploring the diploid wheat ancestral A genome through sequence comparison at the high-molecular-weight glutenin locus region. Mol Genet Genomics 287: 855–866. PubMed
Huo N, Vogel JP, Lazo GR, You FM, Ma Y, et al. (2009) Structural characterization of Brachypodium genome and its syntenic relationship with rice and wheat. Plant Mol Biol 70: 47–61. PubMed
Wang J, Luo MC, Chen Z, You FM, Wei Y, et al. (2013) Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol 198: 925–937. PubMed
Akhunov ED, Sehgal S, Liang H, Wang S, Akhunova AR, et al. (2013) Comparative analysis of syntenic genes in grass genomes reveals accelerated rates of gene structure and coding sequence evolution in polyploid wheat. Plant Physiol 161: 252–265. PubMed PMC
Luo MC, Gu YQ, You FM, Deal KR, Ma Y, et al. (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci USA 110: 7940–7945. PubMed PMC
Pont C, Murat F, Guizard S, Flores R, Foucrier S, et al. (2013) Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo- and neoduplicated subgenomes. Plant J 76: 1030–1044. PubMed
Xie CJ, Sun QX, Yang ZM (2003) Resistance of wild emmers from Israel to wheat rusts and powdery mildew at seedling stage. J Triticeae Crops 23: 39–42.
Allen GC, Flores-Vergara MA, Krasnyanski S, Kumar S, Thompson WF (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1: 2320–2325. PubMed
Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by Bulked Segregant Analysis - a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88: 9828–9832. PubMed PMC
Yao G, Zhang J, Yang L, Xu H, Jiang Y, et al. (2007) Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theor Appl Genet 114: 351–358. PubMed
Ma ZQ, Sorrells ME, Tanksley SD (1994) RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat. Genome 37: 871–875. PubMed
Neu C, Stein N, Keller B (2002) Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45: 737–744. PubMed
Lazo GR, Chao S, Hummel DD, Edwards H, Crossman CC, et al. (2004) Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.): EST generation, unigene analysis, probe selection and bioinformatics for a 16,000-locus bin-delineated map. Genetics 168: 585–593. PubMed PMC
Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, et al. (2007) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 35: D883–887. PubMed PMC
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, et al. (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40: 1178–1186. PubMed PMC
Liu Q, Scaringe WA, Sommer SS (2000) Discrete mobility of single-stranded DNA in non-denaturing gel electrophoresis. Nucleic Acids Research 28: 940–943. PubMed PMC
Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, et al. (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181. PubMed
Liu RH, Meng JL (2003) MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (Beijing) 25: 317–321. PubMed
Cenci A, Chantret N, Kong X, Gu Y, Anderson OD, et al. (2003) Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum). Theor Appl Genet 107: 931–939. PubMed
Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, et al. (1998) A microsatellite map of wheat. Genetics 149: 2007–2023. PubMed PMC
Singrün CH, Hsam SLK, Hartl L, Zeller FJ, Mohler V (2003) Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell.). Theor Appl Genet 106: 1420–1424. PubMed
Hossain KG, Kalavacharla V, Lazo GR, Hegstad J, Wentz MJ, et al. (2004) A chromosome bin map of 2148 expressed sequence tag loci of wheat homoeologous group 7. Genetics 168: 687–699. PubMed PMC
Zhang X, Han D, Zeng Q, Duan Y, Yuan F, et al. (2013) Fine mapping of wheat stripe rust resistance gene Yr26 based on collinearity of wheat with Brachypodium distachyon and rice. PloS ONE 8: e57885. PubMed PMC
You FM, Huo N, Gu YQ, Lazo GR, Dvorak J, et al. (2009) ConservedPrimers 2.0: a high-throughput pipeline for comparative genome referenced intron-flanking PCR primer design and its application in wheat SNP discovery. BMC Bioinformatics 10: 331. PubMed PMC
You FM, Huo N, Gu YQ, Luo MC, Ma Y, et al. (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 9: 253. PubMed PMC
Sears ER, Briggle LW (1969) Mapping gene Pm1 for resistance to Erysiphe Graminis f. sp. tritici on chromosome 7A of wheat. Crop Sci 9: 96-&
Srnić G, Murphy JP, Lyerly JH, Leath S, Marshall DS (2005) Inheritance and chromosomal assignment of powdery mildew resistance genes in two winter wheat germplasm lines. Crop Sci 45: 1578–1586.
Miranda LM, Perugini L, Srnic G, Brown-Guedira G, Marshall D, et al. (2007) Genetic mapping of a Triticum monococcum-derived powdery mildew resistance gene in common wheat. Crop Sci 47: 2323–2329.
Chhuneja P, Kumar K, Stirnweis D, Hurni S, Keller B, et al. (2012) Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L. Theor Appl Genet 124: 1051–1058. PubMed
Perugini LD, Murphy JP, Marshall D, Brown-Guedira G (2008) Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii . Theor Appl Genet 116: 417–425. PubMed
Qiu YC, Zhou RH, Kong XY, Zhang SS, Jia JZ (2005) Microsatellite mapping of a Triticum urartu Tum. derived powdery mildew resistance gene transferred to common wheat (Triticum aestivum L.). Theor Appl Genet 111: 1524–1531. PubMed
Maxwell JJ, Lyerly JH, Cowger C, Marshall D, Brown-Guedira G, et al. (2009) MlAG12: a Triticum timopheevii-derived powdery mildew resistance gene in common wheat on chromosome 7AL. Theor Appl Genet 119: 1489–1495. PubMed
Ji XL, Xie CJ, Ni ZF, Yang TM, Nevo E, et al. (2008) Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica 159: 385–390.
Schneider DM, Heun M, Fishbeck G (1991) Inheritance of the powdery mildew resistance gene Pm9 in relation to Pm1 and Pm2 of wheat. Plant Breeding 107: 161–164.
Singrün C, Hsam SL, Zeller FJ, Wenzel G, Mohler V (2004) Localization of a novel recessive powdery mildew resistance gene from common wheat line RD30 in the terminal region of chromosome 7AL. Theor Appl Genet 109: 210–214. PubMed
Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger PS, et al. (2004) Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Res 32: 3546–3565. PubMed PMC
Wu H, Qin J, Han J, Zhao X, Ouyang S, Liang Y, et al. (2013) Comparative high-resolution mapping of the wax inhibitors Iw1 and Iw2 in hexaploid wheat. PLoS ONE 8(12): e84691 doi:10.1371/journal.pone.0084691 PubMed DOI PMC
Bossolini E, Wicker T, Knobel PA, Keller B (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J 49: 704–717. PubMed
Guyot R, Yahiaoui N, Feuillet C, Keller B (2004) In silico comparative analysis reveals a mosaic conservation of genes within a novel colinear region in wheat chromosome 1AS and rice chromosome 5S. Funct Integr Genomics 4: 47–58. PubMed
Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37: 528–538. PubMed
Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, et al. (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341: 786–788. PubMed
Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, et al. (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65: 93–106. PubMed
Qiu JW, Schürch AC, Yahiaoui N, Dong LL, Fan HJ, et al. (2007) Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theor Appl Genet 115: 159–168. PubMed
Feuillet C, Travella S, Stein N, Albar L, Nublat A, et al. (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100: 15253–15258. PubMed PMC
Huang L, Brooks SA, Li W, Fellers JP, Trick HN, et al. (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164: 655–664. PubMed PMC