Dissection of a rapidly evolving wheat resistance gene cluster by long-read genome sequencing accelerated the cloning of Pm69
Jazyk angličtina Země Čína Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37415333
PubMed Central
PMC10811346
DOI
10.1016/j.xplc.2023.100646
PII: S2590-3462(23)00163-3
Knihovny.cz E-zdroje
- MeSH
- klonování DNA MeSH
- mapování chromozomů MeSH
- multigenová rodina MeSH
- pšenice * genetika MeSH
- rostlinné geny * genetika MeSH
- Publikační typ
- časopisecké články MeSH
Gene cloning in repeat-rich polyploid genomes remains challenging. Here, we describe a strategy for overcoming major bottlenecks in cloning of the powdery mildew resistance gene (R-gene) Pm69 derived from tetraploid wild emmer wheat. A conventional positional cloning approach was not effective owing to suppressed recombination. Chromosome sorting was compromised by insufficient purity. A Pm69 physical map, constructed by assembling Oxford Nanopore Technology (ONT) long-read genome sequences, revealed a rapidly evolving nucleotide-binding leucine-rich repeat (NLR) R-gene cluster with structural variations. A single candidate NLR was identified by anchoring RNA sequencing reads from susceptible mutants to ONT contigs and was validated by virus-induced gene silencing. Pm69 is likely a newly evolved NLR and was discovered in only one location across the wild emmer wheat distribution range in Israel. Pm69 was successfully introgressed into cultivated wheat, and a diagnostic molecular marker was used to accelerate its deployment and pyramiding with other R-genes.
Department of Crop Genomics and Bioinformatics China Agricultural University Beijing 100094 China
Plant Pathology Department University of California Davis Davis CA 95616 USA
Zobrazit více v PubMed
Amarasinghe S.L., Su S., Dong X., Zappia L., Ritchie M.E., Gouil Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020;21:30. PubMed PMC
Andersen E.J., Nepal M.P., Purintun J.M., Nelson D., Mermigka G., Sarris P.F. Wheat disease resistance genes and their diversification through integrated domain fusions. Front. Genet. 2020;11:898. PubMed PMC
Arora S., Steuernagel B., Gaurav K., Chandramohan S., Long Y., Matny O., Johnson R., Enk J., Periyannan S., Singh N., et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 2019;37:139–143. PubMed
Athiyannan N., Abrouk M., Boshoff W.H.P., Cauet S., Rodde N., Kudrna D., Mohammed N., Bettgenhaeuser J., Botha K.S., Derman S.S., et al. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nat. Genet. 2022;54:227–231. PubMed PMC
Aury J.M., Engelen S., Istace B., Monat C., Lasserre-Zuber P., Belser C., Cruaud C., Rimbert H., Leroy P., Arribat S., et al. Long-read and chromosome-scale assembly of the hexaploid wheat genome achieves high resolution for research and breeding. GigaScience. 2022;11:giac034. PubMed PMC
Avni R., Nave M., Barad O., Baruch K., Twardziok S.O., Gundlach H., Hale I., Mascher M., Spannagl M., Wiebe K., et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;357:93–97. PubMed
Barragan A.C., Weigel D. Plant NLR diversity: the known unknowns of pan-NLRomes. Plant Cell. 2021;33:814–831. PubMed PMC
Ben-David R., Parks R., Dinoor A., Kosman E., Wicker T., Keller B., Cowger C. Differentiation among Blumeria graminis f. sp. tritici isolates originating from wild versus domesticated Triticum species in Israel. Phytopathology. 2016;106:861–870. PubMed
Bergelson J., Kreitman M., Stahl E.A., Tian D. Evolutionary dynamics of plant R-genes. Science. 2001;292:2281–2285. PubMed
Bohra A., Kilian B., Sivasankar S., Caccamo M., Mba C., McCouch S.R., Varshney R.K. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 2021;40:412–431. PubMed
Deamer D., Akeson M., Branton D. Three decades of nanopore sequencing. Nat. Biotechnol. 2016;34:518–524. PubMed PMC
Distelfeld A., Uauy C., Fahima T., Dubcovsky J. Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol. 2006;169:753–763. PubMed
Dpooležel J., Binarová P., Lcretti S. Analysis of Nuclear DNA content in plant cells by Flow cytometry. Biol. Plant. (Prague) 1989;31:113–120.
Frantzeskakis L., Di Pietro A., Rep M., Schirawski J., Wu C.H., Panstruga R. Rapid evolution in plant–microbe interactions – a molecular genomics perspective. New Phytol. 2020;225:1134–1142. PubMed
Fu D., Uauy C., Distelfeld A., Blechl A., Epstein L., Chen X., Sela H., Fahima T., Dubcovsky J. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science. 2009;323:1357–1360. PubMed PMC
Fu Y.B., Peterson G.W., Horbach C., Konkin D.J., Beiles A., Nevo E. Elevated mutation and selection in wild emmer wheat in response to 28 years of global warming. Proc. Natl. Acad. Sci. USA. 2019;116:20002–20008. PubMed PMC
Gaurav K., Arora S., Silva P., Sánchez-Martín J., Horsnell R., Gao L., Brar G.S., Widrig V., John Raupp W., Singh N., et al. Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat. Biotechnol. 2022;40:422–431. PubMed PMC
Gerechter-Amitai Z.K., van Silfhout C.H. Resistance to powdery mildew in wild emmer (Triticum dicoccoides Körn.) Euphytica. 1984;33:273–280.
Gill B.K., Klindworth D.L., Rouse M.N., Zhang J., Zhang Q., Sharma J.S., Chu C., Long Y., Chao S., Olivera P.D., et al. Function and evolution of allelic variations of Sr13 conferring resistance to stem rust in tetraploid wheat (Triticum turgidum L.) Plant J. 2021;106:1674–1691. PubMed PMC
Giorgi D., Farina A., Grosso V., Gennaro A., Ceoloni C., Lucretti S. FISHIS: Fluorescence In Situ Hybridization in Suspension and Chromosome Flow Sorting Made Easy. PLoS One. 2013;8 PubMed PMC
Golzar H., Shankar M., D’Antuono M. Responses of commercial wheat varieties and differential lines to western Australian powdery mildew (Blumeria graminis f. Sp. tritici) populations. Australas. Plant Pathol. 2016;45:347–355.
Hewitt T., Müller M.C., Molnár I., Mascher M., Holušová K., Šimková H., Kunz L., Zhang J., Li J., Bhatt D., et al. A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria. New Phytol. 2021;229:2812–2826. PubMed PMC
Hewitt T., Zhang J., Huang L., Upadhyaya N., Li J., Park R., Hoxha S., McIntosh R., Lagudah E., Zhang P. Wheat leaf rust resistance gene Lr13 is a specific Ne2 allele for hybrid necrosis. Mol. Plant. 2021;14:1025–1028. PubMed
Holzberg S., Brosio P., Gross C., Pogue G.P. Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J. 2002;30:315–327. PubMed
Huang L., Raats D., Sela H., Klymiuk V., Lidzbarsky G., Feng L., Krugman T., Fahima T. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses. Annu. Rev. Phytopathol. 2016;54:279–301. PubMed
Hurni S., Brunner S., Buchmann G., Herren G., Jordan T., Krukowski P., Wicker T., Yahiaoui N., Mago R., Keller B. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J. 2013;76:957–969. PubMed
Hurni S., Brunner S., Stirnweis D., Herren G., Peditto D., McIntosh R.A., Keller B. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J. 2014;79:904–913. PubMed
International Wheat Genome Sequencing Consortium (IWGSC) Appels R., Eversole K., Stein N., Feuillet C., Keller B., Rogers J., Pozniak C.J., Choulet F., Distelfeld A., et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361 PubMed
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. PubMed PMC
Klymiuk V., Fatiukha A., Huang L., Wei Z., Kis-Papo T., Saranga Y., Krugman T., Fahima T. Applications of Genetic and Genomic Research in Cereals. Woodhead Publishing; 2019. Durum Wheat as a Bridge between Wild Emmer Wheat Genetic Resources and Bread Wheat; pp. 201–230.
Klymiuk V., Yaniv E., Huang L., Raats D., Fatiukha A., Chen S., Feng L., Frenkel Z., Krugman T., Lidzbarsky G., et al. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat. Commun. 2018;9:3735. PubMed PMC
Kopec P.M., Mikolajczyk K., Jajor E., Perek A., Nowakowska J., Obermeier C., Chawla H.S., Korbas M., Bartkowiak-Broda I., Karlowski W.M. Local Duplication of TIR-NBS-LRR Gene Marks Clubroot Resistance in Brassica napus cv. Tosca. Front. Plant Sci. 2021;12:639631. PubMed PMC
Krattinger S.G., Lagudah E.S., Spielmeyer W., Singh R.P., Huerta-Espino J., McFadden H., Bossolini E., Selter L.L., Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science. 2009;323:1360–1363. PubMed
Krugman T., Nevo E., Beharav A., Sela H., Fahima T. The Institute of Evolution Wild Cereal Gene Bank at the University of Haifa. Isr. J. Plant Sci. 2018;65:129–146.
Kubaláková M., Macas J., Dolez˘el J. Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theor. Appl. Genet. 1997;94:758–763.
Kubaláková M., Kovárová P., Suchánková P., Cíhalíková J., Bartoš J., Lucretti S., Watanabe N., Kianian S.F., Doležel J. Chromosome Sorting in Tetraploid Wheat and Its Potential for Genome Analysis. Genetics. 2005;170:823–829. PubMed PMC
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013 doi: 10.48550/arxiv.1303.3997. Preprint at. DOI
Li M., Dong L., Li B., Wang Z., Xie J., Qiu D., Li Y., Shi W., Yang L., Wu Q., et al. A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytol. 2020;228:1027–1037. PubMed
Li Y., Roychowdhury R., Govta L., et al. Intracellular reactive oxygen species-aided localized cell death contributing to immune responses against wheat powdery Mildew pathogen. Phytopathology. 2023;113:884–892. PubMed
Li Y., Wei Z.Z., Fatiukha A., Jaiwar S., Wang H., Hasan S., Liu Z., Sela H., Krugman T., Fahima T. TdPm60 identified in wild emmer wheat is an ortholog of Pm60 and constitutes a strong candidate for PmG16 powdery mildew resistance. Theor. Appl. Genet. 2021;134:2777–2793. PubMed
Li L.F., Zhang Z.B., Wang Z.H., Li N., Sha Y., Wang X.F., Ding N., Li Y., Zhao J., Wu Y., et al. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome. Mol. Plant. 2022;15:488–503. PubMed
Liu H., Wu S., Li A., Ruan J. SMARTdenovo: A de novo Assembler Using Long Noisy Reads. Gigabyte. 2021;2021:1–9. PubMed PMC
Lu P., Guo L., Wang Z., Li B., Li J., Li Y., Qiu D., Shi W., Yang L., Wang N., et al. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat. Commun. 2020;11:680. PubMed PMC
Lück S., Kreszies T., Strickert M., Schweizer P., Kuhlmann M., Douchkov D. siRNA-Finder (si-Fi) Software for RNAi-Target Design and Off-Target Prediction. Front. Plant Sci. 2019;10:1023. PubMed PMC
Maccaferri M., Harris N.S., Twardziok S.O., Pasam R.K., Gundlach H., Spannagl M., Ormanbekova D., Lux T., Prade V.M., Milner S.G., et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 2019;51:885–895. PubMed
Mascher M., Wicker T., Jenkins J., Plott C., Lux T., Koh C.S., Ens J., Gundlach H., Boston L.B., Tulpová Z., et al. Long-read sequence assembly: a technical evaluation in barley. Plant Cell. 2021;33:1888–1906. PubMed PMC
McIntosh R.A., Dubcovsky J., Rogers W.J., Xia X.C., Raupp W.J. Catalogue of gene symbols for wheat: 2020 supplement. Annu. Wheat Newsl. 2020;66:116–117.
Molnár I., Kubaláková M., Šimková H., Farkas A., Cseh A., Megyeri M., Vrána J., Molnár-Láng M., Doležel J. Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and. Theor. Appl. Genet. 2014;127:1091–1104. PubMed
Molnár I., Vrána J., Burešová V., Cápal P., Farkas A., Darkó É., Cseh A., Kubaláková M., Molnár-Láng M., Doležel J. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J. 2016;88:452–467. PubMed
Moore J.W., Herrera-Foessel S., Lan C., Schnippenkoetter W., Ayliffe M., Huerta-Espino J., Lillemo M., Viccars L., Milne R., Periyannan S., et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 2015;47:1494–1498. PubMed
Nilsen K.T., Walkowiak S., Xiang D., Gao P., Quilichini T.D., Willick I.R., Byrns B., N’Diaye A., Ens J., Wiebe K., et al. Copy number variation of TdDof controls solid-stemmed architecture in wheat. Proc. Natl. Acad. Sci. USA. 2020;117:28708–28718. PubMed PMC
Raats D., Yaniv E., Distelfeld A., Ben-David R., Shanir J., Bocharova V., Schulman A., Fahima T. Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology. Nova Science Publishers; New York: 2014. Application of CAPS Markers for Genomic Studies in Wild Emmer Wheat; pp. 31–60.
Rairdan G.J., Collier S.M., Sacco M.A., Baldwin T.T., Boettrich T., Moffett P. The coiled-coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signaling. Plant Cell. 2008;20:739–751. PubMed PMC
Rhoads A., Au K.F. PacBio sequencing and its applications. Dev. Reprod. Biol. 2015;13:278–289. PubMed PMC
Robertson G., Schein J., Chiu R., Corbett R., Field M., Jackman S.D., Mungall K., Lee S., Okada H.M., Qian J.Q., et al. De novo assembly and analysis of RNA-seq data. Nat. Methods. 2010;7:909–912. PubMed
Robinson P., Zemo jtel T. Computational Exome and Genome Analysis. Chapman and Hall/CRC; 2017. Integrative genomics viewer (IGV): Visualizing alignments and variants; pp. 233–245.
Sánchez-Martín J., Steuernagel B., Ghosh S., Herren G., Hurni S., Adamski N., Vrána J., Kubaláková M., Krattinger S.G., Wicker T., et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 2016;17:221. PubMed PMC
Sánchez-Martín J., Widrig V., Herren G., Wicker T., Zbinden H., Gronnier J., Spörri L., Praz C.R., Heuberger M., Kolodziej M.C., et al. Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins. Nat. Plants. 2021;7:327–341. PubMed PMC
Sato K., Abe F., Mascher M., Haberer G., Gundlach H., Spannagl M., Shirasawa K., Isobe S. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar “Fielder. DNA Res. 2021;28:dsab008. PubMed PMC
Shizuya H., Birren B., Kim U.-J., Mancino V., Slepak T., Tachiiri Y., Simon M. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA. 1992;89:8794–8797. PubMed PMC
Singh S.P., Hurni S., Ruinelli M., Brunner S., Sanchez-Martin J., Krukowski P., Peditto D., Buchmann G., Zbinden H., Keller B. Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Plant Mol. Biol. 2018;98:249–260. PubMed
Steuernagel B., Witek K., Krattinger S.G., Ramirez-Gonzalez R.H., Schoonbeek H.J., Yu G., Baggs E., Witek A.I., Yadav I., Krasileva K.v., et al. The NLR-Annotator Tool Enables Annotation of the Intracellular Immune Receptor Repertoire. Plant Physiol. 2020;183:468–482. PubMed PMC
Steuernagel B., Periyannan S.K., Hernández-Pinzón I., Witek K., Rouse M.N., Yu G., Hatta A., Ayliffe M., Bariana H., Jones J.D.G., et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 2016;34:652–655. PubMed
Thind A.K., Wicker T., Šimková H., Fossati D., Moullet O., Brabant C., Vrána J., Doležel J., Krattinger S.G. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 2017;35:793–796. PubMed
Tørresen O.K., Star B., Mier P., Andrade-Navarro M.A., Bateman A., Jarnot P., Gruca A., Grynberg M., Kajava A.v., Promponas V.J., et al. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res. 2019;47:10994–11006. PubMed PMC
Uauy C., Paraiso F., Colasuonno P., Tran R.K., Tsai H., Berardi S., Comai L., Dubcovsky J. A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol. 2009;9:115. PubMed PMC
Vrána J., Kubaláková M., Simková H., Cíhalíková J., Lysák M.A., Dolezel J. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.) Genetics. 2000;156:2033–2041. PubMed PMC
Walker B.J., Abeel T., Shea T., et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9 PubMed PMC
Walkowiak S., Gao L., Monat C., Haberer G., Kassa M.T., Brinton J., Ramirez-Gonzalez R.H., Kolodziej M.C., Delorean E., Thambugala D., et al. Multiple wheat genomes reveal global variation in modern breeding. Nature. 2020;588:277–283. PubMed PMC
Wang W., Chen L., Fengler K., Bolar J., Llaca V., Wang X., Clark C.B., Fleury T.J., Myrvold J., Oneal D., et al. A giant NLR gene confers broad-spectrum resistance to Phytophthora sojae in soybean. Nat. Commun. 2021;12:6263. PubMed PMC
Wang Y., Abrouk M., Gourdoupis S., Karaaátová M., Karafiátová M., Molnár I., Holušová K., Doležel J., Athiyannan N., Cavalet-Giorsa E., et al. An unusual tandem kinase fusion protein confers leaf rust resistance in wheat. Nat. Genet. 2023;55:914–920. PubMed PMC
Wei Z.Z., Klymiuk V., Bocharova V., Pozniak C., Fahima T. A post-haustorial defense mechanism is mediated by the powdery mildew resistance gene, PmG3M, derived from wild emmer wheat. Pathogens. 2020;9:418. PubMed PMC
Wu T.D., Reeder J., Lawrence M., Becker G., Brauer M.J. Methods in Molecular Biology. 2016. GMAP and GSNAP for genomic sequence alignment: Enhancements to speed, accuracy, and functionality; pp. 283–334. PubMed
Wu Q., Zhao F., Chen Y., Zhang P., Zhang H., Guo G., Xie J., Dong L., Lu P., Li M., et al. Bulked segregant CGT-Seq-facilitated map-based cloning of a powdery mildew resistance gene originating from wild emmer wheat (Triticum dicoccoides) Plant Biotechnol. J. 2021;19:1288–1290. PubMed PMC
Wu Q., Chen Y., Li B., Li J., Zhang P., Xie J., Zhang H., Guo G., Lu P., Li M., et al. Functional characterization of powdery mildew resistance gene MlIW172, a new Pm60 allele and its allelic variation in wild emmer wheat. J. Genet. Genomics. 2022;49:787–795. PubMed
Xie W., Ben-David R., Zeng B., Distelfeld A., Röder M.S., Dinoor A., Fahima T. Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat. Theor. Appl. Genet. 2012;124:911–922. PubMed
Xie J., Guo G., Wang Y., Hu T., Wang L., Li J., Qiu D., Li Y., Wu Q., Lu P., et al. A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytol. 2020;228:1011–1026. PubMed
Xing L., Hu P., Liu J., Witek K., Zhou S., Xu J., Zhou W., Gao L., Huang Z., Zhang R., et al. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol. Plant. 2018;11:874–878. PubMed
Yahiaoui N., Srichumpa P., Dudler R., Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 2004;37:528–538. PubMed
Yan X., Li M., Zhang P., Yin G., Zhang H., Gebrewahid T.W., Zhang J., Dong L., Liu D., Liu Z., Li Z. High-temperature wheat leaf rust resistance gene Lr13 exhibits pleiotropic effects on hybrid necrosis. Mol. Plant. 2021;14:1029–1032. PubMed
Yaniv E., Raats D., Ronin Y., Korol A.B., Grama A., Bariana H., Dubcovsky J., Schulman A.H., Fahima T. Evaluation of marker-assisted selection for the stripe rust resistance gene Yr15, introgressed from wild emmer wheat. Mol. Breed. 2015;35:1–12. PubMed PMC
Yu G., Matny O., Champouret N., Steuernagel B., Moscou M.J., Hernández-Pinzón I., Green P., Hayta S., Smedley M., Harwood W., et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat. Commun. 2022;13:1607. PubMed PMC
Yu G., Matny O., Gourdoupis S., Rayapuram N., Aljedaani F.R., Wang Y.L., Nürnberger T., Johnson R., Crean E.E., Saur I.M.-L., et al. The wheat stem rust resistance gene Sr43 encodes an unusual protein kinase. Nat. Genet. 2023;55:921–926. PubMed PMC
Yuan C., Li C., Yan L., Jackson A.O., Liu Z., Han C., Yu J., Li D. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS One. 2011;6:e26468. PubMed PMC
Zhang M., Zhang Y., Scheuring C.F., Wu C.C., Dong J.J., Zhang H.B. Preparation of megabase-sized DNA from a variety of organisms using the nuclei method for advanced genomics research. Nat. Protoc. 2012;7:467–478. PubMed
Zhang W., Chen S., Abate Z., Nirmala J., Rouse M.N., Dubcovsky J. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc. Natl. Acad. Sci. USA. 2017;114:E9483–E9492. PubMed PMC
Zhang J., Zhang P., Dodds P., Lagudah E. How Target-Sequence Enrichment and Sequencing (TEnSeq) Pipelines Have Catalyzed Resistance Gene Cloning in the Wheat-Rust Pathosystem. Front. Plant Sci. 2020;11:678. PubMed PMC
Zhao F., Li Y., Yang B., Yuan H., Jin C., Zhou L., Pei H., Zhao L., Li Y., Zhou Y., et al. Powdery mildew disease resistance and marker-assisted screening at the Pm60 locus in wild diploid wheat Triticum urartu. Crop J. 2020;8:252–259.
Zhou Y., Bai S., Li H., Sun G., Zhang D., Ma F., Zhao X., Nie F., Li J., Chen L., et al. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nat. Plants. 2021;7:774–786. PubMed
Zhu T., Wang L., Rodriguez J.C., Deal K.R., Avni R., Distelfeld A., McGuire P.E., Dvorak J., Luo M.C. Improved Genome Sequence of Wild Emmer Wheat Zavitan with the Aid of Optical Maps. G3. 2019;9:619–624. PubMed PMC
Zhu T., Wang L., Rimbert H., Rodriguez J.C., Deal K.R., de Oliveira R., Choulet F., Keeble-Gagnère G., Tibbits J., Rogers J., et al. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. Plant J. 2021;107:303–314. PubMed PMC
Zhu K., Li M., Wu H., Zhang D., Dong L., Wu Q., Chen Y., Xie J., Lu P., Guo G., et al. Fine mapping of powdery mildew resistance gene MlWE74 derived from wild emmer wheat (Triticum turgidum ssp. dicoccoides) in an NBS-LRR gene cluster. Theor. Appl. Genet. 2022;135:1235–1245. PubMed
Zhu S., Liu C., Gong S., Chen Z., Chen R., Liu T., Liu R., Du H., Guo R., Li G., et al. Orthologous genes Pm12 and Pm21 from two wild relatives of wheat show evolutionary conservation but divergent powdery mildew resistance. Plant Commun. 2023;4:100472. PubMed PMC
Zou S., Wang H., Li Y., Kong Z., Tang D. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol. 2018;218:298–309. PubMed