A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/P016855/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
33176001
PubMed Central
PMC8022591
DOI
10.1111/nph.17075
Knihovny.cz E-zdroje
- Klíčová slova
- Bgt, Triticum aestivum, AvrPm effectors, Blumeria graminis f. sp. tritici, EMS mutagenesis, NLR, chromosome sequencing,
- MeSH
- Ascomycota * genetika MeSH
- chromozomy MeSH
- nemoci rostlin genetika MeSH
- odolnost vůči nemocem genetika MeSH
- pšenice * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination. A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using mutagenesis and R gene enrichment sequencing (MutRenSeq). Stable transformation confirmed Pm1a identity which induced a strong resistance phenotype in transgenic plants upon challenge with avirulent Blumeria graminis (wheat powdery mildew) pathogens. A high-density genetic map of a B. graminis family segregating for Pm1a avirulence combined with pathogen genome resequencing and RNA sequencing (RNAseq) identified AvrPm1a effector gene candidates. In planta expression identified an effector, with an N terminal Y/FxC motif, that induced a strong hypersensitive response when co-expressed with Pm1a in Nicotiana benthamiana. Single chromosome enrichment sequencing (ChromSeq) and assembly of chromosome 7A suggested that suppressed recombination around the Pm1a region was due to a rearrangement involving chromosomes 7A, 7B and 7D. The cloning of Pm1a and its identification in a highly rearranged region of chromosome 7A provides insight into the role of chromosomal rearrangements in the evolution of this complex resistance cluster.
Zobrazit více v PubMed
Ayliffe M, Periyannan SK, Feechan A, Dry I, Schumann U, Wang MB, Pryor A, Lagudah E. 2013. A simple method for comparing fungal biomass in infected plant tissues. Molecular Plant–Microbe Interactions 26: 658–667. PubMed
Bendtsen JD, Nielsen H, von Heijne G, Brunak S. 2004. Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology 340: 783–795. PubMed
Bernhardt N, Brassac J, Dong X, Willing EM, Poskar CH, Kilian B, Blattner FR. 2019. Genome‐wide sequence information reveals recurrent hybridization among diploid wheat wild relatives. The Plant Journal 102: 493–506. PubMed
Bourras S, Kunz L, Xue MF, Praz CR, Muller MC, Kalin C, Schlafli M, Ackermann P, Fluckiger S, Parlange F et al. 2019. The AvrPm3‐Pm3 effector‐NLR interactions control both race‐specific resistance and host‐specificity of cereal mildews on wheat. Nature Communications 10: 2292. PubMed PMC
Bourras S, McNally KE, Ben‐David R, Parlange F, Roffler S, Praz CR, Oberhaensli S, Menardo F, Stirnweis D, Frenkel Z et al. 2015. Multiple avirulence loci and allele‐specific effector recognition control the Pm3 race‐specific resistance of wheat to powdery mildew. The Plant Cell 27: 2991–3012. PubMed PMC
Bourras S, McNally KE, Mueller MC, Wicker T, Keller B. 2016. Avirulence genes in cereal powdery mildews: the gene‐for‐gene hypothesis 2.0. Frontiers in Plant Science 7: 241. PubMed PMC
Brunner S, Hurni S, Streckeisen P, Mayr G, Albrecht M, Yahiaoui N, Keller B. 2010. Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. The Plant Journal 64: 433–445. PubMed
Bushnell WR, Bergquist SE. 1974. Aggregation of host cytoplasm and the formation of papillae and haustoria in powdery mildew of barley. Phytopathology 65: 310–318.
Crawford AC, Stefanova K, Lambe W, McLean R, Wilson R, Barclay I, Francki MG. 2011. Functional relationships of phytoene synthase 1 alleles on chromosome 7A controlling flour colour variation in selected Australian wheat genotypes. Theoretical and Applied Genetics 123: 95–108. PubMed
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR: ultrafast universal RNA‐seq aligner. Bioinformatics 29: 15–21. PubMed PMC
Dracatos PM, Bartoš J, Elmansour H, Singh D, Karafiátová M, Zhang P, Steuernagel B, Svačina R, Cobbin JCA, Clark B et al. 2019. The Coiled‐Coil NLR Rph1, confers leaf rust resistance in barley cultivar Sudan. Plant Physiology 179: 1362–1372. PubMed PMC
He H, Ji Y, Zhu S, Li B, Zhao R, Jiang Z, Bie T. 2017. Genetic, physical and comparative mapping of the powdery mildew resistance gene Pm21 originating from Dasypyrum villosum . Frontiers in Plant Science 8: 1914. PubMed PMC
He H, Zhu S, Zhao R, Jiang Z, Ji Y, Ji J, Qiu D, Li H, Bie T. 2018. Pm21, encoding a typical CC‐NBS‐LRR protein, confers broad‐spectrum resistance to wheat powdery mildew disease. Molecular Plant 11: 879–882. PubMed
Himmelbach A, Zierold U, Hensel G et al. 2007. A set of modular binary vectors for transformation of cereals. Plant Physiology 145: 1192–1200. PubMed PMC
Hsam KSL, Huang QX, Ernst F, Hartl L, Zeller JF. 1998. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 5. Alleles at the Pm1 locus. Theoretical and Applied Genetics 96: 1129–1134.
Hurni S, Brunner S, Buchmann G, Herren G, Jordan T, Krukowski P, Wicker T, Yahiaoui N, Mago R, Keller B. 2013. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. The Plant Journal 76: 957–969. PubMed
International Wheat Genome Sequencing Consortium (IWGSC) . 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361: eaar7191. PubMed
Ishida Y, Tsunashima M, Hiei Y, Komari T. 2015. Wheat (Triticum aestivum L.) transformation using immature embryos. In Wang K ed. Agrobacterium protocols: vol. 1. New York, NY, USA: Springer, 189–198. PubMed
Jain C, Koren S, Dilthey A, Phillippy AM, Aluru S. 2018. A fast adaptive algorithm for computing whole‐genome homology maps. Bioinformatics 34: 748–756. PubMed PMC
Jayatilake DV. 2014. Fine mapping of nematode resistance genes Rlnn1 and Cre8 in wheat (Triticum aestivum) . PhD thesis, University of Adelaide, Adelaide, SA, Australia.
Jayatilake DV, Tucker EJ, Bariana H, Kuchel H, Edwards J, McKay AC, Chalmers K, Mather DE. 2013. Genetic mapping and marker development for resistance of wheat against the root lesion nematode Pratylenchus neglectus . BMC Plant Biology 13: 230. PubMed PMC
Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta‐Espino J, McFadden H, Bossolini E, Selter LL, Keller B. 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323: 1360–1363. PubMed
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. PubMed PMC
Kunoh H, Yamamori K, Ishizaki H. 1982. Cytological studies of early stages of powdery mildew in barley and wheat. VIII. Autofluorescence at penetration sites of Erysiphe graminis hordei on living barley coleoptiles. Physiological Plant Pathology 21: 373–379.
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25: 1754–1760. PubMed PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079. PubMed PMC
Li J, Dundas I, Dong C, Li G, Trethowan R, Yang Z, Hoxha S, Zhang P. 2020. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theoretical and Applied Genetics 133: 1095–1107. PubMed
Li M, Dong L, Li B, Wang Z, Xie J, Qiu D, Li Y, Shi W, Yang L, Wu Q et al. 2020. A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytologist 228: 1027–1037. PubMed
Liang JC, Fu BS, Tang WB, Khan NU, Li N, Ma ZQ. 2016. Fine mapping of two wheat powdery mildew resistance genes located at the Pm1 cluster. Plant Genome 9: 1–9. PubMed
Lu P, Guo L, Wang Z, Li B, Li J, Li Y, Qiu D, Shi W, Yang L, Wang N et al. 2020. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nature Communications 11: 680. PubMed PMC
Lu XL, Kracher B, Saur IML, Bauer S, Ellwood SR, Wise R, Yaeno T, Maekawa T, Schulze‐Lefert P. 2016. Allelic barley MLA immune receptors recognize sequence‐unrelated avirulence effectors of the powdery mildew pathogen. Proceedings of the National Academy of Sciences USA 113: 6486–6495. PubMed PMC
McIntosh RA. 1977. Nature of induced mutations affecting disease reaction in wheat. Induced mutations against plant disease. Vienna, Austria: International Atomic Energy Agency. 551–564.
McNally KE, Menardo F, Luthi L, Praz CR, Muller MC, Kunz L, Ben‐David R, Chandrasekhar K, Dinoor A, Cowger C et al. 2018. Distinct domains of the AvrPm3 (A2/F2) avirulence protein from wheat powdery mildew are involved in immune receptor recognition and putative effector function. New Phytologist 218: 681–695. PubMed PMC
Menardo F, Praz CR, Wyder S, Ben‐David R, Bourras S, Matsumae H, McNally KE, Parlange F, Riba A, Roffler S et al. 2016. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nature Genetics 48: 201–205. PubMed
Moll KM, Zhou P, Ramaraj T, Fajardo D, Devitt NP, Sadowsky MJ, Stupar RM, Tiffin P, Miller JR, Young ND et al. 2017. Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model Medicago truncatula . BMC Genomics 18: 578. PubMed PMC
Monat C, Padmarasu S, Lux T, Wicker T, Gundlach H, Himmelbach A, Ens J, Li C, Muehlbauer GJ, Schulman AH et al. 2019. TRITEX: chromosome‐scale sequence assembly of Triticeae genomes with open‐source tools. Genome Biology 20: 284. PubMed PMC
Moore JW, Herrera‐Foessel S, Lan CX, Schnippenkoetter W, Ayliffe M, Huerta‐Espino J, Lillemo M, Viccars L, Milne R, Periyannan S et al. 2015. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature Genetics 47: 1494. PubMed
Müller MC, Praz CR, Sotiropoulos AG, Menardo F, Kunz L, Schudel S, Oberhänsli S, Poretti M, Wehrli A, Bourras S et al. 2019. A chromosome‐scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew. New Phytologist 221: 2176–2189. PubMed PMC
Neu C, Stein N, Keller B. 2002. Genetic mapping of the Lr20‐Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45: 737–744. PubMed
Ouyang S, Zhang D, Han J, Zhao X, Cui Y, Song W, Huo N, Liang Y, Xie J, Wang Z et al. 2014. Fine physical and genetic mapping of powdery mildew resistance gene MlIW172 originating from wild emmer (Triticum dicoccoides). PLoS ONE 9: e100160. PubMed PMC
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon provides fast and bias‐aware quantification of transcript expression. Nature Methods 14: 417. PubMed PMC
Pedersen C, van Themaat EVL, McGuffin LJ, Abbott JC, Burgis TA, Barton G, Bindschedler LV, Lu XL, Maekawa T, Wessling R et al. 2012. Structure and evolution of barley powdery mildew effector candidates. BMC Genomics 13: 694. PubMed PMC
Pennington HG, Jones R, Kwon S, Bonciani G, Thieron H, Chandler T, Luong P, Morgan SN, Przydacz M, Bozkurt T et al. 2019. The fungal ribonuclease‐like effector protein CSEP0064/BEC1054 represses plant immunity and interferes with degradation of host ribosomal RNA. PLoS Pathogens 15: e1007620. PubMed PMC
Praz CR, Bourras S, Zeng FS, Sanchez‐Martin J, Menardo F, Xue MF, Yang LJ, Roffler S, Boni R, Herren G et al. 2017. AvrPm2 encodes an RNase‐like avirulence effector which is conserved in the two different specialised forms of wheat and rye powdery mildew fungus. New Phytologist 213: 1301–1314. PubMed PMC
Praz CR, Menardo F, Robinson MD, Müller MC, Wicker T, Bourras S, Keller B. 2018. Non‐parent of origin expression of numerous effector genes indicates a role of gene regulation in host adaption of the hybrid triticale powdery mildew pathogen. Frontiers in Plant Science 9: 49. PubMed PMC
Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011. Integrative genomics viewer. Nature Biotechnology 29: 24–26. PubMed PMC
Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140. PubMed PMC
RStudio Team . 2018. RStudio: Integrated development environment for R v.1.2.1335. [WWW document] URL http://www.rstudio.com/.
Salamini F, Ozkan H, Brandolini A, Schafer‐Pregl R, Martin W. 2002. Genetics and geography of wild cereal domestication in the near east. Nature Reviews Genetics 3: 429–441. PubMed
Sánchez‐Martín J, Rubiales D, Prats E. 2011. Resistance to powdery mildew (Blumeria graminis f. sp. avenae) in oat seedlings and adult plants. Plant Pathology 60: 846–856.
Sánchez‐Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger SG, Wicker T et al. 2016. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biology 17: 221. PubMed PMC
Saur IML, Bauer S, Kracher B, Lu XL, Franzeskakis L, Muller MC, Sabelleck B, Kummel F, Panstruga R, Maekawa T et al. 2019. Multiple pairs of allelic MLA immune receptor‐powdery mildew AVR(A) effectors argue for a direct recognition mechanism. eLife 8: e44471. PubMed PMC
Sears ER, Briggle LW. 1969. Mapping gene Pm1 for resistance to Erysiphe graminis f. sp. tritici on chromosome 7A of wheat. Crop Science 9: 96.
Sharp P, Dong C. 2014. TILLING for Plant Breeding. In: Fleury D, Whitford R, eds. Crop breeding methods and protocols. New York, NY, USA: Springer Protocols. 155–165. PubMed
Singh SP, Hurni S, Ruinelli M, Brunner S, Sanchez‐Martin J, Krukowski P, Peditto D, Buchmann G, Zbinden H, Keller B. 2018. Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Plant Molecular Biology 98: 249–260. PubMed
Singrun C, Hsam SL, Hartl L, Zeller FJ, Mohler V. 2003. Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell.). Theoretical and Applied Genetics 106: 1420–1424. PubMed
Solovyev V, Kosarev P, Seledsov I, Vorobyev D. 2006. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biology 7(Suppl. 1): S10.1‐S10.12. PubMed PMC
Spanu PD. 2017. Cereal immunity against powdery mildews targets RNase‐Like Proteins associated with Haustoria (RALPH) effectors evolved from a common ancestral gene. New Phytologist 213: 969–971. PubMed
Steuernagel B, Periyannan SK, Hernandez‐Pinzon I, Witek K, Rouse MN, Yu G, Hatta A, Ayliffe M, Bariana H, Jones JD et al. 2016. Rapid cloning of disease‐resistance genes in plants using mutagenesis and sequence capture. Nature Biotechnology 34: 652–655. PubMed
Tan C, Li G, Cowger C, Carver BF, Xu X. 2018. Characterization of Pm59, a novel powdery mildew resistance gene in Afghanistan wheat landrace PI 181356. Theoretical and Applied Genetics 131: 1145–1152. PubMed
Waterhouse WL. 1952. Australian rust studies. IX. Physiological race determinations and surveys of cereal rusts. Proceedings of the Linnean Society of New South Wales 77: 209–258.
Watson IA, Luig NH. 1966. SR 15 – a new gene for use in the classification of Puccinia graminis var. tritici . Euphytica 15: 239–247.
Weigel D, Glazebrook J. 2006. Transformation of Agrobacterium using the freeze–thaw method. CSH protocols 7: pdb.prot4666. PubMed
Worthington M, Lyerly J, Petersen S, Brown‐Guedira G, Marshall D, Cowger C, Parks R, Murphy JP. 2014. MlUM15: an Aegilops neglecta‐derived powdery mildew resistance gene in common wheat. Crop Science 54: 1397–1406.
Xie J, Guo G, Wang Y, Hu T, Wang L, Li J, Qiu D, Li Y, Wu Q, Lu P et al. 2020. A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytologist 228: 1011–1026. PubMed
Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J, Zhou W, Gao L, Huang Z, Zhang R et al. 2018. Pm21 from Haynaldia villosa encodes a CC‐NBS‐LRR protein conferring powdery mildew resistance in wheat. Molecular Plant 11: 874–878. PubMed
Yao G, Zhang J, Yang L, Xu H, Jiang Y, Xiong L, Zhang C, Zhang Z, Ma Z, Sorrells ME. 2007. Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theoretical and Applied Genetics 114: 351–358. PubMed
Zhang L, Zheng XW, Qiao LY, Qiao L, Zhao JJ, Wang JM, Zheng J. 2018. Analysis of three types of resistance gene analogs in PmU region from Triticum urartu . Journal of Integrative Agriculture 17: 2601–2611.
Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 7: 203–214. PubMed
Zou S, Wang H, Li Y, Kong Z, Tang D. 2018. The NB‐LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytologist 218: 298–309. PubMed
Updated guidelines for gene nomenclature in wheat