Dissection of a rapidly evolving wheat resistance gene cluster by long-read genome sequencing accelerated the cloning of Pm69

. 2024 Jan 08 ; 5 (1) : 100646. [epub] 20230706

Jazyk angličtina Země Čína Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37415333
Odkazy

PubMed 37415333
PubMed Central PMC10811346
DOI 10.1016/j.xplc.2023.100646
PII: S2590-3462(23)00163-3
Knihovny.cz E-zdroje

Gene cloning in repeat-rich polyploid genomes remains challenging. Here, we describe a strategy for overcoming major bottlenecks in cloning of the powdery mildew resistance gene (R-gene) Pm69 derived from tetraploid wild emmer wheat. A conventional positional cloning approach was not effective owing to suppressed recombination. Chromosome sorting was compromised by insufficient purity. A Pm69 physical map, constructed by assembling Oxford Nanopore Technology (ONT) long-read genome sequences, revealed a rapidly evolving nucleotide-binding leucine-rich repeat (NLR) R-gene cluster with structural variations. A single candidate NLR was identified by anchoring RNA sequencing reads from susceptible mutants to ONT contigs and was validated by virus-induced gene silencing. Pm69 is likely a newly evolved NLR and was discovered in only one location across the wild emmer wheat distribution range in Israel. Pm69 was successfully introgressed into cultivated wheat, and a diagnostic molecular marker was used to accelerate its deployment and pyramiding with other R-genes.

Crop Development Centre and Department of Plant Sciences University of Saskatchewan 51 Campus Drive Saskatoon SK S7N 5A8 Canada

Department of Crop Genomics and Bioinformatics China Agricultural University Beijing 100094 China

Institute of Evolution University of Haifa Mt Carmel Haifa 3498838 Israel; The Department of Evolutionary and Environmental Biology University of Haifa Mt Carmel Haifa 3498838 Israel

Institute of Evolution University of Haifa Mt Carmel Haifa 3498838 Israel; The Department of Evolutionary and Environmental Biology University of Haifa Mt Carmel Haifa 3498838 Israel; Crop Development Centre and Department of Plant Sciences University of Saskatchewan 51 Campus Drive Saskatoon SK S7N 5A8 Canada

Institute of Evolution University of Haifa Mt Carmel Haifa 3498838 Israel; The Department of Evolutionary and Environmental Biology University of Haifa Mt Carmel Haifa 3498838 Israel; Department of Vegetables and Field Crops Institute of Plant Sciences Agricultural Research Organization Volcani Center Rishon Lezion 7505101 Israel

Institute of Evolution University of Haifa Mt Carmel Haifa 3498838 Israel; The Department of Evolutionary and Environmental Biology University of Haifa Mt Carmel Haifa 3498838 Israel; The Institute of Plant Protection Sichuan Academy of Agricultural Sciences Chengdu 610066 China

Institute of Experimental Botany of the Czech Academy of Sciences Centre of the Region Haná for Biotechnological and Agricultural Research Šlechtitelů 31 779 00 Olomouc Czech Republic

Plant Pathology Department University of California Davis Davis CA 95616 USA

Zobrazit více v PubMed

Amarasinghe S.L., Su S., Dong X., Zappia L., Ritchie M.E., Gouil Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020;21:30. PubMed PMC

Andersen E.J., Nepal M.P., Purintun J.M., Nelson D., Mermigka G., Sarris P.F. Wheat disease resistance genes and their diversification through integrated domain fusions. Front. Genet. 2020;11:898. PubMed PMC

Arora S., Steuernagel B., Gaurav K., Chandramohan S., Long Y., Matny O., Johnson R., Enk J., Periyannan S., Singh N., et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 2019;37:139–143. PubMed

Athiyannan N., Abrouk M., Boshoff W.H.P., Cauet S., Rodde N., Kudrna D., Mohammed N., Bettgenhaeuser J., Botha K.S., Derman S.S., et al. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nat. Genet. 2022;54:227–231. PubMed PMC

Aury J.M., Engelen S., Istace B., Monat C., Lasserre-Zuber P., Belser C., Cruaud C., Rimbert H., Leroy P., Arribat S., et al. Long-read and chromosome-scale assembly of the hexaploid wheat genome achieves high resolution for research and breeding. GigaScience. 2022;11:giac034. PubMed PMC

Avni R., Nave M., Barad O., Baruch K., Twardziok S.O., Gundlach H., Hale I., Mascher M., Spannagl M., Wiebe K., et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;357:93–97. PubMed

Barragan A.C., Weigel D. Plant NLR diversity: the known unknowns of pan-NLRomes. Plant Cell. 2021;33:814–831. PubMed PMC

Ben-David R., Parks R., Dinoor A., Kosman E., Wicker T., Keller B., Cowger C. Differentiation among Blumeria graminis f. sp. tritici isolates originating from wild versus domesticated Triticum species in Israel. Phytopathology. 2016;106:861–870. PubMed

Bergelson J., Kreitman M., Stahl E.A., Tian D. Evolutionary dynamics of plant R-genes. Science. 2001;292:2281–2285. PubMed

Bohra A., Kilian B., Sivasankar S., Caccamo M., Mba C., McCouch S.R., Varshney R.K. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 2021;40:412–431. PubMed

Deamer D., Akeson M., Branton D. Three decades of nanopore sequencing. Nat. Biotechnol. 2016;34:518–524. PubMed PMC

Distelfeld A., Uauy C., Fahima T., Dubcovsky J. Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol. 2006;169:753–763. PubMed

Dpooležel J., Binarová P., Lcretti S. Analysis of Nuclear DNA content in plant cells by Flow cytometry. Biol. Plant. (Prague) 1989;31:113–120.

Frantzeskakis L., Di Pietro A., Rep M., Schirawski J., Wu C.H., Panstruga R. Rapid evolution in plant–microbe interactions – a molecular genomics perspective. New Phytol. 2020;225:1134–1142. PubMed

Fu D., Uauy C., Distelfeld A., Blechl A., Epstein L., Chen X., Sela H., Fahima T., Dubcovsky J. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science. 2009;323:1357–1360. PubMed PMC

Fu Y.B., Peterson G.W., Horbach C., Konkin D.J., Beiles A., Nevo E. Elevated mutation and selection in wild emmer wheat in response to 28 years of global warming. Proc. Natl. Acad. Sci. USA. 2019;116:20002–20008. PubMed PMC

Gaurav K., Arora S., Silva P., Sánchez-Martín J., Horsnell R., Gao L., Brar G.S., Widrig V., John Raupp W., Singh N., et al. Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat. Biotechnol. 2022;40:422–431. PubMed PMC

Gerechter-Amitai Z.K., van Silfhout C.H. Resistance to powdery mildew in wild emmer (Triticum dicoccoides Körn.) Euphytica. 1984;33:273–280.

Gill B.K., Klindworth D.L., Rouse M.N., Zhang J., Zhang Q., Sharma J.S., Chu C., Long Y., Chao S., Olivera P.D., et al. Function and evolution of allelic variations of Sr13 conferring resistance to stem rust in tetraploid wheat (Triticum turgidum L.) Plant J. 2021;106:1674–1691. PubMed PMC

Giorgi D., Farina A., Grosso V., Gennaro A., Ceoloni C., Lucretti S. FISHIS: Fluorescence In Situ Hybridization in Suspension and Chromosome Flow Sorting Made Easy. PLoS One. 2013;8 PubMed PMC

Golzar H., Shankar M., D’Antuono M. Responses of commercial wheat varieties and differential lines to western Australian powdery mildew (Blumeria graminis f. Sp. tritici) populations. Australas. Plant Pathol. 2016;45:347–355.

Hewitt T., Müller M.C., Molnár I., Mascher M., Holušová K., Šimková H., Kunz L., Zhang J., Li J., Bhatt D., et al. A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria. New Phytol. 2021;229:2812–2826. PubMed PMC

Hewitt T., Zhang J., Huang L., Upadhyaya N., Li J., Park R., Hoxha S., McIntosh R., Lagudah E., Zhang P. Wheat leaf rust resistance gene Lr13 is a specific Ne2 allele for hybrid necrosis. Mol. Plant. 2021;14:1025–1028. PubMed

Holzberg S., Brosio P., Gross C., Pogue G.P. Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J. 2002;30:315–327. PubMed

Huang L., Raats D., Sela H., Klymiuk V., Lidzbarsky G., Feng L., Krugman T., Fahima T. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses. Annu. Rev. Phytopathol. 2016;54:279–301. PubMed

Hurni S., Brunner S., Buchmann G., Herren G., Jordan T., Krukowski P., Wicker T., Yahiaoui N., Mago R., Keller B. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J. 2013;76:957–969. PubMed

Hurni S., Brunner S., Stirnweis D., Herren G., Peditto D., McIntosh R.A., Keller B. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J. 2014;79:904–913. PubMed

International Wheat Genome Sequencing Consortium (IWGSC) Appels R., Eversole K., Stein N., Feuillet C., Keller B., Rogers J., Pozniak C.J., Choulet F., Distelfeld A., et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361 PubMed

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. PubMed PMC

Klymiuk V., Fatiukha A., Huang L., Wei Z., Kis-Papo T., Saranga Y., Krugman T., Fahima T. Applications of Genetic and Genomic Research in Cereals. Woodhead Publishing; 2019. Durum Wheat as a Bridge between Wild Emmer Wheat Genetic Resources and Bread Wheat; pp. 201–230.

Klymiuk V., Yaniv E., Huang L., Raats D., Fatiukha A., Chen S., Feng L., Frenkel Z., Krugman T., Lidzbarsky G., et al. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat. Commun. 2018;9:3735. PubMed PMC

Kopec P.M., Mikolajczyk K., Jajor E., Perek A., Nowakowska J., Obermeier C., Chawla H.S., Korbas M., Bartkowiak-Broda I., Karlowski W.M. Local Duplication of TIR-NBS-LRR Gene Marks Clubroot Resistance in Brassica napus cv. Tosca. Front. Plant Sci. 2021;12:639631. PubMed PMC

Krattinger S.G., Lagudah E.S., Spielmeyer W., Singh R.P., Huerta-Espino J., McFadden H., Bossolini E., Selter L.L., Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science. 2009;323:1360–1363. PubMed

Krugman T., Nevo E., Beharav A., Sela H., Fahima T. The Institute of Evolution Wild Cereal Gene Bank at the University of Haifa. Isr. J. Plant Sci. 2018;65:129–146.

Kubaláková M., Macas J., Dolez˘el J. Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theor. Appl. Genet. 1997;94:758–763.

Kubaláková M., Kovárová P., Suchánková P., Cíhalíková J., Bartoš J., Lucretti S., Watanabe N., Kianian S.F., Doležel J. Chromosome Sorting in Tetraploid Wheat and Its Potential for Genome Analysis. Genetics. 2005;170:823–829. PubMed PMC

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013 doi: 10.48550/arxiv.1303.3997. Preprint at. DOI

Li M., Dong L., Li B., Wang Z., Xie J., Qiu D., Li Y., Shi W., Yang L., Wu Q., et al. A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytol. 2020;228:1027–1037. PubMed

Li Y., Roychowdhury R., Govta L., et al. Intracellular reactive oxygen species-aided localized cell death contributing to immune responses against wheat powdery Mildew pathogen. Phytopathology. 2023;113:884–892. PubMed

Li Y., Wei Z.Z., Fatiukha A., Jaiwar S., Wang H., Hasan S., Liu Z., Sela H., Krugman T., Fahima T. TdPm60 identified in wild emmer wheat is an ortholog of Pm60 and constitutes a strong candidate for PmG16 powdery mildew resistance. Theor. Appl. Genet. 2021;134:2777–2793. PubMed

Li L.F., Zhang Z.B., Wang Z.H., Li N., Sha Y., Wang X.F., Ding N., Li Y., Zhao J., Wu Y., et al. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome. Mol. Plant. 2022;15:488–503. PubMed

Liu H., Wu S., Li A., Ruan J. SMARTdenovo: A de novo Assembler Using Long Noisy Reads. Gigabyte. 2021;2021:1–9. PubMed PMC

Lu P., Guo L., Wang Z., Li B., Li J., Li Y., Qiu D., Shi W., Yang L., Wang N., et al. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat. Commun. 2020;11:680. PubMed PMC

Lück S., Kreszies T., Strickert M., Schweizer P., Kuhlmann M., Douchkov D. siRNA-Finder (si-Fi) Software for RNAi-Target Design and Off-Target Prediction. Front. Plant Sci. 2019;10:1023. PubMed PMC

Maccaferri M., Harris N.S., Twardziok S.O., Pasam R.K., Gundlach H., Spannagl M., Ormanbekova D., Lux T., Prade V.M., Milner S.G., et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 2019;51:885–895. PubMed

Mascher M., Wicker T., Jenkins J., Plott C., Lux T., Koh C.S., Ens J., Gundlach H., Boston L.B., Tulpová Z., et al. Long-read sequence assembly: a technical evaluation in barley. Plant Cell. 2021;33:1888–1906. PubMed PMC

McIntosh R.A., Dubcovsky J., Rogers W.J., Xia X.C., Raupp W.J. Catalogue of gene symbols for wheat: 2020 supplement. Annu. Wheat Newsl. 2020;66:116–117.

Molnár I., Kubaláková M., Šimková H., Farkas A., Cseh A., Megyeri M., Vrána J., Molnár-Láng M., Doležel J. Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and. Theor. Appl. Genet. 2014;127:1091–1104. PubMed

Molnár I., Vrána J., Burešová V., Cápal P., Farkas A., Darkó É., Cseh A., Kubaláková M., Molnár-Láng M., Doležel J. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J. 2016;88:452–467. PubMed

Moore J.W., Herrera-Foessel S., Lan C., Schnippenkoetter W., Ayliffe M., Huerta-Espino J., Lillemo M., Viccars L., Milne R., Periyannan S., et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 2015;47:1494–1498. PubMed

Nilsen K.T., Walkowiak S., Xiang D., Gao P., Quilichini T.D., Willick I.R., Byrns B., N’Diaye A., Ens J., Wiebe K., et al. Copy number variation of TdDof controls solid-stemmed architecture in wheat. Proc. Natl. Acad. Sci. USA. 2020;117:28708–28718. PubMed PMC

Raats D., Yaniv E., Distelfeld A., Ben-David R., Shanir J., Bocharova V., Schulman A., Fahima T. Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology. Nova Science Publishers; New York: 2014. Application of CAPS Markers for Genomic Studies in Wild Emmer Wheat; pp. 31–60.

Rairdan G.J., Collier S.M., Sacco M.A., Baldwin T.T., Boettrich T., Moffett P. The coiled-coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signaling. Plant Cell. 2008;20:739–751. PubMed PMC

Rhoads A., Au K.F. PacBio sequencing and its applications. Dev. Reprod. Biol. 2015;13:278–289. PubMed PMC

Robertson G., Schein J., Chiu R., Corbett R., Field M., Jackman S.D., Mungall K., Lee S., Okada H.M., Qian J.Q., et al. De novo assembly and analysis of RNA-seq data. Nat. Methods. 2010;7:909–912. PubMed

Robinson P., Zemo jtel T. Computational Exome and Genome Analysis. Chapman and Hall/CRC; 2017. Integrative genomics viewer (IGV): Visualizing alignments and variants; pp. 233–245.

Sánchez-Martín J., Steuernagel B., Ghosh S., Herren G., Hurni S., Adamski N., Vrána J., Kubaláková M., Krattinger S.G., Wicker T., et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 2016;17:221. PubMed PMC

Sánchez-Martín J., Widrig V., Herren G., Wicker T., Zbinden H., Gronnier J., Spörri L., Praz C.R., Heuberger M., Kolodziej M.C., et al. Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins. Nat. Plants. 2021;7:327–341. PubMed PMC

Sato K., Abe F., Mascher M., Haberer G., Gundlach H., Spannagl M., Shirasawa K., Isobe S. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar “Fielder. DNA Res. 2021;28:dsab008. PubMed PMC

Shizuya H., Birren B., Kim U.-J., Mancino V., Slepak T., Tachiiri Y., Simon M. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA. 1992;89:8794–8797. PubMed PMC

Singh S.P., Hurni S., Ruinelli M., Brunner S., Sanchez-Martin J., Krukowski P., Peditto D., Buchmann G., Zbinden H., Keller B. Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Plant Mol. Biol. 2018;98:249–260. PubMed

Steuernagel B., Witek K., Krattinger S.G., Ramirez-Gonzalez R.H., Schoonbeek H.J., Yu G., Baggs E., Witek A.I., Yadav I., Krasileva K.v., et al. The NLR-Annotator Tool Enables Annotation of the Intracellular Immune Receptor Repertoire. Plant Physiol. 2020;183:468–482. PubMed PMC

Steuernagel B., Periyannan S.K., Hernández-Pinzón I., Witek K., Rouse M.N., Yu G., Hatta A., Ayliffe M., Bariana H., Jones J.D.G., et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 2016;34:652–655. PubMed

Thind A.K., Wicker T., Šimková H., Fossati D., Moullet O., Brabant C., Vrána J., Doležel J., Krattinger S.G. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 2017;35:793–796. PubMed

Tørresen O.K., Star B., Mier P., Andrade-Navarro M.A., Bateman A., Jarnot P., Gruca A., Grynberg M., Kajava A.v., Promponas V.J., et al. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res. 2019;47:10994–11006. PubMed PMC

Uauy C., Paraiso F., Colasuonno P., Tran R.K., Tsai H., Berardi S., Comai L., Dubcovsky J. A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol. 2009;9:115. PubMed PMC

Vrána J., Kubaláková M., Simková H., Cíhalíková J., Lysák M.A., Dolezel J. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.) Genetics. 2000;156:2033–2041. PubMed PMC

Walker B.J., Abeel T., Shea T., et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9 PubMed PMC

Walkowiak S., Gao L., Monat C., Haberer G., Kassa M.T., Brinton J., Ramirez-Gonzalez R.H., Kolodziej M.C., Delorean E., Thambugala D., et al. Multiple wheat genomes reveal global variation in modern breeding. Nature. 2020;588:277–283. PubMed PMC

Wang W., Chen L., Fengler K., Bolar J., Llaca V., Wang X., Clark C.B., Fleury T.J., Myrvold J., Oneal D., et al. A giant NLR gene confers broad-spectrum resistance to Phytophthora sojae in soybean. Nat. Commun. 2021;12:6263. PubMed PMC

Wang Y., Abrouk M., Gourdoupis S., Karaaátová M., Karafiátová M., Molnár I., Holušová K., Doležel J., Athiyannan N., Cavalet-Giorsa E., et al. An unusual tandem kinase fusion protein confers leaf rust resistance in wheat. Nat. Genet. 2023;55:914–920. PubMed PMC

Wei Z.Z., Klymiuk V., Bocharova V., Pozniak C., Fahima T. A post-haustorial defense mechanism is mediated by the powdery mildew resistance gene, PmG3M, derived from wild emmer wheat. Pathogens. 2020;9:418. PubMed PMC

Wu T.D., Reeder J., Lawrence M., Becker G., Brauer M.J. Methods in Molecular Biology. 2016. GMAP and GSNAP for genomic sequence alignment: Enhancements to speed, accuracy, and functionality; pp. 283–334. PubMed

Wu Q., Zhao F., Chen Y., Zhang P., Zhang H., Guo G., Xie J., Dong L., Lu P., Li M., et al. Bulked segregant CGT-Seq-facilitated map-based cloning of a powdery mildew resistance gene originating from wild emmer wheat (Triticum dicoccoides) Plant Biotechnol. J. 2021;19:1288–1290. PubMed PMC

Wu Q., Chen Y., Li B., Li J., Zhang P., Xie J., Zhang H., Guo G., Lu P., Li M., et al. Functional characterization of powdery mildew resistance gene MlIW172, a new Pm60 allele and its allelic variation in wild emmer wheat. J. Genet. Genomics. 2022;49:787–795. PubMed

Xie W., Ben-David R., Zeng B., Distelfeld A., Röder M.S., Dinoor A., Fahima T. Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat. Theor. Appl. Genet. 2012;124:911–922. PubMed

Xie J., Guo G., Wang Y., Hu T., Wang L., Li J., Qiu D., Li Y., Wu Q., Lu P., et al. A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytol. 2020;228:1011–1026. PubMed

Xing L., Hu P., Liu J., Witek K., Zhou S., Xu J., Zhou W., Gao L., Huang Z., Zhang R., et al. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol. Plant. 2018;11:874–878. PubMed

Yahiaoui N., Srichumpa P., Dudler R., Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 2004;37:528–538. PubMed

Yan X., Li M., Zhang P., Yin G., Zhang H., Gebrewahid T.W., Zhang J., Dong L., Liu D., Liu Z., Li Z. High-temperature wheat leaf rust resistance gene Lr13 exhibits pleiotropic effects on hybrid necrosis. Mol. Plant. 2021;14:1029–1032. PubMed

Yaniv E., Raats D., Ronin Y., Korol A.B., Grama A., Bariana H., Dubcovsky J., Schulman A.H., Fahima T. Evaluation of marker-assisted selection for the stripe rust resistance gene Yr15, introgressed from wild emmer wheat. Mol. Breed. 2015;35:1–12. PubMed PMC

Yu G., Matny O., Champouret N., Steuernagel B., Moscou M.J., Hernández-Pinzón I., Green P., Hayta S., Smedley M., Harwood W., et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat. Commun. 2022;13:1607. PubMed PMC

Yu G., Matny O., Gourdoupis S., Rayapuram N., Aljedaani F.R., Wang Y.L., Nürnberger T., Johnson R., Crean E.E., Saur I.M.-L., et al. The wheat stem rust resistance gene Sr43 encodes an unusual protein kinase. Nat. Genet. 2023;55:921–926. PubMed PMC

Yuan C., Li C., Yan L., Jackson A.O., Liu Z., Han C., Yu J., Li D. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS One. 2011;6:e26468. PubMed PMC

Zhang M., Zhang Y., Scheuring C.F., Wu C.C., Dong J.J., Zhang H.B. Preparation of megabase-sized DNA from a variety of organisms using the nuclei method for advanced genomics research. Nat. Protoc. 2012;7:467–478. PubMed

Zhang W., Chen S., Abate Z., Nirmala J., Rouse M.N., Dubcovsky J. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc. Natl. Acad. Sci. USA. 2017;114:E9483–E9492. PubMed PMC

Zhang J., Zhang P., Dodds P., Lagudah E. How Target-Sequence Enrichment and Sequencing (TEnSeq) Pipelines Have Catalyzed Resistance Gene Cloning in the Wheat-Rust Pathosystem. Front. Plant Sci. 2020;11:678. PubMed PMC

Zhao F., Li Y., Yang B., Yuan H., Jin C., Zhou L., Pei H., Zhao L., Li Y., Zhou Y., et al. Powdery mildew disease resistance and marker-assisted screening at the Pm60 locus in wild diploid wheat Triticum urartu. Crop J. 2020;8:252–259.

Zhou Y., Bai S., Li H., Sun G., Zhang D., Ma F., Zhao X., Nie F., Li J., Chen L., et al. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nat. Plants. 2021;7:774–786. PubMed

Zhu T., Wang L., Rodriguez J.C., Deal K.R., Avni R., Distelfeld A., McGuire P.E., Dvorak J., Luo M.C. Improved Genome Sequence of Wild Emmer Wheat Zavitan with the Aid of Optical Maps. G3. 2019;9:619–624. PubMed PMC

Zhu T., Wang L., Rimbert H., Rodriguez J.C., Deal K.R., de Oliveira R., Choulet F., Keeble-Gagnère G., Tibbits J., Rogers J., et al. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. Plant J. 2021;107:303–314. PubMed PMC

Zhu K., Li M., Wu H., Zhang D., Dong L., Wu Q., Chen Y., Xie J., Lu P., Guo G., et al. Fine mapping of powdery mildew resistance gene MlWE74 derived from wild emmer wheat (Triticum turgidum ssp. dicoccoides) in an NBS-LRR gene cluster. Theor. Appl. Genet. 2022;135:1235–1245. PubMed

Zhu S., Liu C., Gong S., Chen Z., Chen R., Liu T., Liu R., Du H., Guo R., Li G., et al. Orthologous genes Pm12 and Pm21 from two wild relatives of wheat show evolutionary conservation but divergent powdery mildew resistance. Plant Commun. 2023;4:100472. PubMed PMC

Zou S., Wang H., Li Y., Kong Z., Tang D. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol. 2018;218:298–309. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...