Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
182833
Swiss National Science Foundation - Switzerland
773153
European Research Council - International
PubMed
33707738
PubMed Central
PMC7610370
DOI
10.1038/s41477-021-00869-2
PII: 10.1038/s41477-021-00869-2
Knihovny.cz E-zdroje
- MeSH
- alternativní sestřih * MeSH
- Ascomycota imunologie MeSH
- klonování DNA MeSH
- molekulární evoluce MeSH
- nemoci rostlin genetika MeSH
- odolnost vůči nemocem genetika MeSH
- proteinkinasy genetika fyziologie MeSH
- pšenice enzymologie genetika mikrobiologie MeSH
- rekombinace genetická MeSH
- rostlinné geny MeSH
- rostlinné proteiny genetika fyziologie MeSH
- umlčování genů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteinkinasy MeSH
- rostlinné proteiny MeSH
Crop breeding for resistance to pathogens largely relies on genes encoding receptors that confer race-specific immunity. Here, we report the identification of the wheat Pm4 race-specific resistance gene to powdery mildew. Pm4 encodes a putative chimeric protein of a serine/threonine kinase and multiple C2 domains and transmembrane regions, a unique domain architecture among known resistance proteins. Pm4 undergoes constitutive alternative splicing, generating two isoforms with different protein domain topologies that are both essential for resistance function. Both isoforms interact and localize to the endoplasmatic reticulum when co-expressed. Pm4 reveals additional diversity of immune receptor architecture to be explored for breeding and suggests an endoplasmatic reticulum-based molecular mechanism of Pm4-mediated race-specific resistance.
Department of Zoology Stockholm University Stockholm Sweden
The Sainsbury Laboratory University of East Anglia Norwich UK
Zobrazit více v PubMed
Appels R, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science (80- ) 2018 doi: 10.1126/science.aar7191. PubMed DOI
Savary S, et al. The global burden of pathogens and pests on major food crops. Nat Ecol Evol. 2019;3:430–439. PubMed
Singh RP, Rajaram S. Breeding for disease resistance in wheat in Bread wheat: improvement and production. Food and Agriculture Organization of the United Nations. 2002
Pink DAC. Strategies using genes for non-durable disease resistance. Euphytica. 2002;124:227–236.
Koller T, Brunner S, Herren G, Hurni S, Keller B. Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field. Theor Appl Genet. 2018;131:861–871. PubMed PMC
Mundt CC. Use of multiline cultivars and cultivar mixtures for disease management. Annu Rev Phytopathol. 2002;40:381–410. PubMed
Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444:323–329. PubMed
Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet. 2010;11:539–548. PubMed
Marchal C, et al. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plants. 2018;4:662–668. PubMed
Wang H, Zou S, Li Y, Lin F, Tang D. An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat. Nat Commun. 2020 doi: 10.1038/s41467-020-15139-6. PubMed DOI PMC
Sarris PF, Cevik V, Dagdas G, Jones JDG, Krasileva KV. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol. 2016 doi: 10.1186/s12915-016-0228-7. PubMed DOI PMC
Le Roux C, et al. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell. 2015 doi: 10.1016/j.cell.2015.04.025. PubMed DOI
Sarris PF, et al. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell. 2015 doi: 10.1016/j.cell.2015.04.024. PubMed DOI
Kourelis J, Van Der Hoorn RAL. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell. 2018 doi: 10.1105/tpc.17.00579. PubMed DOI PMC
Saintenac C, et al. Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat Genet. 2018 doi: 10.1038/s41588-018-0051-x. PubMed DOI
Kema GHJ, et al. Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance. Nat Genet. 2018;50:375–380. PubMed
Zhong Z, et al. A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. New Phytol. 2017;214:619–631. PubMed
Klymiuk V, et al. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun. 2018 doi: 10.1038/s41467-018-06138-9. PubMed DOI PMC
Brueggeman R, et al. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci U S A. 2002;99:9328–9333. PubMed PMC
Chen S, et al. Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. New Phytol. 2020 doi: 10.1111/nph.16169. PubMed DOI
Lu P, et al. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat Commun. 2020 doi: 10.1038/s41467-020-14294-0. PubMed DOI PMC
The TT, McIntosh RA, Bennett FGA. Cytogenetical Studies in Wheat. IX * Monosomic Analyses , Telocentric Mapping and Linkage Relationships of Genes Sr21, Pm4 and Mle Aus. 1979;32:115–126.
Briggle LW. Transfer of Resistance to Erysiphe graminis f. sp. tritici from Khapli Emmer and Yuma Durum to Hexaploid Wheat 1. Crop Sci. 1966 doi: 10.2135/cropsci1966.0011183x000600050020x. DOI
Sánchez-Martín J, et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 2016;17 PubMed PMC
Stam M, Mol JNM, Kooter JM. The silence of genes in transgenic plants. Annals of Botany. 1997 doi: 10.1006/anbo.1996.0295. DOI
Carbonell A. Secondary small interfering RNA-based silencing tools in plants: An update. Frontiers in Plant Science. 2019 doi: 10.3389/fpls.2019.00687. PubMed DOI PMC
Wang PH, et al. RNase I f -treated quantitative PCR for dsRNA quantitation of RNAi trait in genetically modified crops. BMC Biotechnol. 2018 doi: 10.1186/s12896-018-0413-6. PubMed DOI PMC
Liu L, Li C, Liang Z, Yu H. Characterization of multiple C2 domain and transmembrane region proteins in arabidopsis. Plant Physiol. 2018 doi: 10.1104/pp.17.01144. PubMed DOI PMC
Brault ML, et al. Multiple C2 domains and transmembrane region proteins ( MCTP s) tether membranes at plasmodesmata. EMBO Rep. 2019 doi: 10.15252/embr.201847182. PubMed DOI PMC
Liu L, et al. FTIP1 is an essential regulator required for florigen transport. PLoS Biol. 2012 doi: 10.1371/journal.pbio.1001313. PubMed DOI PMC
Hanks SK, Quinn AM, Hunter T. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science (80- ) 1988 doi: 10.1126/science.3291115. PubMed DOI
Yeh YH, Chang YH, Huang PY, Huang JB, Zimmerli L. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases. Front Plant Sci. 2015 doi: 10.3389/fpls.2015.00322. PubMed DOI PMC
Chen K, Du L, Chen Z. Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant Mol Biol. 2003 doi: 10.1023/B:PLAN.0000009265.72567.58. PubMed DOI
Rayapuram C, et al. Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley. Mol Plant Pathol. 2012 doi: 10.1111/j.1364-3703.2011.00736.x. PubMed DOI PMC
Brueggeman R, et al. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci U S A. 2002 doi: 10.1073/pnas.142284999. PubMed DOI PMC
Corbalan-Garcia S, Gómez-Fernández JC. Signaling through C2 domains: More than one lipid target. Biochimica et Biophysica Acta - Biomembranes. 2014 doi: 10.1016/j.bbamem.2014.01.008. PubMed DOI
Shin OH, Hau W, Wang Y, Südhof TC. Evolutionarily conserved multiple C2 domain proteins with two transmembrane regions (MCTPs) and unusual Ca2+ binding properties. J Biol Chem. 2005 doi: 10.1074/jbc.M407305200. PubMed DOI
Nakagawa T, et al. Improved gateway binary vectors: High-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem. 2007 doi: 10.1271/bbb.70216. PubMed DOI
Nelson BK, Cai X, Nebenführ A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 2007 doi: 10.1111/j.1365-313X.2007.03212.x. PubMed DOI
Bücherl CA, et al. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. Elife. 2017 doi: 10.7554/eLife.25114. PubMed DOI PMC
Gehl C, et al. Quantitative analysis of dynamic protein-protein interactions in planta by a floated-leaf luciferase complementation imaging (FLuCI) assay using binary Gateway vectors. Plant J. 2011 doi: 10.1111/j.1365-313X.2011.04607.x. PubMed DOI
Wicker T, Buchmann JP, Keller B. Patching gaps in plant genomes results in gene movement and erosion of colinearity. Genome Res. 2010 doi: 10.1101/gr.107284.110. PubMed DOI PMC
Mascher M, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–433. PubMed
Sánchez J, Beat M. Contribution of recent technological advances to future resistance breeding. Theor Appl Genet. 2019 doi: 10.1007/s00122-019-03297-1. PubMed DOI
Barsoum M, Sabelleck B, DSpanu P, Panstruga R. Rumble in the Effector Jungle: Candidate Effector Proteins in Interactions of Plants with Powdery Mildew and Rust Fungi. CRC Crit Rev Plant Sci. 2019 doi: 10.1080/07352689.2019.1653514. DOI
Greenberg JT, Yao N. The role of regulation of programmed cell death in plant-pathogen interactions. Cellular Microbiology. 2004 doi: 10.1111/j.1462-5822.2004.00361.x. PubMed DOI
Yang S, Tang F, Zhu H. Alternative splicing in plant immunity. International Journal of Molecular Sciences. 2014 doi: 10.3390/ijms150610424. PubMed DOI PMC
Lai Y, Eulgem T. Transcript-level expression control of plant NLR genes. Molecular Plant Pathology. 2018 doi: 10.1111/mpp.12607. PubMed DOI PMC
Ayliffe MA, et al. Analysis of alternative transcripts of the flax L6 rust resistance gene. Plant J. 1999 doi: 10.1046/j.1365-313X.1999.00377.x. PubMed DOI
Schornack S, et al. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J. 2004 doi: 10.1046/j.1365-313X.2003.01937.x. PubMed DOI
Cesari S, et al. The Rice Resistance Protein Pair RGA4/RGA5 Recognizes the Magnaporthe oryzae Effectors AVR-Pia and AVR1-CO39 by Direct Binding. Plant Cell. 2013;25:1463–1481. PubMed PMC
Gou JY, et al. Wheat stripe rust resistance protein WKS1 reduces the ability of the thylakoid-associated ascorbate peroxidase to detoxify reactive oxygen species. Plant Cell. 2015 doi: 10.1105/tpc.114.134296. PubMed DOI PMC
Sela H, et al. Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (Triticum dicoccoides) LR10 coiled coil (CC) and leucine-rich repeat (LRR) domains. Mol Plant Pathol. 2012 doi: 10.1111/j.1364-3703.2011.00744.x. PubMed DOI PMC
Dinesh-Kumar SP, Baker BJ. Alternatively spliced N resistance gene transcripts: Their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci U S A. 2000 doi: 10.1073/pnas.020367497. PubMed DOI PMC
Zhang XC, Gassmann W. RPS4-Mediated Disease Resistance Requires the Combined Presence of RPS4 Transcripts with Full-Length and Truncated Open Reading Frames. Plant Cell. 2003 doi: 10.1105/tpc.013474. PubMed DOI PMC
Tang F, Yang S, Gao M, Zhu H. Alternative splicing is required for RCT1-mediated disease resistance in Medicago truncatula. Plant Mol Biol. 2013 doi: 10.1007/s11103-013-0068-6. PubMed DOI
Liang X, Zhou J-M. Receptor-Like Cytoplasmic Kinases: Central Players in Plant Receptor Kinase-Mediated Signaling. Annu Rev Plant Biol. 2018 doi: 10.1146/annurev-arplant-042817-040540. PubMed DOI
Lu D, et al. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci U S A. 2010 doi: 10.1073/pnas.0909705107. PubMed DOI PMC
Zhang J, et al. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe. 2010 doi: 10.1016/j.chom.2010.03.007. PubMed DOI
Feng F, et al. A Xanthomonas uridine 5’-monophosphate transferase inhibits plant immune kinases. Nature. 2012 doi: 10.1038/nature10962. PubMed DOI
Shao F, et al. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science (80- ) 2003 doi: 10.1126/science.1085671. PubMed DOI
Adachi H, Derevnina L, Kamoun S. NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. Current Opinion in Plant Biology. 2019 doi: 10.1016/j.pbi.2019.04.007. PubMed DOI
Ade J, DeYoung BJ, Golstein C, Innes RW. Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proc Natl Acad Sci U S A. 2007 doi: 10.1073/pnas.0608779104. PubMed DOI PMC
Qi D, et al. Recognition of the protein kinase Avrpphb Susceptible1 by the disease resistance protein Resistance To Pseudomonas Syringae5 Is dependent on S-acylation and an exposed loop in Avrpphb Susceptible. Plant Physiol. 2014 doi: 10.1104/pp.113.227686. PubMed DOI PMC
Corbesier L, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science (80- ) 2007 doi: 10.1126/science.1141752. PubMed DOI
Freeling M. Bias in Plant Gene Content Following Different Sorts of Duplication: Tandem, Whole-Genome, Segmental, or by Transposition. Annu Rev Plant Biol. 2009 doi: 10.1146/annurev.arplant.043008.092122. PubMed DOI
Liu ZQ, et al. SRC2-1 is required in PcINF1-induced pepper immunity by acting as an interacting partner of PcINF1. J Exp Bot. 2015 doi: 10.1093/jxb/erv161. PubMed DOI
Bushnell WR. Aggregation of Host Cytoplasm and the Formation of Papillae and Haustoria in Powdery Mildew of Barley. Phytopathology. 1975 doi: 10.1094/phyto-65-310. DOI
Vaddepalli P, et al. The C2-domain protein QUIRKY and the receptor-like kinase STRUBBELIG localize to plasmodesmata and mediate tissue morphogenesis in Arabidopsis thaliana. Dev. 2014 doi: 10.1242/dev.113878. PubMed DOI
Lowe I, Cantu D, Dubcovsky J. Durable resistance to the wheat rusts: Integrating systems biology and traditional phenotype-based research methods to guide the deployment of resistance genes. Euphytica. 2011 doi: 10.1007/s10681-010-0311-z. PubMed DOI PMC
Schmolke M, Mohler V, Hartl L, Zeller FJ, Hsam SLK. A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum) Mol Breed. 2012 doi: 10.1007/s11032-011-9561-2. DOI
Pont C, et al. Tracing the ancestry of modern bread wheats. Nat Genet. 2019 doi: 10.1038/s41588-019-0393-z. PubMed DOI
McNally KE, et al. Distinct domains of the AVRPM3A2/F2 avirulence protein from wheat powdery mildew are involved in immune receptor recognition and putative effector function. New Phytol. 2018 doi: 10.1111/nph.15026. PubMed DOI PMC
Menardo F, et al. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nat Genet. 2016;48:201–205. PubMed
Zeng FS, et al. Virulence and diversity of Blumeria graminis f. sp. tritici populations in China. J Integr Agric. 2014;13:2424–2437.
Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 1997 doi: 10.1046/j.1365-313X.1997.11061187.x. DOI
Sánchez-Martín J, Rubiales D, Prats E. Resistance to powdery mildew (Blumeria graminis f.sp. avenae) in oat seedlings and adult plants. Plant Pathol. 2011;60:846–856.
Rubiales D, Carver TLW. Defence reactions of Hordeum chilense accessions to three formae speciales of cereal powdery mildew fungi. Can J Bot. 2000 doi: 10.1139/cjb-78-12-1561. DOI
Ma ZQ, Wei JB, Cheng SH. PCR-based markers for the powdery mildew resistance gene Pm4a in wheat. Theor Appl Genet. 2004 doi: 10.1007/s00122-004-1605-0. PubMed DOI
Bustin SA, et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009 doi: 10.1373/clinchem.2008.112797. PubMed DOI
Brunner S, et al. Transgenic Pm3 multilines of wheat show increased powdery mildew resistance in the field. Plant Biotechnol J. 2012;10:398–409. PubMed
Hurni S, et al. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc Natl Acad Sci U S A. 2015;112:8780–5. PubMed PMC
Christensen AH, Quail PH. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 1996 doi: 10.1007/BF01969712. PubMed DOI
Reed J, et al. Phosphomannose isomerase: An efficient selectable marker for plant transformation. Vitr Cell Dev Biol - Plant. 2001 doi: 10.1007/s11627-001-0024-z. DOI
Brunner S, et al. Transgenic Pm3b wheat lines show resistance to powdery mildew in the field. Plant Biotechnol J. 2011;9:897–910. PubMed
Wright M, et al. Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep. 2001 doi: 10.1007/s002990100318. PubMed DOI
Bhullar NK, Street K, Mackay M, Yahiaoui N, Keller B. Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc Natl Acad Sci U S A. 2009;106:9519–9524. PubMed PMC
Holzberg S, Brosio P, Gross C, Pogue GP. Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J. 2002 doi: 10.1046/j.1365-313X.2002.01291.x. PubMed DOI
Loutre C, et al. Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. Plant J. 2009;60:1043–1054. PubMed
Scofield SR, Huang L, Brandt AS, Gill BS. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol. 2005 doi: 10.1104/pp.105.061861. PubMed DOI PMC
Bhullar NK, Street K, Mackay M, Yahiaoui N, Keller B. Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc Natl Acad Sci U S A. 2009 doi: 10.1073/pnas.0904152106. PubMed DOI PMC
Xing L, et al. Pm21 from Haynaldia villosa Encodes a CC-NBS-LRR Protein Conferring Powdery Mildew Resistance in Wheat. Molecular Plant. 2018 doi: 10.1016/j.molp.2018.02.013. PubMed DOI
Himmelbach A, et al. A set of modular binary vectors for transformation of cereals. Plant Physiol. 2007;145:1192–200. PubMed PMC
Ishizaki K, et al. Development of gateway binary vector series with four different selection markers for the liverwort marchantia polymorpha. PLoS One. 2015 doi: 10.1371/journal.pone.0138876. PubMed DOI PMC
Hofgen R, Willmitzer L. Storage of competent cells for Agrobacterium transfonnation. Nucleic Acids Res. 1988;16:9877. PubMed PMC
Voinnet O, Rivas S, Mestre P, Baulcombe D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 2003 doi: 10.1046/j.1365-313X.2003.01676.x. PubMed DOI
Singh SP, et al. Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Plant Mol Biol. 2018;98:249–260. PubMed
Gronnier J, et al. Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. Elife. 2017 doi: 10.7554/eLife.26404. PubMed DOI PMC
Hu J, Abràmoff MD, Magalhães PJ, Ram SJ, et al. Image processing with Image. J Biophotonics international. 2004;11(7):36–42. doi: 10.1201/9781420005615.ax4. Opt. Express 2011. DOI
French AP, Mills S, Swarup R, Bennett MJ, Pridmore TP. Colocalization of fluorescent markers in confocal microscope images of plant cells. Nat Protoc. 2008 doi: 10.1038/nprot.2008.31. PubMed DOI
Vrana J, et al. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.) Genetics. 2000;156:2033–2041. PubMed PMC
Giorgi D, et al. FISHIS: Fluorescence In Situ Hybridization in Suspension and Chromosome Flow Sorting Made Easy. PLoS One. 2013;8 PubMed PMC
Kubaláková M, et al. Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome. 2003;46:893–905. PubMed
Šimková H, Číhalíková J, Vrána J, Lysák MA, Doležel J. Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol Plant. 2003 doi: 10.1023/A:1024322001786. DOI
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal. 2011 doi: 10.14806/ej.17.1.200. DOI
Marchler-Bauer A, et al. CDD: A Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 2011 doi: 10.1093/nar/gkq1189. PubMed DOI PMC
Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol. 2001 doi: 10.1006/jmbi.2000.4315. PubMed DOI
Käll L, Krogh A, Sonnhammer ELL. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Res. 2007 doi: 10.1093/nar/gkm256. PubMed DOI PMC
Mascher M, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017 doi: 10.1038/nature22043. PubMed DOI
Luo MC, et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature. 2017 doi: 10.1038/nature24486. PubMed DOI PMC
Ling HQ, et al. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature. 2018 doi: 10.1038/s41586-018-0108-0. PubMed DOI PMC
Avni R, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science (80- ) 2017 doi: 10.1126/science.aan0032. PubMed DOI
Maccaferri M, et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet. 2019 doi: 10.1038/s41588-019-0381-3. PubMed DOI
Ronquist F, et al. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012 doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Cook DE, Mesarich CH, Thomma BPHJ. Understanding Plant Immunity as a Surveillance System to Detect Invasion. Annu Rev Phytopathol. 2015 doi: 10.1146/annurev-phyto-080614-120114. PubMed DOI
Buchmann JP, Matsumoto T, Stein N, Keller B, Wicker T. Inter-species sequence comparison of Brachypodium reveals how transposon activity corrodes genome colinearity. Plant J. 2012 doi: 10.1111/j.1365-313X.2012.05007.x. PubMed DOI
Ma J, Bennetzen JL. Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci U S A. 2004 doi: 10.1073/pnas.0403715101. PubMed DOI PMC
R Development Core Team R Development Core Team. R: a language and environment for statistical computing. R: A Language and Environmental for Estatistical Computing. 2020
Omasits U, Ahrens CH, Müller S, Wollscheid B. Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics. 2014 doi: 10.1093/bioinformatics/btt607. PubMed DOI
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015 doi: 10.1038/nprot.2015.053. PubMed DOI PMC
Zeng FS, et al. Virulence and diversity of Blumeria graminis f. sp. tritici populations in China. J Integr Agric. 2014 doi: 10.1016/S2095-3119(13)60669-3. DOI
Pont C, et al. Tracing the ancestry of modern bread wheats. Nat Genet. 2019;51:905–911. PubMed
Flow Cytometric Analysis and Sorting of Plant Chromosomes
The wheat stem rust resistance gene Sr43 encodes an unusual protein kinase
An unusual tandem kinase fusion protein confers leaf rust resistance in wheat