Analysis of a global wheat panel reveals a highly diverse introgression landscape and provides evidence for inter-homoeologue chromosomal recombination
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
310030_212428
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
310030B_182833
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
310030_204165
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
RYC2021-032699-I
Agencia Estatal de Investigación
PubMed
39340575
PubMed Central
PMC11438656
DOI
10.1007/s00122-024-04721-x
PII: 10.1007/s00122-024-04721-x
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin * genetika MeSH
- genová introgrese MeSH
- lokus kvantitativního znaku * MeSH
- mapování chromozomů MeSH
- nemoci rostlin genetika mikrobiologie MeSH
- odolnost vůči nemocem * genetika MeSH
- pšenice * genetika mikrobiologie MeSH
- rekombinace genetická MeSH
- šlechtění rostlin MeSH
- Publikační typ
- časopisecké články MeSH
This study highlights the agronomic potential of rare introgressions, as demonstrated by a major QTL for powdery mildew resistance on chromosome 7D. It further shows evidence for inter-homoeologue recombination in wheat. Agriculturally important genes are often introgressed into crops from closely related donor species or landraces. The gene pool of hexaploid bread wheat (Triticum aestivum) is known to contain numerous such "alien" introgressions. Recently established high-quality reference genome sequences allow prediction of the size, frequency and identity of introgressed chromosome regions. Here, we characterise chromosomal introgressions in bread wheat using exome capture data from the WHEALBI collection. We identified 24,981 putative introgression segments of at least 2 Mb across 434 wheat accessions. Detailed study of the most frequent introgressions identified T. timopheevii or its close relatives as a frequent donor species. Importantly, 118 introgressions of at least 10 Mb were exclusive to single wheat accessions, revealing that large populations need to be studied to assess the total diversity of the wheat pangenome. In one case, a 14 Mb introgression in chromosome 7D, exclusive to cultivar Pamukale, was shown by QTL mapping to harbour a recessive powdery mildew resistance gene. We identified multiple events where distal chromosomal segments of one subgenome were duplicated in the genome and replaced the homoeologous segment in another subgenome. We propose that these examples are the results of inter-homoeologue recombination. Our study produced an extensive catalogue of the wheat introgression landscape, providing a resource for wheat breeding. Of note, the finding that the wheat gene pool contains numerous rare, but potentially important introgressions and chromosomal rearrangements has implications for future breeding.
Agricultural Research Centre Field Crops Research Institute Giza Egypt
Department of Plant and Microbial Biology University of Zurich Zurich Switzerland
Zobrazit více v PubMed
Ahmed HI, Heuberger M, Schoen A et al (2023) Einkorn genomics sheds light on history of the oldest domesticated wheat. Nature 620:830–838. 10.1038/s41586-023-06389-7 PubMed PMC
Aury JM, Engelen S, Istace B et al (2022) Long-read and chromosome-scale assembly of the hexaploid wheat genome achieves high resolution for research and breeding. Gigascience 11:1–18. 10.1093/GIGASCIENCE/GIAC034 PubMed PMC
Badaeva ED, Budashkina EB, Badaev NS et al (1991) General features of chromosome substitutions in Triticum aestivum x T. timopheevii hybrids. Theor Appl Genet 82:227–232. 10.1007/BF00226218 PubMed
Bansal M, Adamski NM, Toor PI et al (2020) Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing. Theor Appl Genet 133:903–915. 10.1007/s00122-019-03514-x PubMed
Bariana HS, McIntosh RA (1993) Cytogentic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36:476–482. 10.1139/g93-065 PubMed
Cápal P, Said M, Molnár I, Doležel J (2023) Flow cytometric analysis and sorting of plant chromosomes. Methods Mol Biol 2672:177–200. 10.1007/978-1-0716-3226-0_10 PubMed
Cheng H, Liu J, Wen J et al (2019) Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol. 10.1186/s13059-019-1744-x PubMed PMC
Coombes B, Fellers JP, Grewal S et al (2023) Whole-genome sequencing uncovers the structural and transcriptomic landscape of hexaploid wheat/Ambylopyrum muticum introgression lines. Plant Biotechnol J 21:482–496. 10.1111/PBI.13859 PubMed PMC
Coombes B, Lux T, Akhunov E, Hall A (2024) Introgressions lead to reference bias in wheat RNA-seq analysis. BMC Biol. 10.1186/S12915-024-01853-W PubMed PMC
Copenhaver GP, Keith KC, Preuss D (2000) Tetrad analysis in higher plants. A budding technology. Plant Physiol 124:7–15. 10.1104/PP.124.1.7 PubMed PMC
Crespo-Herrera LA, Garkava-Gustavsson L, Åhman I (2017) A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas. 10.1186/s41065-017-0033-5 PubMed PMC
Cruz CD, Peterson GL, Bockus WW et al (2016) The 2NS Translocation from Aegilops ventricosa confers resistance to the Triticum Pathotype of Magnaporthe oryzae. Crop Sci 56:990–1000. 10.2135/CROPSCI2015.07.0410 PubMed PMC
Danecek P, Bonfield JK, Liddle J et al (2021) Twelve years of SAMtools and BCFtools. Gigascience 10:giab008. 10.1093/gigascience/giab008 PubMed PMC
Doležel J, Urbiš P, Said M et al (2023) Flow cytometric analysis and sorting of plant chromosomes. Nucleus 66:355–369. 10.1007/s13237-023-00450-6
Dvorak J, Wang L, Zhu T et al (2018) Reassessment of the evolution of wheat chromosomes 4A, 5A, and 7B. Theor Appl Genet 131:2451–2462. 10.1007/s00122-018-3165-8 PubMed PMC
Friebe B, Zeller FJ, Kunzmann R (1987) Transfer of the 1BL/1RS wheat-rye-translocation from hexaploid bread wheat to tetraploid durum wheat. Theor Appl Genet 74:423–425. 10.1007/BF00289815 PubMed
Gaurav K, Arora S, Silva P et al (2021) Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat Biotechnol 40:422–431. 10.1038/s41587-021-01058-4 PubMed PMC
Glover NM, Redestig H, Dessimoz C (2016) Homoeologs: What are they and how do we infer them? Trends Plant Sci 21:609–621. 10.1016/J.TPLANTS.2016.02.005 PubMed PMC
Golczyk H, Musiał K, Rauwolf U et al (2008) Meiotic events in Oenothera—a non-standard pattern of chromosome behaviour. Genome 51:952–958. 10.1139/G08-081 PubMed
Grewal S, Yang CY, Scholefield D et al (2024) Chromosome-scale genome assembly of bread wheat’s wild relative Triticum timopheevii. Sci Data 111(11):1–11. 10.1038/s41597-024-03260-w PubMed PMC
Griffiths S, Sharp R, Foote TN et al (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nat 4397077(439):749–752. 10.1038/nature04434 PubMed
Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13. 10.1007/s10681-007-9363-0
Hao M, Zhang L, Ning S et al (2020) The resurgence of introgression breeding, as exemplified in wheat improvement. Front Plant Sci. 10.3389/fpls.2020.00252 PubMed PMC
He Z, Wang L, Harper AL et al (2017) Extensive homoeologous genome exchanges in allopolyploid crops revealed by mRNAseq-based visualization. Plant Biotechnol J 15:594–604. 10.1111/PBI.12657 PubMed PMC
He Y, Liu Y, Li M et al (2021) The Arabidopsis SMALL AUXIN UP RNA32 protein regulates ABA-mediated responses to drought stress. Front Plant Sci. 10.3389/FPLS.2021.625493 PubMed PMC
Helguera M, Khan IA, Kolmer J et al (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847. 10.2135/CROPSCI2003.1839
Jordan KW, Wang S, Lun Y et al (2015) A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol 16:1–18. 10.1186/S13059-015-0606-4 PubMed PMC
Kale SM, Schulthess AW, Padmarasu S et al (2022) A catalogue of resistance gene homologs and a chromosome-scale reference sequence support resistance gene mapping in winter wheat. Plant Biotechnol J 20:1730–1742. 10.1111/PBI.13843 PubMed PMC
Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A 101:13554–13559. 10.1073/PNAS.0403659101 PubMed PMC
Kato A, Kato A, Albert P et al (2006) Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem 81:71–78. 10.1080/10520290600643677 PubMed
Keilwagen J, Lehnert H, Berner T et al (2019) Detecting large chromosomal modifications using short read data from genotyping-by-sequencing. Front Plant Sci. 10.3389/fpls.2019.01133 PubMed PMC
Keilwagen J, Lehnert H, Berner T et al (2022) Detecting major introgressions in wheat and their putative origins using coverage analysis. Sci Rep. 10.1038/s41598-022-05865-w PubMed PMC
Keilwagen J, Lehnert H, Badaeva ED et al (2023) Finding needles in a haystack: identification of inter-specific introgressions in wheat genebank collections using low-coverage sequencing data. Front Plant Sci. 10.3389/fpls.2023.1166854 PubMed PMC
King J, Grewal S, Yang CY et al (2017) A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum. Plant Biotechnol J 15:217–226. 10.1111/PBI.12606 PubMed PMC
King J, Newell C, Grewal S et al (2019) Development of stable homozygous wheat/amblyopyrum muticum (Aegilops mutica) introgression lines and their cytogenetic and molecular characterization. Front Plant Sci. 10.3389/fpls.2019.00034 PubMed PMC
King J, Grewal S, Othmeni M et al (2022) Introgression of the Triticum timopheevii genome into wheat detected by chromosome-specific Kompetitive allele specific PCR markers. Front Plant Sci. 10.3389/FPLS.2022.919519 PubMed PMC
Knott DR, Dvořák J, Nanda JS (1977) The transfer to wheat and homoeology of an Agropyron elongatum chromosome carrying resistance to stem rust. Can J Genet Cytol 19:75–79. 10.1139/g77-009
Kolodziej MC, Singla J, Sánchez-Martín J et al (2021) A membrane-bound ankyrin repeat protein confers race-specific leaf rust disease resistance in wheat. Nat Commun 12:1–12. 10.1038/s41467-020-20777-x PubMed PMC
Kunz L, Sotiropoulos AG, Graf J et al (2023) The broad use of the Pm8 resistance gene in wheat resulted in hypermutation of the AvrPm8 gene in the powdery mildew pathogen. BMC Biol. 10.1186/s12915-023-01513-5 PubMed PMC
Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Preprint at 10.48550/arXiv.1303.3997
Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. 10.1093/bioinformatics/btt656 PubMed
Manser B, Zbinden H, Herren G et al (2024) Wheat zinc finger protein TaZF interacts with both the powdery mildew AvrPm2 protein and the corresponding wheat Pm2a immune receptor. Plant Commun. 10.1016/j.xplc.2023.100769 PubMed PMC
Marcussen T, Sandve SR, Heier L et al (2014) Ancient hybridizations among the ancestral genomes of bread wheat. Science 345(6194):1250092. 10.1126/science.1250092 PubMed
Martín AC, Rey MD, Shaw P, Moore G (2017) Dual effect of the wheat Ph1 locus on chromosome synapsis and crossover. Chromosoma 126:669–680. 10.1007/S00412-017-0630-0 PubMed PMC
Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283. 10.1016/J.CJ.2015.01.001
Müller MC, Kunz L, Schudel S et al (2022) Ancient variation of the AvrPm17 gene in powdery mildew limits the effectiveness of the introgressed rye Pm17 resistance gene in wheat. Proc Natl Acad Sci. 10.1073/pnas PubMed PMC
Nørholm MHH (2010) A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol. 10.1186/1472-6750-10-21 PubMed PMC
Orlovskaya O, Dubovets N, Solovey L, Leonova I (2020) Molecular cytological analysis of alien introgressions in common wheat lines derived from the cross of Triticum aestivum with T. kiharae. BMC Plant Biol. 10.1186/s12870-020-02407-2 PubMed PMC
Pont C, Leroy T, Seidel M et al (2019) Tracing the ancestry of modern bread wheats. Nat Genet 515(51):905–911. 10.1038/s41588-019-0393-z PubMed
Ramírez F, Ryan DP, Grüning B et al (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44:W160–W165. 10.1093/NAR/GKW257 PubMed PMC
Rey MD, Martín AC, Higgins J et al (2017) Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids. Mol Breed. 10.1007/S11032-017-0700-2 PubMed PMC
Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26 PubMed PMC
Said M, Hřibová E, Danilova TV et al (2018) The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theor Appl Genet 131:2213–2227. 10.1007/S00122-018-3148-9 PubMed PMC
Said M, Kubaláková M, Karafiátová M et al (2019a) Dissecting the complex genome of crested wheatgrass by chromosome flow sorting. Plant Genome. 10.3835/PLANTGENOME2018.12.0096 PubMed
Said M, Parada AC, Gaál E et al (2019b) Uncovering homeologous relationships between tetraploid Agropyron cristatum and bread wheat genomes using COS markers. Theor Appl Genet 132:2881–2898. 10.1007/S00122-019-03394-1 PubMed PMC
Said M, Holušová K, Farkas A et al (2021) Development of DNA markers from physically mapped loci in aegilops comosa and Aegilops umbellulata using single-gene FISH and chromosome sequences. Front Plant Sci 12:689031. 10.3389/fpls.2021.689031 PubMed PMC
Sánchez-Martín J, Widrig V, Herren G, et al (2021) Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins. Nat Plants 1–15. 10.1038/s41477-021-00869-2 PubMed PMC
Schulthess AW, Kale SM, Liu F et al (2022) Genomics-informed prebreeding unlocks the diversity in genebanks for wheat improvement. Nat Genet 5410(54):1544–1552. 10.1038/s41588-022-01189-7 PubMed
Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197. 10.1016/0022-2836(81)90087-5 PubMed
Sotiropoulos AG, Arango-Isaza E, Ban T et al (2022) Global genomic analyses of wheat powdery mildew reveal association of pathogen spread with historical human migration and trade. Nat Commun 13:1–14. 10.1038/s41467-022-31975-0 PubMed PMC
Stein N, Herren G, Keller B (2001) A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breed 120:354–356. 10.1046/j.1439-0523.2001.00615.x
Tang X, Dai F, Hao Y et al (2023) Fine mapping of two recessive powdery mildew resistance genes from Aegilops tauschii accession CIae8. Theor Appl Genet. 10.1007/S00122-023-04454-3/ PubMed
Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115. 10.1093/nar/gks596 PubMed PMC
Voss-Fels KP, Stahl A, Wittkop B et al (2019) Breeding improves wheat productivity under contrasting agrochemical input levels. Nat Plants 57(5):706–714. 10.1038/s41477-019-0445-5 PubMed
Walkowiak S, Gao L, Monat C et al (2020) Multiple wheat genomes reveal global variation in modern breeding. Nature 588:277–283. 10.1038/s41586-020-2961-x PubMed PMC
Wang Y, Abrouk M, Gourdoupis S et al (2023) An unusual tandem kinase fusion protein confers leaf rust resistance in wheat. Nat Genet 55:914–920. 10.1038/s41588-023-01401-2 PubMed PMC
Warr A, Robert C, Hume D et al (2015) Exome sequencing: current and future perspectives. G3 Genes Genomes Genet 5:1543–1550. 10.1534/G3.115.018564 PubMed PMC
Wicker T, Wing RA, Schubert I (2015) Recurrent sequence exchange between homeologous grass chromosomes. Plant J 84:747–759. 10.1111/TPJ.13040 PubMed
Wicker T, Stritt C, Sotiropoulos AG et al (2022) Transposable element populations shed light on the evolutionary history of wheat and the complex co-evolution of autonomous and non-autonomous retrotransposons. Adv Genet. 10.1002/GGN2.202100022 PubMed PMC
Xie J, Guo G, Wang Y et al (2020) A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytol 228:1011–1026. 10.1111/NPH.16762 PubMed
Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 10.1186/1471-2105-13-134 PubMed PMC
Yu G, Matny O, Gourdoupis S et al (2023) The wheat stem rust resistance gene Sr43 encodes an unusual protein kinase. Nat Genet 55:921–926. 10.1038/s41588-023-01402-1 PubMed PMC
Zhang Z, Zhang Z, Gou X et al (2020) Homoeologous exchanges occur through intragenic recombination generating novel transcripts and proteins in wheat and other polyploids. PNAS 117:14561–14571. 10.1073/pnas.2003505117 PubMed PMC
Zhou Y, Zhao X, Li Y et al (2020) Triticum population sequencing provides insights into wheat adaptation. Nat Genet 5212(52):1412–1422. 10.1038/s41588-020-00722-w PubMed
Zhu T, Wang L, Rimbert H et al (2021) Optical maps refine the bread wheat Triticum aestivum cv. Chinese spring genome assembly. Plant J 107:303–314. 10.1111/tpj.15289 PubMed PMC